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Abstract. In automated negotiation, information gained about an op-
ponent’s preference profile by means of learning techniques may signifi-
cantly improve an agent’s negotiation performance. It therefore is useful
to gain a better understanding of the factors that influence the quality
of learning. The benefits of learning in negotiation are typically assessed
indirectly by means of comparing the utility levels of agreed outcomes
and other more global negotiation parameters. An evaluation of learn-
ing based on such general criteria, however, does not provide any insight
into the influence of various aspects of negotiation on the quality of the
learned model itself. The quality may depend on such aspects as the
domain of negotiation, the structure of the preference profiles, the ne-
gotiation strategies used by the parties, and others. To gain a better
understanding of the performance of proposed learning techniques in the
context of negotiation and to be able to assess the potential to improve
the performance of such techniques a more systematic assessment method
is needed. In this paper we propose such a systematic method to anal-
yse the quality of the information gained about opponent preferences
by learning. The method includes measures to assess the quality of a
learned preference profile and proposes an experimental setup to analyse
the influence of various negotiation aspects on the quality of learning.
We apply the method to a Bayesian learning approach for learning an
opponenent’s preference profile and discuss our findings.

1 Introduction

In the area of learning in negotiation, the benefits of the application of learn-
ing techniques are often measured with respect to the final outcome or other
generally relevant parameters of negotiation such as number of rounds to reach
an agreement. The quality of the model of what has to be learned thus is often
not directly analyzed but a more indirect method is used to assess these ben-
efits. One of the problems with this indirect method of measuring the benefits
of learning in negotiation is that it does not provide any tools to analyse the
performance of the learning mechanism itself nor does it provide insight into the
factors influencing the quality of learning in negotiation.

To gain a better understanding of the performance of proposed learning tech-
niques and the potential to improve the performance of such techniques in the
context of automated negotiation a more systematic assessment method for the
quality of learning is needed. Such a method should provide the technical tools



for analysis, identify the key factors that need to be taken into account and
propose an experimental setup to evaluate the quality of learning. In this paper
we present a method that can be used to assess the quality of a learning of an
opponent’s preference profile. Useful technical tools as well as an approach for
analysis are discussed, and we apply the method to illustrate the results and
some of the insights that may be gained by using it.

The paper is organized as follows. In Section 2 we briefly discuss learning
in negotiation and introduce the problem concerning the quality of learning in
negoation that we address in this paper. In Section 3 a method is proposed and
the various components of the proposed method are discussed. In Section 4 the
proposed method is applied to the Bayesian learning approach proposed in [8]
and results are presented. In Section 5 conclusions and several directions for
future research are outlined.

2 Related Work and Problem Description

Learning in automated negotiation is an important topic since it has been shown
that it can significantly improve the performance of a negotiating agent. Work
in the area of opponent modelling in negotiation has resulted in a variety of
approaches that usually focus on learning one aspect of the negotiation process.
The range of negotiation aspects that are learned includes reservation values
[21], issue priorities (or weights associated with negotiated issues modelling the
relative importance of each issue; [2, 9]), and negotiation strategies [12, 14].

In [11] an opponent’s preference profile is learned in a qualitative negoti-
ation setting. It is assumed that a fixed set of possible profile types is given.
Bayesian learning then is used to determine the likelihood that an opponent has
one of these given profiles. In [4] a model is presented that incorporates domain
knowledge for deciding on a negotiation move, which is extended in [2] with a
learning technique based on on kernel density estimation (KDE) to learn the
issue priorities of an opponent. [9] proposes an alternative method for learning
issue priorities. In [8] a Bayesian learning technique is presented to learn an op-
ponent’s preference profile including both issue priorities as well as the ranking
of issue alternatives. The evaluation method that has been used to assess the
quality of learning in each of these approaches has been indirect, e.g. by evalu-
ating the improvement of the outcome that is reached with respect to standard
notions such as Pareto efficiency. An exception is the work reported in [17] where
the quality of learning is discussed on the basis of statistical analysis, and the
work reported in [1] that presents quantitative results on a Bayesian classifier to
classify the type of profile of an opponent. However, it is not clear from [1, 17]
how various factors determine the quality of learning.

In order to define a quality assessment method that provides insight into
the contribution of various factors to the learning quality, we first introduce
the model of negotiation that we use. Negotiation is a form of decision-making
where two or more parties jointly search a space of possible outcomes Ω with
the goal of reaching a consensus [18]. In this paper, we only consider bilateral



negotiation, i.e. negotiation between two parties. We further assume that both
parties are able to express their preferences over possible outcomes ω ∈ Ω and
that these preferences can be modelled by means of a utility function U that
maps a possible outcome ω to a real-valued number in the range [0; 1] (cf. [20]).
A utility function will also be referred to as a preference profile.

Possible outcomes of a negotiation may have additional structure and consist
of a package-deal of several issues or attributes. Each issue has an associated
range of alternatives one of which for each issue needs to be agreed upon to
reach a final outcome. The space of possible outcomes each of which consists of
values assigned to a number of issues is also called the negotiation domain.

It is often assumed that a preference profile can be defined as a function of
the evaluation functions associated with individual issues and we do so as well
here. More specifically, we assume that utility functions are linearly additive [16].
That is, in a domain with n issues and outcomes that consist of one alternative
xi for each of the n issues, we assume that a utility function can be defined by:

U(ω) =
n

∑

i=1

wiei(xi ∈ ω)

where the wi are normalized weights that sum to 1 and the ei(xi ∈ ω) are
evaluation functions with range [0; 1] which model preferences for issue alterna-
tives. An important reason that justifies this restriction is that most existing
negotiation strategies can handle linearly additive utility functions but cannot
(efficiently) handle more complex utility functions.

In order to obtain an advantageous negotiation outcome, i.e. to reach an
agreement as best as possible, it is useful to have as much information about
the preference profile of an opponent as is possible. In a closed negotiation the
negotiating parties however do not exchange information about the preferences
of each other. In single-instance negotiations a negotiating agent may then try to
obtain a model of the preference profile of its opponent by means of learning [2,
8, 9, 11]. The goal of applying learning techniques here is to construct a function
Ũ that is similar to the actual utility function U of the opponent. The problem
that we address in this paper is how to assess the quality of a learning technique
in this context, that is, which tools can be used to assess the similarity of the
learned preference profile with the actual profile and which factors influence
the similarity. The method proposed aims at a direct assessment of the quality
of a learned preference profile instead of indirect evaluations based on results
that indicate comparative utility increases of negotiation outcomes, reaching
agreements in fewer negotiation rounds, or outcomes closer to the Pareto frontier
or fair outcomes such as the Nash outcome. One of our objectives is to be able
to analyze the influence of various negotiation aspects on the learning quality.

3 Quality Assessment Method

The method we propose has three components: (i) quality measures to estimate
the learning performance, (ii) criteria for selecting a diverse range of negotiation



domains and preference profiles on these domains, and (iii) criteria for selecting
a number of negotiation strategies of the opponent. These components then are
used to define an experimental setup to obtain data to analyze learning quality
by means of a negotiation tournament.

The first component consists of several similarity measures that provide a
metric for assessing the accuracy of the learned preference profile with respect
to the actual preference profile. We discuss several measures that can be used to
assess the quality of the learned preference profile. Apart from the restriction on
utility functions which need to be linearly additive, the second component of the
method consists of several additional criteria for selecting negotiation domains
such as size and complexity of the domain, and the similarity of the preference
profiles of the negotiating parties. These criteria are used to define the exper-
imental setup of the negotiation tournament. The third component provides
criteria for selecting negotiation strategies that should be used by negotiating
agents in the tournament. Since learning of an opponent’s preference profile in
single-instance negotiations has to be accomplished with only the observations
of the opponent’s negotiation moves [8, 12, 17, 22], typically such learning algo-
rithms use assumptions about an opponent’s behaviour. For instance, in [1, 8,
22] a concession assumption is used which states that negotiators on average de-
crease the utilities of offers as time passes in order to find a deal. Although this
assumption is reasonable and can be applied in typical negotiation settings, it is
important to assess the robustness of a learning technique also when negotiating
against agents that use strategies that do not comply with this assumption. It
thus is important to incorporate a diverse range of negotiation strategies in any
experimental setup to evaluate learning quality.

3.1 Quality Measures

In this Section we discuss two quality measures to assess learning quality that
are based on two metrics to measure the distance between the actual preference
profile of an opponent and the learned preference profile. These quality measures
are applied to both the complete preference profiles or utility functions, as well
as to the issue priorities or weights.

The learning task of learning an opponent’s preference profile clearly is an
approximation problem. The task is to re-constructs the actual utility function
U of the opponent by means of a learning technique resulting in an approxi-
mate function Ũ . A quality measure with respect to learning preference profiles
therefore can be defined as a distance metric of two utility functions, and can
be formally represented as d(U, Ũ).

Ideally, the approximation Ũ of an opponent’s utility function would provide
an accurate prediction of the exact utility value an opponent associates with an
outcome. Some strategies like the Tit-for-Tat-based strategy introduced in [3]
depend on the accurracy of cardinal values of the utility function of the opponent
since a negotiation move is choosen based on an estimate of the concession the
other party made in the previous move. It therefore is important to have a
distance metric that can be used to measure the accuracy of the cardinal values



predicted by the learned profile. Here we use Pearson’s correlation coefficient for
that purpose. This coefficient represents the degree of linear relationship between
two variables and is defined as follows:

dpearson(U, Ũ) =

∑

ω∈Ω

(U(ω) − 〈U〉)(Ũ (ω) − 〈Ũ〉)

√

∑

ω∈Ω

(U(ω) − 〈U〉)2
∑

ω∈Ω

(Ũ(ω) − 〈Ũ〉)2
(1)

where 〈U〉 (respectively 〈Ũ〉) denotes the average utility over the outcome space
defined by utility function U (Ũ). The Pearson’s correlation coefficient takes a
real value from the interval [−1; 1]. A value of +1 means that there is a perfect
positive linear relationship between variables, whereas a value of −1 means that
there is a perfect negative linear relationship between variables. A value of 0
means that there is no linear relationship between the two variables.

Although a perfect match of cardinal values of the actual and learned utility
function would be ideal, in practice it may be sufficient and more important to
approximate the preference ranking of outcomes by an opponent (cf. [4]). For
example, negotiation strategies that aim at maximizing an opponent’s utility
value by means of walking on an utility iso-curve in one’s own preference profile
only need adequate information about an opponent’s ranking of outcomes. That
is, it is sufficient when using such strategies to possess accurate ordinal ranking
information.

To estimate the distance between the rankings of the bids given the actual
utility function of the opponent and the learned utility function, a metric is
introduced that compares all outcomes in the outcome space pairwise. In order
to do so, a ranking relation ≺U is defined as follows: ∀ωi, ωj ∈ Ω, ωi ≺U ωj ⇔
U(ωi) < U(ωj). Using this ranking relation, we can define a conflict indicator
function adapted from [6] to measure conflicting rankings given arbitrary utility
functions u and ũ. The conflict indicator function is defined as follows:

c≺u,≺ũ(ωi,ωj) =











1 if (ωi �u ωj ∧ ωj ≺ũ ωi) ∨ (ωi ≺u ωj ∧ ωj �ũ ωi)

∨(ωi �ũ ωj ∧ ωj ≺u ωi) ∨ (ωi ≺ũ ωj ∧ ωj �u ωi),

0 otherwise.

(2)

The conflict indicator function yields 1 when the ranking relation of two
arbitrary outcomes ω, ω′ based on the learned utility space Ũ is not the same as
the ranking relation based on the actual utility space of the opponent U ; if the
rankings based on both utility functions match the conflict indicator takes the
value of 0.

Using the conflict indicator c, we can define a metric called the ranking

distance of two utility functions. The ranking distance is the calculated average
of the number of conflicts between two utility functions given c:

dranking(U, Ũ) =
1

|Ω|2

∑

ω∈Ω,ω′∈Ω

c≺U ,≺Ũ
(ω, ω′) (3)



In [6] various properties of this distance measure are proved, including e.g. re-
flexivity, symmetry and the triangle inequality property.

It is useful to not only apply the distance measures to complete preference
profiles but also to apply it to the issue priorities or weights in such a profile.
In Section 4 we apply the assessment method to the learning approach for au-
tomated closed negotiation based on Bayesian learning proposed in [8]. In this
learning approach the different components of a linearly additive utility function,
i.e. weights and evaluation functions, are learned in a different way. In order to
obtain experimental data about these different learning processes we therefore
also define similar distance measures to those discussed above for measuring
distance of actual and learned issues weights.

The set of weights can be represented as a weight vector, and it is not hard
to define the Pearson correlation coefficient for the vectors of weights. The coef-
ficient is defined as follows:

dpearson(W, W̃ ) =

∑n

i=1(wi − 〈w〉) ∗ (w̃i − 〈w̃〉)
√

∑n

i=1(wi − 〈w〉)2
∑n

i=1(w̃i − 〈w̃〉)2
(4)

To calculate the ranking distance between the two weight vectors W and W̃

a ranking relation is constructed on the weights of the corresponding vector as
follows: i = 1 . . . n, j = 1 . . . n, i ≺ j ⇔ w(i) < w(j), where w(i) = wi. Using this
relation, the conflict indicator c≺W ,≺W̃

(i, j) then can be defined in the same way
as for utility functions. The ranking distance of two weight vectors is defined as
follows:

dranking(W, W̃ ) =
1

n2

n
∑

i=1

n
∑

j=1

c≺W ,≺W̃
(i, j) (5)

3.2 Negotiation Domains and Profiles

Whereas precise mathematical metrics can be defined for measuring distance
of preference profiles, for the selection of an adequate set of domains to be
used in the experimental setup less formal criteria are proposed here. The main
reason is that it is impossible to assess a learning technique on the space of all
negotiation domains and associated preference profile. Ideally, then, one would
use an experimental setup based on random sampling of the domains and profiles
in order to deal with this problem. However, it is not clear how to setup such
a sampling procedure.1 Instead, we therefore discuss and propose to use three
factors for selecting domains that are relevant in testing the learning quality.

Size of the negotiation domain. The amount of information exchanged during the
negotiation is limited in a closed negotiation since we can rely only on observed

1 As an example, we found that the predictability of issue preferences (see below)
may influence the outcomes of negotiation strategies. It is not particularly clear,
however, how to obtain a random sample which would be an adequate representation
of domains with and without predictable issues.



negotiation moves of an opponent, which affects learning quality. The amount
of information needed by a learning technique typically depends on the model
structure and the size of the parameter space that is to be learned. Therefore,
a learning technique has to be assessed on negotiation domains of various sizes
and of various complexity. Since in any negotiation the number of issues is one
of the most important factors that determines the complexity of the preferences
profile, a set of domains should be selected that range from a low number of
issues to higher number of issues.

Predictability of the preferences. Most learning techniques for learning an oppo-
nent’s preference profile use assumptions about the structure of the preference
profile (e.g. see [2, 8, 22]). Among others such techniques may rely on the pre-
dictability of issue preferences [7]. Issues are called predictable when even though
the actual evaluation function for the issue is unknown, it is possible to guess
some of its global properties. For example, a price issue typically is rather pre-
dictable, where more is better for the seller, and less is better for the buyer,
and the normal ordering of the real numbers is maintained; an issue concerning
colour, however, is typically less predictable. Learning even ranking preferences
related to issue values of unpredictable issues therefore is more difficult.

The set of selected negotiation domains for any experimental setup therefore
ideally should consist of a balanced mix of predictable and unpredictable issues.
In principle, the higher the number of unpredictable issues the more complicated
the learning of a corresponding profile becomes.

Opposition of preferences. The results of analyzing negotiation dynamics pre-
sented in [7] revealed that some negotiation strategies are sensitive to preference
profiles with compatible issues. Issues are compatible if the issue preferences of
both negotiating parties are such that they both prefer the same alternatives
for the given issue. Negotiation strategies may more or less depend on whether
preferences of the negotiating parties are opposed or not on every issue. That
is, using some strategies it is harder or even impossible to exploit such common
ground and agree on the most preferred option by both parties for compatible
issues (humans are reported to have difficulty with this as well; cf. [19]). A selec-
tion of preference profiles should therefore take into account that both preference
profiles with and without compatible issues are included.

The notion of opposition can be made more precise. In [10] a notion of local
opposition based on the gradients of the utility functions of both parties is defined
for each outcome in the negotiation domain. Intuitively, if the gradients point to
opposite directions then the preferences of the negotiation parties are opposed.
The more colinear the gradients are the closer (more comptatible) the preferences
of the parties. Although it is possible to generalize the notion of local opposition
relative to an outcome to a more global notion of opposition of utility functions,
we propose to reuse the distance measures for preference profiles to measure the
level of opposition present.

As discussed, it is not clear how to randomly sample negotiation domains and
we use the criteria discussed to select a number of negotiation domains to be used



in our experimental setup. The selection we present is not intended to cover all
variations in line with these criteria but rather is ment to illustrate these criteria.
The following negotiation domains with predefined opponent profiles have been
selected (also see Table 1 for details about profile distances):

– Second hand car selling, taken from [9]: a domain of 5 issues, of which only
price is really predictable. That is, an agent can only reliably predict the
other agent’s preferences for this issue.

– Service-Oriented Negotiation, taken from [2], a domain with 4 issues for
which domain knowledge is made available to the strategies.

– Employment contract negotiation domain, taken from [13] with 5 discrete
issues. All issues have predictable values. The preference profiles have the
strongest opposition in our setup.

– AMPO vs City, taken from [15], a domain with 10 issues, for which 7 are
rather predictable, but 3 are not. This is the biggest domain in our experi-
mental setup.

– Party domain is created for negotiation experiments with humans. It is a
rather small domain with 5 discrete issues with 5 possible values each. All
of the issues are unpredictable. The preference profiles have the lowest op-
position in the experimental setup.

Domain
Utility spaces Weights

Domain size No. of Predictable
Ranking Pearson Ranking Pearson

AMPO vs. City 0.662 -0.482 0.422 -0.139 7,128,000 3 (10)

Party 0.540 -0.126 0.467 -0.276 3,125 0 (5)

SON 0.669 -0.453 0.833 -0.751 810,000 4 (4)

Employment contract 0.698 -0.584 0.600 -0.241 3,125 5 (5)

2nd hand car 0.635 -0.387 0.600 -0.147 18,750 1 (5)
Table 1. Distance measures between utility space in the analyzed domains

3.3 Negotiation Strategies of the Opponent

The results of the analysis presented in [7] also have shown that the performance
of a negotiation strategy can be significantly influenced by the negotiation strat-
egy of the opponent. For example, the class of pure time-dependent tactics (TDT;
see [3]) does not take into account the negotiation moves of opponents and se-
lects the next offer to propose in a negotiation based on how close one is to the
negotiation deadline. Whereas TDT tactics are insensitive to opponent moves,
negotiation strategies in the class of behaviour-dependent tactics (BDT) do base
their choice of offer on the offers received so far from the opponent. A variety
of strategies therefore is needed to asses the quality of learning, which includes
strategies that belong to the TDT class, the BDT class as well as mixes thereof.

The selection of strategies to be used in an experimental setup should be
able to test the robustness of the learning technique with respect to various
opponents that use different types of negotiation strategies. For example, to



enable learning of opponent preferences from the observed negotiation moves
(offers) typically a concession assumption is made (cf. [1, 8, 22]). Such rationality
assumptions might however be exploited and it should be tested if a learning
technique is robust against strategies like the Zero-Intelligence strategy that uses
an irrational random tactic [5].

Again we do not claim to present an exhaustive coverage of the criteria dis-
cussed, but present a selection to illustrate. The following negotiation strategies
have been used by the negotiating parties in our experimental setup:

– The ABMP strategy from [9], which is a concession oriented approach in
the TDT class, and is taking no heed of knowledge about the domain or
the opponent. The ABMP strategy uses a non-linear concession tactic. It
conceeds more in the beginning of the negotiation when the gap between
the opponents’ negotiation positions is big and decreases the size of the
concession when their negotiation positions approach each other. As such, it
is an example of a so-called conceder tactic (cf. [3]).

– The Trade-off Strategy, taken from [4], uses so-called similarity criteria and
exploits domain knowledge. The Trade-off strategy is an example of a Behaviour-
dependent strategy. In our experiments we allowed three smart steps and a
concession of 0.05 for the smart meta strategy.

– Zero-Intelligence, taken from [5], is a random strategy that makes random
jumps through the outcome space. The ZI agent used a reservation point in
our experiments to avoid making offers that have very low utility which was
set to 0.6. The ZI strategy plays a role as a baseline strategy.

4 Application and Experimental Results

To show how the proposed method is used in practice we apply it to agents
that make use of opponent’s preferences learning techniques taken from [8]. This
section presents the details of the experimental setup and presents some results
obtained.

4.1 Experimental Setup

To test the proposed method for learning quality analysis an experimental setup
is created. A learning technique based on Bayesian learning algorithm proposed
in [8] is used as a subject of the analysis. The opponent model in [8] is based
on learning probability over a set of hypothesis about evaluation functions and
weights of the issues. The probability distribution is defined over the set of
hypothesis that represent agent’s belief about opponent’s preferences. Structural
assumptions about the evaluation functions and weights are made to decrease
the number of parameters to be learned and simplify the learning task.

Authors propose two versions of the learning algorithm. In the first version
of the algorithm each hypotheses represents a complete utility space as a com-
bination of weights ranking and shapes of the issue evaluation functions. The



size of the hypothesis space growth exponentially w.r.t. the number of issue and
thus is intractable for negotiation domains with high number of issues.

The second version of the algorithm is a scalable variant for the first one. This
version the agent tries to learn probability distribution over the individual hy-
pothesis about the value of the weight and shape of the issue evaluation function
independently of other issues. The computational tractability of the learning is
achieved by approximating the conditional distributions of the hypotheses using
the expected values of the dependant hypotheses.

The authors realize that the learning power of such solution would degrade
compared to the first version of the algorithm. However, the agent performs quite
well on the negotiation domains of higher dimensionality (10 issues), see [8]. It is
only reasonable to expect that the quality of learning degrades when the size of
the negotiation domain is increased. In addition, the unscaleable version of the
Bayesian learning agent is expected to perform less than the scalable version in
terms of learning quality on the same negotiation domain.

The ZI agent is used to test the robustness of the Bayesian learning tech-
nique with respect to the opponent’s negotiation strategy. Both versions of the
Bayesian learning algorithm are expected to show worse performance when nego-
tiating against the ZI agent because they rely on assumptions about the rational-
ity of the opponent’s negotiation strategy. Furthermore, the quality of learning
of the Bayesian agent on the Party domain is expected to suffer from the upre-
dictability of the preference of all the issuesin this domain.

4.2 Evaluation

Due to space limitations, we only present the results of those experiments that
give rise to some of the more significant conclusions. Figure 1 shows results that
represent the quality of learning of the scalable version of the Bayesian agent on
the Employment contract negotiation domain.

The results show that the concession tactics of the opponent influences the
quality of learning, as expected. The Bayesian agent learns the preferences of the
opponent better when the opponent uses the Trade-off tactics rather than the
ABMP strategy. The Trade-off tactics uses semi-linear concession tactics (see
previous section), which is more consistent with the opponent tactics assump-
tions made in the Bayesian agent. As expected, the the Bayesian agent learns
the opponent preference slower in case of the ZI negotiation strategy of the op-
ponent. However, it is still capable of learning the opponent’s preference quite
well.

In general, the learning quality is better in smaller negotiation domains
spaces. This follows from a comparison of the AMPO vs. City domain which
is the largest domain with the SON contract negotiation domain in Figure 2.
The Bayesian learning technique is able to perfectly learn a model of the ranking
(ranking distance measure) in case of the SON domain and keeps improving the
absolute values of the weights (cf. the results of the Pearson distance). In the
AMPO vs. City domain the agent is able to learn the ranking of the weights to
some extent. However, the results show that the learning of the outcome ranking



Fig. 1. Learning quality measures for the unscaleable Bayesian angent on the Employ-
ment contract negotiation domain against the Trade-off (a,d), ABMP (b,e), and ZI
(c,f) strategies.

is rather limited. This can be partly explained by the presense of a few issues
with unpredictable preferences, which results in a lower learning quality of the
evaluation functions and a lower learning quality of the utility function compared
to the results for the SON domain.

Another interesting observation is that the learning algorithm approximates
the absolute, cardinal values of the utility function and weights quite well, see
Figure 2(b,e). This can be explained by the nature of the hypothesis space of the
learning algorithm. The algorithm calculates opponent’s utility values of a bid
as an expected value of a random variable. The expected value is a sum of the
utilities according to the hypothesis weighted according to their probabilities.
Thus, even if the more detailed structure of the opponent’s preferences is not
learned by the agent the information learned can still be used to approximate
the utility function of the opponent as a linear combination of the set of all
hypotheses.



Fig. 2. Learning quality measures for the scaleable Bayesian agent against Trade-off
strategy on the AMPO vs. City (a,d), SON (b,e), and Party (c,f) negotiation domains.

5 Conclusion and Discussion

In this paper, a method for the analysis of the learning quality of learned op-
ponent preference profiles in automated negotiation has been presented. The
method consists of three components: (i) It uses distance measures between the
actual preference profile of the opponent and the learned preference profile to
assess the quality of the learned model; (ii) it propose criteria for the system-
atic classification of negotiation domains and preferences profiles to assess the
impact of a variety of domains on the quality of the learned model; and (iii)
it proposes some criteria to select a set of negotiation strategies. The method
has been applied as an illustration to the agents introduced in [8], which use a
Bayesian learning technique to learn preference profiles. The results confirmed
the effectiveness of the learning technique, in particular that of the unscaleable
version of the agent. The performance of the scalable agent is comparable to that
of the unscaleable version on smaller negotiation domains. As is to be expected,
the results showed that learning performance slowly degrades for the negotiation
domains of higher dimensionality.



In addition, we believe that the results revealed interesting features of the
learning algorithms that can be used to improve their performance. For instance,
a more detailed analysis of the unscaleable version of the Bayesian agent pro-
posed in [8] revealed that the learning algorithm typically approximates the
opponent’s preference profile with a weighted sum of the evaluation hypotheses
instead of learning the evaluation function that best matches the actual function
defined for a given issue. This indicates that it may be possible to reduce the
hypothesis space of evaluation functions and use a smaller set of such functions
which would still be sufficient to approximate a wide range of possible opponent
preference profiles.

One issue that needs more research is the classification of both domains as
well as strategies in order to systematically evaluate a learning technique used
in negotiation. Though in principle, given that utility functions representing
preference profiles are of a certain type, it is possible to generate random outcome
and utility spaces to be used for evaluation. A method based on such random
samples would potentially be more generic than the analysis of cases as used
in this paper. It is not trivial to define such an approach, however, since the
distribution used to generate samples should not favour particular situations (e.g.
combinations of strictly opposed preference profiles over compatible preference
profiles). Since it is also not completely clear how realistic certain preference
profiles which lack sufficient structure are this poses another problem to be
addressed before the use of random samples would make sense.

In this paper we have mainly focussed on the learning of the preference
profile of the opponent. However, a negotiation strategy might also exploit other
knowledge about the negotiating parties. Other parameters such as resevation
value, or type of negotiation strategy however would require certain adaptations
of the proposed method. We plan to extend our method with such tools along
with a statistical toolbox useful in defining a testbed for automated negotiation
agents.
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