
Argumentation-Based Preference Modelling
with Incomplete Information

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

{Wietske.Visser,K.V.Hindriks,C.M.Jonker}@tudelft.nl

Abstract. No intelligent decision support system functions even remotely with-
out knowing the preferences of the user. A major problem is that the way average
users think about and formulate their preferences does not match the utility-based
quantitative frameworks currently used in decision support systems. For the aver-
age user qualitative models are a better fit. This paper presents an argumentation-
based framework for the modelling of, and automated reasoning about multi-issue
preferences of a qualitative nature. The framework presents preferences accord-
ing to the lexicographic ordering that is well-understood by humans. The main
contribution of the paper is that it shows how to reason about preferences when
only incomplete information is available. An adequate strategy is proposed that
allows reasoning with incomplete information and it is shown how to incorporate
this strategy into the argumentation-based framework for modelling preferences.

Keywords: Qualitative Preferences, Argumentation, Incomplete Information.

1 Introduction

In this paper we introduce an argumentation-based framework for modelling qualita-
tive multi-attribute preferences under incomplete information. This is motivated by our
interest in developing a negotiation support system, as part of a larger project. In this
context, we are faced with the need to express a user’s preferences. A necessary (but
not sufficient) condition for an offer to become an agreement is that both parties feel
that it satisfies their preferences well enough. Unfortunately, eliciting and representing a
user’s preferences is not unproblematic. Existing negotiation support systems are based
on quantitative models of preferences. These kinds of models are based on utilities;
a utility function determines for each outcome a numerical value of utility. However,
it is difficult to elicit such models from users, since humans generally express their
preferences in a more qualitative way. We say we like something more than something
else, but it seems strange to express liking something exactly twice as much as an al-
ternative. In this respect, qualitative preference models will have a higher cognitive
plausibility as they provide a better correspondence with representations used by hu-
mans. We also think that qualitative models will allow a human user to interact more
naturally with an agent negotiating on his behalf or supporting him in his negotations,
and will investigate this in future. There are, however, several challenges that need to

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 141–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 W. Visser, K.V. Hindriks, and C.M. Jonker

be met before qualitative models can be usefully applied. Doyle and Thomason [8] pro-
vide an overview including among others the challenge to deal with partial information
(information-limited rationality) and, more generally, the challenge to formalize various
reasoning-related tasks (knowledge representation, reasons, and preference revision).

For any real-life application it is important to be able to handle multi-issue prefer-
ences. It is a natural approach to derive object preferences from general preferences over
properties or attributes. For example, it is quite natural to say that you prefer one house
over another because it is bigger and generally you prefer larger houses over smaller
ones. This might still be so if the first house is more expensive and you generally pre-
fer cheaper options. So there is an interplay between attributes and the preferences a
user holds over them in determining object preferences. This means that object prefer-
ences can be quite complex. One approach to obtain preferences about objects is to start
with a set of properties of these objects and derive preferences from a ranking of these
properties that indicates the relative importance or priority of each of these properties.
This approach to obtain preferences is typical in multi-attribute decision theory [12], a
quantitative theory that derives object preferences from utility values assigned to out-
comes which are derived from numeric weights associated with properties or attributes
of objects. Several qualitative approaches have also been proposed [3,5,6,7,13].

A user’s preferences and knowledge about the world may also be incomplete, in-
consistent or changing. For example, a user may lack some information regarding the
objects he has to choose between, or he might have contradictory information from
different sources. Preferences may change for various reasons, e.g. new information
becoming available, experience, changing goals, or interaction with persuasive others.
For now, we focus on the situation in which information about objects is not complete,
but will address other types of incompleteness, inconsistency and change in future.

The approach we take is based on argumentation. In recent years, argumentation has
evolved to be a core study within artificial intelligence and has been applied in a range
of different topics [2]. We incorporate some of the ideas introduced in existing qualita-
tive approaches but also go beyond these approaches by introducing a framework that
is able to reason about preferences also when only incomplete information is available.
Because of its non-monotonic nature, argumentation is useful for handling inconsistent
and incomplete information. Although a lot of work has been done on argumentation-
based negotiation (for a comprehensive review, see [16]), most of this work considers
only the bidding phase in which offers are exchanged. For preparation, the preferences
of a user have to be made clear (both to the user himself and to the agent supporting
him), hence we need to express and reason with them. We focus here on the modelling
of a single user’s preferences by means of an argumentation process. The idea is that
a user weighs his preferences, which gives him better insight into his own preferences,
and so this weighing is part of the preference elicitation process. The weighing of ar-
guments maps nicely onto argumentation. For example, ‘I like to travel by car because
it is faster than going by bike’ is countered by ‘But cycling is healthier than driving
the car and that is more important to me, so I prefer to take the bike’. This possibility
to construct arguments that are attacked by counterarguments is another advantage of
argumentation, since it is a very natural way of reasoning for humans and fits in with
a user’s own reasoning processes. This is a general feature of argumentation and we

Argumentation-Based Preference Modelling with Incomplete Information 143

will make extensive use of it: arguments like those above form the basis of our system.
We believe that this way of reasoning will also be very useful in the preference elicita-
tion process since the user’s insight into his preferences grows piece by piece as he is
expressing them. The introduction of an argumentation-based framework for reasoning
about preferences even when only incomplete information is available seems particu-
larly suitable for such a step-by-step process. It allows the user to extend and refine
the system representation of his preferences gradually and as the user sees fit. Another
motivation to use argumentation is the link with multi-agent dialogues [1], which will
be very interesting in our further work on negotiation.

In this paper we present an argumentation-based framework for reasoning with qual-
itative multi-attribute preferences. In Section 2, we introduce qualitative multi-attribute
preferences, in particular the lexicographic preference ordering. In Section 3 we start by
modelling this ordering for reasoning with complete information in an argumentation
framework. Then we proceed and extend this framework in such a way that it can also
handle incomplete information. Our main contribution, in Section 4, is a strategy (based
on the lexicographic ordering) with some desired properties to derive object preferences
in the case of incomplete information. In Section 5 this strategy is subsequently incor-
porated into the argumentation framework. Section 6 concludes the paper.

2 Qualitative Multi-attribute Preferences

Qualitative multi-attribute preferences over objects are based on a set of relevant at-
tributes or goals, which are ranked according to their importance or priority. Without
loss of generality, we only consider binary (Boolean) attributes (cf. [5]). Moreover, it
is assumed that the presence of an attribute is preferred over its absence. For example,
given that garden is an attribute, a house that has a garden is preferred over one that
does not have one. The importance ranking of attributes is defined by a total preorder
(a total, reflexive and transitive relation), which we will denote by �. This relation is
not required to be antisymmetric, so two or more attributes can have the same impor-
tance. The relation� yields a stratification of the set of attributes into importance levels.
Each importance level consists of attributes that are deemed equally important. Together
with factual information about which objects have which attributes, the attribute rank-
ing forms the basis on which various object preference orderings can be defined. One
of the most well-known preference orderings is the lexicographic ordering, which we
will use here. [5] and [7] define more multi-attribute preference orderings, such as the
discrimin and best-out orderings. In this paper we focus on the lexicographic ordering
because it seems natural, it defines a total preference relation (contrary to the discrimin
ordering) and it is more discriminating than the best-out ordering. Since the other or-
derings are structurally similar to the lexicographic ordering, a similar argumentation
framework could be defined for them if desired. We introduce the lexicographic prefer-
ence ordering by means of an example.

Example 1. Paul wants to buy a house. According to him, the most important attributes
are large (minimally 100m2), garden and closeToWork, which among themselves are
equally important. The next most important attributes are nearShops and quiet. Be-
ing detached is the least important. Paul can choose between three options: a villa, an

144 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 1. An example of objects and attributes

large garden closeToWork nearShops quiet detached

villa � � �
apartment � � �
cottage � � � �

apartment and a cottage. The attributes of these objects are displayed in Table 1. In this
table, the attributes are ordered in decreasing importance from left to right. A dashed
line between attributes indicates equal importance, a solid line a transistion to a lower
importance level. A checkmark indicates that an object has the attribute, an empty box
means that the attribute is absent. Which house should Paul choose? He first consid-
ers the highest importance level, which in this case comprises large, garden and close-
ToWork. The villa and the apartment both have two of these attributes, while the cottage
only has one. So at this moment Paul concludes that both the villa and the apartment
are preferred to the cottage. For the preference between the villa and the apartment he
has to look further. At the next importance level, the apartment has one attribute and
the apartment has none. So the apartment is preferred over the villa. Note that although
the cottage has the most attributes in total, it is still the least preferred option because
of its bad score at the more important attributes.

Definition 1. (Lexicographic preference ordering) Let P be a set of attributes or
goals, and � a total preorder on P . We write P � Q for P � Q and Q �� P, and P ≈
Q for P � Q and Q � P. We use | · | to denote the cardinality of a set. Object a is
strictly preferred over object b according to the lexicographic ordering if there exists
an attribute P such that |{P′ | a has P′ and P ≈ P′}|> |{P′ | b has P′ and P ≈ P′}| and
for all Q � P: |{Q′ | a has Q′ and Q ≈ Q′}| = |{Q′ | b has Q′ and Q ≈ Q′}|. Object
a is equally preferred as object b according to the lexicographic ordering if for all P:
|{P′ | a has P′ and P ≈ P′}| = |{P′ | b has P′ and P ≈ P′}|.

3 Argumentation Framework for Complete Information

In order to formally model and reason with preferences we define an argumentation
framework (AF). We use as our starting point the well-known argumentation theory of
Dung [10]. An abstract AF in the sense of Dung consists of a set of arguments and a
defeat relation (informally, a counterargument relation) among those arguments. An AF
is abstract in the sense that both the set of arguments and the defeat relation are assumed
to be given, and the construction and internal structure of arguments is not taken into
account. If we want to reason with argumentation, we have to instantiate an abstract AF
by specifying the structure of arguments and the defeat relation. Section 3.1 presents the
logical language that we will use. Arguments are built from this language by chaining
inferences. Inferences are instantiations of general inference schemes, such as modus
ponens. The inference schemes of our AF are presented in Section 3.2. Section 3.3
defines the defeat relation, which is based on certain relations between the elements of
arguments. Together with a knowledge base, the inference schemes and defeat relation

Argumentation-Based Preference Modelling with Incomplete Information 145

provide a specific AF for arguing about multi-attribute preferences. Which arguments
are justified is determined by the semantics used (Section 3.4). Section 3.5 shows that
the presented AF indeed models lexicographic preference.

3.1 Language

The language has to allow us to express everything we want to talk about when rea-
soning about preferences. To start, we need to be able to state the facts about objects:
which attributes they do and do not have. We also have to express the importance rank-
ing of attributes, so we need to be able to say that one attribute is more important than
another, or that two attributes are equally important. Of course, we want to say that one
object is preferred over another, and that two objects are equally preferred. Finally, we
need to be able to express how many attributes of equal importance a certain object has,
since the lexicographic preference ordering is based on counting these. To this end, we
introduce a special predicate has(a, [P],n) which expresses that object a has n attributes
of the importance level of attribute P. Since we have no names for importance levels,
we denote them by any attribute of that level, placed between square brackets. It is not
necessary that the attribute used is among the attributes that the object has; in our ex-
ample, has(apartment, [quiet],1) is true even though the apartment is not quiet. All of
the things described can be expressed in the following language.

Definition 2. (Language) Let P be a set of attribute names with typical elements P,Q,
and O a set of object names with typical elements a,b, and let n be a non-negative
integer. The input language LKB and full language L are defined as follows.

ϕ ∈ LKB ::= P(a) | ¬P(a) | P � Q | P ≈ Q

ψ ∈ L ::= ϕ ∈ LKB | pref(a,b) | eqpref(a,b) | has(a, [P],n)

Formulas of this language have the following informal meaning:
P(a) object a has attribute P
¬P(a) object a does not have attribute P
P � Q attribute P is more important than attribute Q
P ≈ Q attribute P is equally important as attribute Q
pref(a,b) object a is strictly preferred over object b
eqpref(a,b) object a is equally preferred as object b
has(a, [P],n) object a has n attributes equally important as attribute P (not

necessarily including P itself)
The idea is that preferences over objects are derived from facts about which objects

have which attributes, and the importance order among attributes. These facts are con-
tained in a knowledge base, which is a set of formulas from LKB. A knowledge base is
complete if, given a set of objects to compare and a set of attributes to compare them
on, it contains for every object a and for every attribute P, either P(a) or ¬P(a), and for
all attributes P,Q, either P � Q, Q � P or P ≈ Q.

Example 2. The information from Example 1 can be expressed in the form of the fol-
lowing knowledge base that is based on the language LKB.

146 W. Visser, K.V. Hindriks, and C.M. Jonker

large ≈ garden ≈ closeToWork � nearShops ≈ quiet � detached
large(villa) large(apartment) ¬large(cottage)
garden(villa) ¬garden(apartment) garden(cottage)
¬closeToWork(villa) closeToWork(apartment) ¬closeToWork(cottage)
¬nearShops(villa) nearShops(apartment) nearShops(cottage)
¬quiet(villa) ¬quiet(apartment) quiet(cottage)
detached(villa) ¬detached(apartment) detached(cottage)

3.2 Inferences

An argument is a derivation of a conclusion from a set of premises. Such a derivation
is built from multiple steps called inferences. Every inference step consists of premises
and a conclusion, and has a label. Inferences can be chained by using the conclusion of
one inference step as a premise in the following step. Thus a tree of chained inferences
is created, which we use as the formal definition of an argument.

Definition 3. (Argument) An argument is a tree, where the nodes are inferences, and
an inference can be connected to a parent node if its conclusion is a premise of that
node. Leaf nodes only have a conclusion (a formula from the knowledge base), and no
premises. A subtree of an argument is also called a subargument. We define inf to be
a function that returns the last inference of an argument (the root node), and conc
to be a function that returns the conclusion of an argument, which is the same as the
conclusion of the last inference.

The inferences that can be made are defined by inference schemes. The inference
schemes of our framework are listed in Table 2. The first and second inference schemes
are used to count the number of attributes of equal importance as some attribute P that
object a has. This type of inference is inspired by accrual [14], which combines mul-
tiple arguments with the same conclusion into one accrued argument for the same con-
clusion. Although our application is different, we use a similar mechanism. We want
all attributes that are present to be counted. Otherwise we would conclude incorrect
preferences (e.g. if the large attribute of the apartment were not counted, we would
incorrectly derive that the villa were preferred over the apartment). Inference scheme
1, which counts 0, can always be applied since it has no premises. Inference scheme
2 can be applied on any subset of the set of attributes of some importance level that
an object a has. This means that it is possible to construct an argument that does not
count all attributes that are present (a so-called non-maximal count). To ensure that
only maximal counts are used, we provide an inference scheme to make arguments
that defeat non-maximal counts (inference scheme 3). An argument of this type says
that any count which is not maximal is not applicable. This type of defeat is called un-
dercut (see below). Inference scheme 4 says that an object a is preferred over an object
b if the number of attributes of a certain importance level that a has is higher than the
number of attributes on that same level that b has. For the lexicographic ordering, it is
also required that a and b have the same number of attributes on any level higher than
that of P. We model this by defining an inference scheme 5 that undercuts scheme 4 if
there is a more important level than that of P on which a and b do not have the same
number of attributes. Finally, inference schemes 6 and 7 do the same as 4 and 5, but for

Argumentation-Based Preference Modelling with Incomplete Information 147

Table 2. Inference schemes

1 has(a, [P],0)
count(a, [P],∅)

2

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a, [P1],n)
count(a, [P1],{P1, . . . ,Pn})

3

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn ≈ P

count(a, [P],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a, [P],S)uc

4

has(a, [P],n) has(b, [P′],m) P ≈ P′ n > m

pref(a,b)
prefinf(a,b, [P])

5

has(a, [Q],n) has(b, [Q′],m) Q ≈ Q′ � P n �= m

prefinf(a,b, [P]) is inapplicable
prefinf(a,b, [P])uc

6

has(a, [P],n) has(b, [P′],m) P ≈ P′ n = m

eqpref(a,b)
eqprefinf(a,b, [P])

7

has(a, [Q],n) has(b, [Q′],m) Q ≈ Q′ �≈ P n �= m

eqprefinf(a,b, [P]) is inapplicable
eqprefinf(a,b, [P])uc

equal preference. We need these because equal preference cannot be expressed in terms
of strict preference.

Example 3. We now illustrate the inference schemes with some arguments that can be
made from the knowledge base in Example 2. The example arguments are listed in
Table 3 (for space reasons, the inference labels are left out). Argument A illustrates the
general working; a preference for the apartment over the cottage is derived, based on
the facts that the apartment has two attributes of some level and the cottage only one.
Argument B illustrates a zero count. Here a preference for the apartment over the villa
is derived, based on the facts that the apartment has one attribute of some level and the
villa zero. In argument C a non-maximal count is used (stating that the apartment has
zero attributes of the level of nearShops), which leads to another conclusion, namely
that the villa and the apartment are equally preferred. However, there are undercutters
to attack such arguments (argument D).

Note that the lexicographic ordering results in a complete transitive order of weak pref-
erence on objects (an object is weakly preferred over another if it is either more pre-
ferred than, or equally preferred as the other object). This means that it is not necessary
to define inference rules for the property of transitivity, because any preference that fol-
lows from transitivity can also be derived directly from the definition of lexicographic
ordering. For example, if pref(a,b) and eqpref(b,c) hold, then pref(a,c) also holds, but
this can be derived using the inference schemes of Table 2. The same holds for the
asymmetry of strict preference (if pref(a,b) holds, then pref(b,a) does not hold) and
the symmetry of equal preference (if eqpref(a,b) holds, then eqpref(b,a) also holds).

148 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 3. Example arguments

A:

large(apartment) closeToWork(apartment) large ≈ closeToWork

has(apartment, [large],2)

garden(cottage)

has(cottage, [garden],1) large ≈ garden 2 > 1

pref(apartment,cottage)

B:

nearShops(apartment)

has(apartment, [nearShops],1) has(villa, [nearShops],0) nearShops ≈ nearShops 1 > 0

pref(apartment,villa)

C:

has(villa, [nearShops],0) has(apartment, [nearShops],0)
∗

nearShops ≈ nearShops 0 = 0

eqpref(villa,apartment)

D:

nearShops(apartment)

∗ is inapplicable

3.3 Defeat

With the language and the inference rules defined in the previous sections we can con-
struct arguments. To complete our argumentation framework, we also need to specify
a defeat relation. This section provides the formal definition of defeat that we will use.
The most common type of defeat is rebuttal. An argument rebuts another argument if its
conclusion is the negation of the conclusion of the other argument. Rebuttal is always
mutual. Another type of defeat is undercut. An undercutter is an argument for the inap-
plicability of an inference used in another argument (for the specific undercutters used
in our framework, see the previous section). Undercut works only one way. Defeat is
defined recursively, which means that rebuttal can attack an argument on all its premises
and (intermediate) conclusions, and undercut can attack ist on all its inferences.

Definition 4. (Defeat) An argument A defeats an argument B if

– conc(A) = ϕ and conc(B) = ¬ϕ (rebuttal), or
– conc(A) =‘inf(B) is inapplicable’ (undercut), or
– A defeats a subargument of B.

3.4 Semantics

By specifying the inference schemes and the definition of defeat, together with a knowl-
edge base, we have instantiated an argumentation framework consisting of a set of argu-
ments and a defeat relation among them. Now we define which arguments are justified.
For this we use Dung’s [10] grounded semantics.1 Grounded semantics is defined as
follows.

1 For the argumentation system defined in this paper (including the extended version of Section
5), the choice of semantics is not relevant; we could also have used other semantics such as
preferred or stable semantics (also from [10]). There would be a difference when we allow the
use of an inconsistent knowledge base, in which case another semantics may be more suitable.
This is something for further investigation.

Argumentation-Based Preference Modelling with Incomplete Information 149

Definition 5. – An argument A is acceptable with respect to a set S of arguments iff
each argument defeating A is defeated by an argument in S.

– The characteristic function, denoted by FAF, of an argumentation framework AF is
defined as follows: FAF(S) = {A | A is acceptable with respect to S}.

– The grounded extension of AF is defined as the least fixed point of FAF.
– An argument is justified with respect to grounded semantics iff it is a member of the

grounded extension.

3.5 Validity

The argumentation framework defined in previous sections indeed models lexicographic
preference, assuming a complete and consistent knowledge base.

Proposition 1. Let A(KB) denote all arguments that can be built from a knowledge
base KB. Then there is an argument A ∈ A(KB) such that the conclusion of A is
pref(a,b) and A is justified under grounded semantics iff a is preferred over b according
to the lexicographic preference ordering (Definition 1) given KB.

Proof. Suppose a is preferred over b. This means that there exists an attribute P such
that |{P′ | a has P′ and P≈ P′}|> |{P′ | b has P′ and P ≈ P′}| and for all Q � P: |{Q′ | a
has Q′ and Q ≈ Q′}| = |{Q′ | b has Q′ and Q ≈ Q′}|. Let P1 . . .Pn denote all attributes
of equal importance as P such that a has Pi and let P′

1 . . .P′
m denote all attributes of

equal importance as P such that b has Pi. Note that n > m. Then the knowledge base
is as follows: P1 ≈ . . . ≈ Pn ≈ P′

1 ≈ . . .P′
m and P1(a) . . .Pn(a) and P′

1(b) . . .P′
m(b). The

following argument (A) can be built (note that this argument can also be built if m is
equal to 0, by using the empty set count):

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a, [P1],n)

P′
1(b) . . . P′

m(b) P′
1 ≈ . . . ≈ P′

m

has(b, [P′
1],m) P1 ≈ P′

1 n > m

pref(a,b)
We will now play devil’s advocate and try to defeat this argument. We can try rebuttal
and undercut of the argument and its subarguments. Rebuttal of premises is not appli-
cable, since the knowledge base is consistent. Rebuttal of (intermediate) conclusions is
not possible either, since there is no way to derive a negation. Then there are three infer-
ences we can try to undercut (the last inference of the argument and the last inferences
of two subarguments). For the left-hand count, this can only be done if there is another
Pj such that Pj ≈ P and Pj �∈ {P1, . . . ,Pn} and Pj(a) is the case. However, P1 . . .Pn en-
compass all such attributes, so count undercut is not possible. The same argument holds
for the other count. At this point it is useful to note that these two counts are the only
ones that are undefeated. Any lesser count will be undercut by the count undercutter that
takes all of P1 . . .Pn (resp. P′

1 . . .P′
m) into account. Such an undercutter has no defeaters,

so any non-maximal count is not justified. The final thing that is left to try is undercut of
prefinf(a,b, [P1]). The undercutter of prefinf(a,b, [P1]) is based on two counts. We have
seen that any non-maximal count will be undercut. If the maximal counts are used, we
have n = m, since we have for all Q � P: |{Q′ | a has Q′ and Q ≈ Q′}| = |{Q′ | b has
Q′ and Q ≈ Q′}|. So the undercutter inference rule cannot be applied since n �= m is not

150 W. Visser, K.V. Hindriks, and C.M. Jonker

true. This means that for every possible type of defeat, either the defeat is inapplicable
or the defeater of A is itself defeated by undefeated arguments. This means that A is in
the grounded extension and hence justified according to grounded semantics.

Suppose a is not preferred over b. This means that for all attributes P, either |{P′ | a
has P′ and P ≈ P′}| ≤ |{P′ | b has P′ and P≈ P′}| or there exists an attribute Q � P such
that |{Q′ | a has Q′ and Q ≈ Q′}| �= |{Q′ | b has Q′ and Q ≈ Q′}|. This means that any
argument with conclusion pref(a,b) (which has to be of the form above) is either under-
cut by count(b, [P]S)uc because it uses a non-maximal count, or by prefinf(a,b, [P])uc
because there is a more important level where a preference can be derived. This means
that any such argument will not be justified under grounded semantics.

The same line of argument can be followed for eqpre f . ��

4 Strategies for Handling Incomplete Information

So far, we have defined an argumentation system that can reason about preferences
according to the lexicographic preference ordering. Above, we have assumed that the
information about the objects that are compared is complete. But, as stated in the in-
troduction, this is often not the case. In this section we will investigate how incomplete
information can best be handled when reasoning about preferences.

Suppose it is not known whether an object has a specific attribute, e.g. we know
that P(a) but we do not know whether P(b) or ¬P(b). This might not be a problem.
If the preference between a and b can be decided based on attributes that are more
important than P, the knowledge whether P(b) or ¬P(b) is the case is irrelevant. But
often this information will be needed to decide a lexicographic preference. In that case,
different approaches or strategies for drawing conclusions are possible. However, not
all strategies give desired results. In the following, we will discuss some naive strategies
and their shortcomings, from which we will derive some desired properties of strategies,
and define and model a strategy that gives intuitive results.

4.1 Naive Strategies

Optimistic, resp. Pessimistic, Strategy. This strategy always assumes that an object has,
resp. does not have, the attribute that is not known. This strategy can always derive some
preference between two objects, since it completes the knowledge by making certain
assumptions, and can then derive a complete preference ordering over objects. But there
is no guarantee that the inferences made are correct. In fact, any inferred preference can
only be correct if all the assumptions it is based on are either correct or irrelevant. Since
we do not know whether assumptions are correct and the strategy does not check for
relevance, the inference can only be correct by chance. For example, suppose it is not
known whether the villa has a garden and whether it is closeToWork. The optimistic
strategy would assume that it has both attributes, in which case an incorrect preference
of the villa over the apartment would be derived. The pessimistic strategy on the other
hand would assume the villa has neither of the attributes, and would derive an incorrect
preference of the cottage over the villa.

Note that using the framework defined above without adaptation would boil down to
using a pessimistic strategy: if it is not known whether an object has a certain attribute,

Argumentation-Based Preference Modelling with Incomplete Information 151

Table 4. Example of intransitive preference with the Disregard Attribute Strategy

P Q R

a � ?
b � ?
c ? �

the attribute is (implicitly) assumed to be absent. This is due to the fact that only at-
tributes for which it is known that an object has them are counted. Attributes that an
object does not have and attributes for which this information is unavailable are treated
the same way (i.e. not taken into account when counting).

Disregard Attribute Strategy. This strategy does not take into account the attributes for
which information about the objects to be compared is incomplete. This strategy can
always derive some preference between two objects, since the information regarding the
remaining attributes is complete, so a complete preference ordering over objects can be
derived. But the inference might not be correct, since the attributes that are disregarded
might be relevant in defining a preference order. For example, suppose it is not known
whether the cottage is large. In that case, the attribute large will not be taken into
account when comparing the cottage to another object. This leaves only the attributes
garden and closeToWork on the highest importance level, of which all attributes have
exactly one. Since the cottage has the most attributes on the next importance level, a
preference of the cottage over the villa as well as the apartment will be derived, even
though in the original example the cottage was the least preferred object.

This strategy has another unwanted effect. Consider the situation in Table 4. When
comparing a and b, this strategy only takes attribute P into account, and concludes a
preference of a over b. Similarly, preferences of b over c, and of c over a can be derived.
So with this strategy, intransitive preferences can be derived, which is unwanted.

Cautious Strategy. In order to prevent the derivation of preferences that are only cor-
rect by chance, a natural alternative is to use a cautious strategy that prevents such
inferences. This strategy infers nothing unless all information about the objects under
comparison is available. It never makes incorrect preference inferences, but it lacks
in decisiveness. Even if the unknown information is irrelevant to make an inference,
nothing is inferred.

4.2 Desired Properties for Strategies

Given the limitations of the strategies discussed above, it is clear that we need a more
balanced strategy that takes two main concerns into account, which we call decisiveness
and safety.

Decisiveness. We call a strategy decisive if it does not infer too little. As mentioned
above, an unknown attribute might be irrelevant for deciding a preference. This is the
case if the preference is already determined by more important attributes. For exam-
ple, suppose that we do not know whether the apartment has attribute nearShops. Then

152 W. Visser, K.V. Hindriks, and C.M. Jonker

we can still conclude that the apartment is preferred over the cottage, based on the at-
tributes large, garden, and closeToWork. It is not required that a preference is derived in
every case, since the missing information might be essential, but all preferences that are
certain (for which no essential information is missing) should be derived. The cautious
strategy is not decisive.

Safety. We call a strategy safe if it does not infer too much. Suppose again that we
do not know whether the apartment has attribute nearShops. Whereas this is irrelevant
for deciding a preference between apartment and cottage, we do need this information
for deciding the preference between the villa and the apartment. A strategy that makes
assumptions about the missing information, or that disregards the attribute in question,
will make unfounded inferences, and hence be unsafe. The optimistic, pessimistic and
disregard attribute strategies are not safe.

4.3 A Decisive and Safe Strategy

We have seen above what may go wrong when a naive strategy is used to deal with
incomplete information. In this section we define an alternative strategy that does sat-
isfy the properties of decisiveness and safety identified above. A preference inference
should never be based on an unfounded assumption for a strategy to be safe. But to
be decisive, a strategy needs to be able to distinguish relevant from irrelevant informa-
tion. Our approach is based on the following intuition. When comparing two objects
under incomplete information, multiple situations are possible. That is, whenever it is
not known whether an object has an attribute, there is a possibility that it does and a
possibility that it does not. If a preference can be inferred in every possible situation,
then apparently the missing information is not relevant, and it is safe to infer that pref-
erence. It is not necessary to check every possible situation, but it suffices to look at
extreme cases. For every object, we can construct a best- and worst-case scenario, or
best and worst possible situation. A possible situation is a completion of an object in
the sense that all missing information is filled in.

Definition 6. (Completion) A completion of an object a is an extension of the knowl-
edge base with (previously missing) facts about a such that for every attribute P, either
P(a) or ¬P(a) is in the extended knowledge base. So if a has n unspecified attributes,
there are 2n possible completions of a.

Since we assumed that presence of an attribute is preferred over absence, the most pre-
ferred completion assumes presence of all unknown attributes, and the least preferred
completion assumes absence. If even the least preferred completion of a is preferred
over the most preferred completion of b, then a must always be preferred over b, since
a could not be worse and b could not be better. For example, consider the objects and
attributes in Table 5a. In the worst case for a, a does not have attribute R. In the best
case for b, b has attribute P. But even in this situation, a will be preferred over b, based
on attribute Q. There is no way that this situation can improve for b or deteriorate for
a, so it is safe to infer a preference for a over b. The strategy’s power to make such
inferences makes it decisive.

Argumentation-Based Preference Modelling with Incomplete Information 153

Table 5. Examples of objects and attributes with incomplete information

P Q R

a � � ?
b ? �

P Q

a � ?
b ? �

P Q

a � ?
b �

a. b. c.

The next example illustrates that this approach does not infer a preference when the
missing information is relevant. Consider Table 5b. In the situation that is worst for a
and best for b, b will be preferred because it has both attributes, while a only has P.
But in the other extreme situation, that is best for a and worst for b, a is preferred. This
means that in reality, anything is possible, and it is not safe to infer a preference.

We have seen when a preference for a over b can be inferred, and in which case no
preference can be inferred. There are, however, two more possibilities. One is the case
in which a preference of the most preferred completion of a over the least preferred
completion of b can be derived, but only equal preference between the least preferred
completion of a and the most preferred completion of b. This is illustrated in Table 5c.
In this case, we would like to derive at least a weak preference of a over b. This is
important, because in many cases a weak preference is strong enough to base a decision
on, even if a strict preference cannot be derived. When having to decide between a and
b, choosing a cannot be wrong when a is weakly preferred over b. Failing to derive a
weak preference makes a strategy less decisive.

The last possibility is equal preference. We only want to derive an equal preference
between two objects a and b if all possible completions of a are equally preferred as all
possible completions of b. This also means that the most and least preferred completions
of a and b have to be equally preferred. This can only be the case if all information about
a and b is known, for as soon as some information is missing, there will be multiple
possible completions which are not equally preferred.

5 Argumentation Framework for Incomplete Information

This section presents how our framework is extended to incorporate the decisive and
safe strategy for incomplete information as presented in Section 4.3. We first present
the changes to the language and then the changes to the inference rules. The defeat
definition does not have to change.

5.1 Language

To distinguish between the different completions of an object, we introduce a comple-
tion label. We use the object name without label to denote the object in general, that is,
the object with any completion. The superscript + is used for the most preferred com-
pletion of an object, − for the least preferred completion. For example, consider object
a in Table 5a. The most preferred completion of a has attribute R, and is denoted a+.
The least preferred completion of a does not have attribute R, and is denoted a−.

154 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 6. Inference schemes for incomplete information

1 has(ax, [P],0)
count(ax, [P],∅)

2a

∼¬P1(a) . . . ∼ ¬Pn(a) P1 ≈ . . . ≈ Pn

has(a+, [P1],n)
count(a+, [P1],{P1, . . .Pn})

2b

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a−, [P1],n)
count(a−, [P1],{P1, . . .Pn})

3a

∼ ¬P1(a) . . . ∼ ¬Pn(a) P1 ≈ . . . ≈ Pn

count(a+, [P1],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a+, [P1],{P1, . . . ,Pn})uc

3b

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

count(a−, [P1],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a−, [P1],{P1, . . . ,Pn})uc

4

has(ax, [P],n) has(by, [P′],m) P ≈ P′ n > m

pref(ax,by)
prefinf(ax,by, [P])

5

has(ax, [Q],n) has(by, [Q′],m) Q ≈ Q′ � P n �= m

prefinf(ax,by, [P]) is inapplicable
prefinf(ax,by, [P])uc

6

has(ax, [P],n) has(by, [P′],m) P ≈ P′ n = m

eqpref(ax,by)
eqprefinf(ax,by, [P])

7

has(ax, [Q],n) has(by, [Q′],m) Q ≈ Q′ �≈ P n �= m

eqprefinf(ax,by, [P]) is inapplicable
eqprefinf(ax,by, [P])uc

8 ∼ ϕ asm(∼ ϕ) 9

ϕ
asm(∼ ϕ) is inapplicable

asm(∼ ϕ)uc

10

pref(a−,b+)
pref(a,b) 11

eqpref(a−,b+) pref(a+,b−)
wpref(a,b)

12

eqpref(a+,b−) eqpref(a−,b+)
eqpref(a,b)

Reasoning with completions as discussed above can be viewed as a kind of assump-
tion-based reasoning. To be able to support such reasoning, we extend the language and
introduce weak negation, denoted by ∼, which is also used in [15]. This is used to for-
malize a kind of assumption-based reasoning. A formula ∼ ϕ can always be assumed,
but is defeated by ϕ (see the next section for the details). So the statement ∼ ϕ should
be interpreted as ‘ϕ cannot be derived’.

Finally, we add formulas of the type wpref(a,b) which express weak preference, just
as pref(a,b) and eqpref(a,b) express strict and equal preference, respectively. We use

Argumentation-Based Preference Modelling with Incomplete Information 155

Table 7. Example arguments

A:

Q(a)

has(a−, [Q],1) has(b+, [Q],0) Q ≈ Q 1 > 0

pref(a−,b+)

pref(a,b)

B:

P(a)

has(a−, [P],1)

∼ ¬Q(b)

has(b+, [Q],1) P ≈ Q 1 = 1

eqpref(a−,b+)

∼ ¬P(a) ∼ ¬Q(a) P ≈ Q

has(a+, [P],2)

Q(b)

has(b−, [Q],1) P ≈ Q 2 > 1

pref(a+,b−)

wpref(a,b)

weak preference in the sense that an object a is weakly preferred over an object b if any
completion of a is either preferred over or equally preferred as any completion of b, but
no strict or equal preference can be derived with certainty.

This leads to the following redefinition of the language.

Definition 7. (Language) Let P be a set of attribute names with typical elements P,Q,
and O a set of object names with typical elements a,b, and let n be a non-negative
integer, and x,y ∈ {+,−,{}} a label for objects (where {} means no label). The input
language LKB and full language L are defined as follows.

ϕ ∈ LKB ::= P(a) | ¬P(a) | P � Q | P ≈ Q

ψ ∈ L ::= ϕ ∈ LKB | pref(ax,by) | eqpref(ax,by) | wpref(ax,bb) | has(ax, [P],n) | ∼ ψ

5.2 Inferences

The inference rules of the extended framework are listed in Table 6. Two inference rules
are added that define the meaning of the weak negation ∼. According to inference rule
8, a formula ∼ ϕ can always be inferred, but such an argument will be defeated by an
undercutter built with inference rule 9 if ϕ is the case.

P is supposed to be among the attributes of the least preferred completion of a (a−)
only if it is known that a has P. This is modelled by inference rule 2b in Table 6. For the
most preferred completion of a, it is only required that it is not known that a does not
have P; if this is not known, a+ will be assumed to have P. This is modeled by using
premises of the form ∼ ¬P(a) instead of P(a). This can be seen in inference rule 2a.
Inference rules 4 through 7 remain unchanged, except that completion labels are added.

To infer overall preferences from the preferences over certain completions, three
more inference rules are defined. Inference rule 10 states that if (even) a− is preferred
over b+, then a must be preferred over b, as we saw above. When a+ is preferred
over b−, but a− is only equally preferred as b+, this not strong enough to infer a strict
preference of a over b, but we can infer a weak preference of a over b using inference
rule 11. Rule 12 states that in order to infer equal preference between a and b, both
the most preferred completion of a and the least preferred completion of b, and the
least preferred completion of a and the most preferred completion of b must be equally
preferred.

156 W. Visser, K.V. Hindriks, and C.M. Jonker

Example 4. In the case of Table 5a, argument A in Table 7 can be built. Argument B
shows that a weak preference can be inferred in the situation of Table 5c.

6 Conclusion

In this paper we have made the following contributions. Approaches based on argumen-
tation can be used to model qualitative multi-attribute preferences such as the lexico-
graphic ordering. The advantage of argumentation over other approaches emerges most
clearly in the case of incomplete information. Our approach allows to reason about
preferences from best- and worst-case perspectives (called completions here), and the
consequences for overall preferences.

In our current approach it is still often the case that no preference can be inferred.
What should we do in such a case? One approach is to ask the user for the missing
information. But the user might not have this information, and might not have the time
or resources to look it up. In some situations it might be fruitful to relax the notion of
safety, which we have used in a very strict sense here; a conclusion is only called safe if
it can be drawn in every possible situation. But we might want to draw a conclusion if it
follows in the most likely situation. Of course, to model this we need information about
the likelihood of situations. This could for example be modelled by a normality ranking
[3] or a possibility ranking [9]. Also, although general default assumptions are often
not safe, some domain-specific default assumptions may be safe enough. For example,
if nothing to the contrary is known, one may safely assume that a house has electricity.
Some default assumptions may be conditional, for example, a detached house usually
has a garden. One interesting extension therefore is to add such default reasoning and
more general reasoning about the beliefs of an agent to the framework. Default rules
(e.g. detached(a) ⇒ garden(a)) can be placed in the knowledge base. Next, an infer-
ence rule is needed that applies these rules and can infer garden(a) from detached(a)
and detached(a)⇒ garden(a). Finally, a strength mechanism is needed, so that factual
information always defeats rebutting default assumptions (e.g. if ¬garden(a) is known
for a fact, then this defeats the conclusion garden(a) that was derived using a default
rule, but not vice versa).

In our future work we would like to distinguish more explicitly between mental
attitudes such as beliefs, goals, desires and preferences. This will also allow us to reason
about these attitudes, for example that a certain preference we have is based on some
specific beliefs. We hope to gain insight from modal preference languages with belief
operators such as the one presented in [13]. Other interesting areas for future work
include the representation of dependent preferences (e.g. ‘I only want a balcony if the
house does not have a garden, otherwise I do not care’), and the relation with e.g. CP-
nets [4] and value-based argumentation [11].

Finally, we believe that the argumentation-based framework for preferences pre-
sented here can be usefully applied in the preference elicitation process. It allows the
user to extend and refine the system representation of his preferences gradually and as
the user sees fit. To facilitate this elicitation process more research is needed on how
our framework can support a user e.g. by indicating which information is still missing.

Argumentation-Based Preference Modelling with Incomplete Information 157

Acknowledgements

This research is supported by the Dutch Technology Foundation STW, applied science
division of NWO and the Technology Program of the Ministry of Economic Affairs. It
is part of the Pocket Negotiator project with grant number VICI-project 08075.

References

1. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In: Proc.
ICMAS (2000)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelli-
gence 171, 619–641 (2007)

3. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proc. KR, pp. 75–86 (1994)
4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-

resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135–191 (2004)

5. Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI
(2004)

6. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelli-
gence 157(1-2), 203–237 (2004)

7. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness
of propositional languages for preference representation. In: Proc. KR, pp. 203–212 (2004)

8. Doyle, J., Thomason, R.H.: Background to qualitative decision theory. AI Magazine 20(2),
55–68 (1999)

9. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proc.
IJCAI (1995)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

11. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple
values. Int. J. of Approximate Reasoning 48, 730–751 (2008)

12. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-
offs. Cambridge University Press, Cambridge (1993)

13. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
Universiteit van Amsterdam (2008)

14. Prakken, H.: A study of accrual of arguments, with applications to evidential reasoning. In:
Proc. ICAIL, pp. 85–94 (2005)

15. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

16. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343–375 (2004)

	Argumentation-Based Preference Modelling with Incomplete Information
	Introduction
	Qualitative Multi-attribute Preferences
	Argumentation Framework for Complete Information
	Language
	Inferences
	Defeat
	Semantics
	Validity

	Strategies for Handling Incomplete Information
	Naive Strategies
	Desired Properties for Strategies
	A Decisive and Safe Strategy

	Argumentation Framework for Incomplete Information
	Language
	Inferences

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

