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Establishing Motion Correspondence using Extended Temporal Scope

C.J. Veenman�, M.J.T. Reinders, and E. Backery

Abstract This paper addresses the motion correspondence problem: the problem of �nding corre-
sponding point measurements in an image sequence solely based on positional information. The motion
correspondence problem is most diÆcult when the target points are densely moving. It becomes even
harder when the point detection scheme is imperfect or when points are temporarily occluded. Avail-
able motion constraints should be exploited in order to rule out physically impossible assignments of
measurements to point tracks. The performance can be further increased by deferring the correspon-
dence decisions, that is, by examining whether the consequences of candidate correspondences lead to
alternate and better solutions. In this paper, we concentrate on the latter by introducing a scheme that
extends the temporal scope over which the correspondences are optimized. The consequent problem we
are faced with is a multi-dimensional assignment problem, which is known to be NP-hard. To restrict
the consequent increase in computation time, the candidate solutions are suitably ordered and then
additional combined motion constraints are imposed. Experiments show the appropriateness of the
proposed extension, both with respect to performance as well as computational aspects.

Keywords: Computer vision, feature point tracking, multi-target tracking, motion correspondence,
multi-frame optimization, multi-dimensional assignment problem.

1 Introduction

Computer vision deals with the interpretation of image sequences. Because the problem of semantic
labeling of an arbitrary scene is far from solved, any information that can help the scene interpretation
should be exploited. The known temporal dependencies between frames in a sequence together with
known physical properties like inertia and rigidity have been proven to be very helpful. More than
that, temporal relations can be crucial in circumstances in which the objects in the recorded scene are
diÆcult to distinguish, either because of poor recordings, poor recording conditions, restricted recording
devices/media, or because the objects appear identical anyway. The research �elds concerned with these
issues are among others object tracking [25], feature or token tracking [3] [13] [27] [38], and optical ow
or motion estimation [12] [19]. Applications range from surveillance [20] [30] [36], motion analysis, and
structure from motion [31] [32] [35] [37] to (multi-)target tracking [11] [21] [24].

Here, we restrict ourselves to the case that for some reason the objects have indeed an identical
appearance, which leaves us with the positional information as sole feature for identi�cation. Therefore,
the objects are simply referred to as points in the remainder of this paper. Clearly, without signi�-
cant visual identi�cation appearance-based methods like optical ow estimation do not apply. The
consequent problem that has to be solved is called the motion correspondence problem, that is, �nding
corresponding measurements through an image sequence solely based on the measured positions and
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Figure 1: Three moving points are measured at three time instances. The lines represent the point
correspondences over time. In (a) all points are measured at every time instance. In (b) there is an
extra or spurious measurement at tk+1, and in (c) there is a missing measurement at tk+1.

derived motion characteristics (Fig. 1(a)). Additionally, like among others [3] [9] [24] [27], we adopt a
uniqueness constraint which states that a measurement originates from (at most) one point and a point
results in (at most) one measurement.

There is a number of conditions under which establishing motion correspondence is especially dif-
�cult: 1) the points move densely together, 2) the detection is imperfect, i.e. there are spurious
(Fig. 1(b)) and missing (Fig. 1(c)) measurements, 3) points are temporarily occluded, and 4) the num-
ber of points varies. Here, we consider such diÆcult cases, except we assume that the number of points
is �xed. Namely, without additional constraints, coping with both condition 3) and 4) gives rise to
conicting requirements for a tracking algorithm, as noted in [33].

Several statistical [4] and non-statistical methods have been developed to establish motion corre-
spondence both in the �eld of target tracking and computer vision. The two best known statistical
approaches are the Joint Probabilistic Data-Association Filter (JPDAF) [11] and the Multiple Hy-
pothesis Tracker (MHT) [24]. The JPDAF matches a �xed number of features in a greedy way and is
especially suitable for situations with clutter. It does not necessarily select point measurements as exact
feature point locations, but, given the measurements and a number of corresponding probability den-
sity functions, it estimates these positions. The MHT attempts to match a variable number of feature
points globally, while allowing for missing and false detections. Quite a few attempts have been made
to restrain the consequent combinatorial explosion, such as [5], [6], [7], [8], [16], [18]. More recently,
the equivalent sliding window algorithms have been developed, which match points using a limited
temporal scope. Then, these solve a multidimensional assignment problem, which is again NP-hard,
but real-time approximations using Lagrangian relaxation techniques are available [9], [10], [21], [22],
[28].

Recently, in [33] we proposed a non-statistical motion framework together with the GOA tracker,
which is a greedy matching method that eÆciently �nds optimal correspondences between two frames
given a smoothness of motion criterion. We showed that the GOA tracker outperforms other non-
statistical greedy trackers [3] [23] [26] and even the presumed optimal MHT [24] for the tracking of a
�xed number of points. In [33], we have also suggested a global matching model that optimizes over the
whole sequence, but did not report an algorithm that satis�es the model. However, the more diÆcult
the problem, the more important it becomes to perform a global matching, i.e. to defer correspondence
decisions.

In this paper, we propose an algorithm that enables us to defer correspondence decisions by intro-
ducing a temporal scope parameter s. With scope s = 1 this algorithm equals the previously introduced
GOA tracker [33] and when s = n�1 the algorithm performs a global matching, where n is the number
of frames in the sequence. The extended temporal scope tracking resembles the beam-search principle
in [38], trajectory aging in [13] and the N -scan-back principle in the statistical data association �lters
like the track-splitting �lter [29], the MHT [24], and the sliding window algorithms [9] [10] [21] [22]1.
In contrast with our problem setting, [13] [29] [38] do not adopt the uniqueness constraint, hence, they

1A temporal scope s = 1 is similar to N = 0 in N -scan-back �lters.
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optimize the tracks independently. Clearly, that problem is less complex, though it may lead to un-
realistic assignments. With respect to the multi-frame optimization, our approach is more similar to
the MHT in [5] [8] [24] in the way that we also rank the best assignments per frame and �nally decide
for the 'optimal' assignment after a certain number of frames has been processed. However, our opti-
mization strategy is quite di�erent. We search the alternative solutions up to s levels in a depth-�rst
way, whereas the track maintaining algorithms like the MHT can be said to search in a breadth-�rst
way. The advantage of our method is that it needs less memory and allows for more e�ective pruning
of unlikely alternatives. In the experiments section we give an indication of a suitable value for the
temporal scope s.

In the next section we formulate the problem and give the notation we use. Then, we summarize
and modify the motion models that we proposed in [33]. In Section 4 we introduce the new tracking
algorithm that embodies the extended scope optimization scheme. In the experiments section, we show
the appropriateness of the new algorithm both with synthetic and real-world data.

2 Problem Statement

Given is a sequence of n time instances for which at each time instance tk there is a set of mk mea-
surements xkj of points pi moving in a 3-D world, with 1 � j � mk, 1 � k � n, and 1 � i � M . The
measurements are vectors in a two-dimensional space, with dimensions Sw (width) and Sh (height),
representing 2-D coordinates. The number of measured points mk can be either smaller (occlusion or
missing detections) or larger (spurious measurements) than M .

The problem is to �nd a set of M tracks that represents the (projected) motion of the M points
through the 2-D space from t1 to tn. A track Ti is an ordered n-tuple of corresponding measurements:
hx1j1 ;x

2
j2
; :::;xnjni, with 1 � jk � mk. It is assumed that points do not enter or leave the scene (ignoring

condition 4) mentioned above). A point track that has been formed up to tk is called a track head and
is denoted as T k

i .
We use two additional ways to denote which measurement corresponds to which track head. First, we

introduce the assignment matrix Ak = [akij ], where a
k
ij = 1 if and only if xk+1j corresponds to T k

i and zero

otherwise. Alternatively, we use �kj = i if akij = 1. Further, a concatenation of s assignment matrices

from tk to tk+s�1 is called a multi-assignment, denoted as an s-tuple: Ak:s = hAk; Ak+1; :::; Ak+s�1i,
where Ak:s[1] = Ak, Ak:s[2] = Ak+1, etc.

3 Modeling

Here, we only give a brief description of our way to model the motion correspondence problem. For a
more detailed description and analysis we refer to [33].

In order to select the corresponding measurement for a track head from the list of candidate mea-
surements we need to have a model of the point motion: the individual motion model. In addition
to prior motion models the parameters of such a model could be constructed on-line from the tracked
measurements. Since it is impossible to rule out model errors, or, in other words, to predict the point
positions perfectly, usually there will be correspondence ambiguities. Therefore, additional combined
and global motion models have been proposed to make prediction errors dependent. Here, we summarize
the individual, combined, and global models.

3.1 Individual Motion Model

The individual motion model expresses predictions about the position of a moving point based on
historical track information. Further, it states the cost when deviating from these predictions. Here,
we formulate two di�erent individual motion models.
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im1 The nearest-neighbor model does not incorporate velocity information. It only states that a point
moves as little as possible from tk to tk+1. Consequently, the model uses only measurements of
one previous time instance for the position prediction.

ckij =k x
k+1
j � xki k; where 0 � ckij �

q
S2
w + S2

h: (1)

im2 The smooth-motion model as �rst introduced in [27] assumes that the velocity magnitude and
direction both change gradually. This model uses measurements from two previous time instances.
The smooth motion is formulated quantitatively with the following criterion:

ckij = 0:1

2
41�

�
xki � xk�1

�ki

�
�
�
xk+1j � xki

�
xki � xk�1

�ki

xk+1j � xki



3
5+ 0:9

2
41� 2

qxki � xk�1
�ki

xk+1j � xki


xki � xk�1

�ki

+ xk+1j � xki



3
5 ; (2)

where 0 � ckij � 1.

To enable the modeling of spurious and missing measurements, we �rst need to modify the assign-
ment matrix format. To this end, we extend Ak such that it hasM+mk+1 rows andM+mk+1 columns.
The �rst M rows represent the track heads of the target points and the �rst mk columns represent the
true measurements. The remaining rows and columns represent false tracks (to assign spurious mea-
surements to) and slave measurements (to replace missing measurements), respectively. Additionally,
the matrix Dk = [ckij ] contains the individual motion criterion coeÆcients, where ckij expresses the devi-

ation from the predicted position for measurement xk+1j to track head T k
i . For true track heads to true

measurements these coeÆcients are computed as de�ned above. All other entries in Dk equal �max,
which is a known maximum of the individual motion criterion. For candidate correspondences that
exceed a certain maximum speed (dmax) we set c

k
ij = �max + � to e�ectively disregard them2.

Slave Interpolation

If any of the measurements in the vectors (xki � xk�1
�ki

) and (xk+1j � xki ) are missing, the vectors are

estimated by interpolation according to:

xki � xk�1
�k
i

=
x
q

�
k!q
i

� x
p

�
k!p
i

q � p
; xk+1j � xki =

xk+1i � x
q

�
k!q
i

k + 1� q
; (3)

where xp
�
k!p
i

and x
q

�
k!q
i

are true measurements in the nearest past in T k
i , 1 � p < q � k and �k!q

i

means k � q times recursive application of �ki .

3.2 Combined Motion Model

The combined motion model serves to make individual model errors dependent between two successive
frames. Here, we give only one such combined motion cost de�nition Ck(Ak) (see [33] for alternative
ones) that aims at spreading the errors as much as possible.

Ck(Ak) =
1

M

M+mk+1X
i=1

M+mk+1X
j=1

akijc
k
ij ; (4)

2Where � is a arbitrary (small) positive number
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3.3 Global Motion Model

The global motion model serves to model the overall motion from t1 to tn. It averages out the combined
motion errors over time, and in this way it ensures that the combined motion errors depend on each
other.

S(D) = min
A1:n�1

n�1X
k=2

Ck(Ak) (5)

This global model is, however, hard to optimize. Therefore, we rede�ne the global model with the
temporal scope s as parameter.

Ss(D) =

n�1X
k=2

Ck(Ak:s
min[1]); (6)

where

Ak:s
min = argmin

Ak:s
Ck:s(Ak:s) with Ck:s(Ak:s) =

sX
p=1

Ck+p�1(Ak:p[p]) (7)

When s = 1 Eq.6 equals Ŝ(D) in [33] and when s = n� 1 Eq.6 equals Eq.5.

4 Restrained Optimal Assignment Decision (ROAD)
Tracker

As we already mentioned, the computation of the global motion model (Eq.5) is intractable in general.
The complexity can be reduced by using a limited temporal scope s as in Eq.6. However, the problem
to be solved is an (s + 1)-dimensional assignment problem with non-decomposable cost [1], which is
known to be NP-hard for s+1 � 3 [14]. Finding a greedy matching solution (s = 1) can be formulated
as a classical (2-dimensional) assignment problem [33], for which a number of eÆcient solutions has
been reported in the literature, among which the Hungarian method [15] is the best known. When the
scope is larger, s > 1, the problem is still NP-hard. Therefore, it is important to limit s and to use a
speci�c strategy to search the alternatives eÆciently. Here, we propose the ROAD tracker, a recursive
algorithm that searches the alternatives depth �rst up to s levels. Since it has been shown that the
greedy solution is close to optimal [33], a best-�rst heuristic per recursion level is a suitable strategy.

Because the global motion criterion is additive and monotonic increasing, we also propose to use
the branch-and-bound mechanism, where the initial bound is determined as the algorithm searches best
�rst per recursion level in a depth-�rst way. Moreover, we adaptively lower the bound by introducing
a combined motion constraint max. For the computation of max we introduce two assumptions.
First, we assume that the cost of the solution Ak:s

min is more or less uniformly spread over the recursion
levels (scope). So after �nding a temporary solution Ak:s

sol with global cost (bound) Cb we stop testing
alternative assignments if their cost exceeds F 

g Cb=s, where s is the (remaining) scope and F 
g (F 

g � 1)
is a factor that expresses the maximum allowed deviation from Cb. Second, we assume that the optimal
assignment Ak:s

min[1] cannot have a much higher cost than the cost Ck
min of the local best assignment

Ak
min. So we additionally stop the testing of alternatives if their cost exceeds F 

l C
k
min, where F 

l

(F 
l � 1) expresses the maximum allowed deviation from Ck

min. This leads to the following combined
motion constraint:

max = min(F 
l C

k
min; F


g Cb=s) (8)
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In contrast with the constraints on the individual motion (dmax and �max), max is not physically
motivated. Consequently, when max is used, the solution can no longer be guaranteed to be optimal
with respect to the individual motion models.

Now we need a way to generate the assignments between tk and tk+1 in best-�rst Ck-order. To
this end we use Murty's algorithm [17], which is an eÆcient algorithm to rank assignments in order of
increasing cost. This algorithm was used before to enumerate hypotheses for the statistical MHT [5].
In short, the Murty algorithm returns the minimum cost assignment for an assignment problem given
a number of assignments Y is no longer allowed, where Y � Uk:

Ak
min(Y;D

k) = arg min
A2Uk�Y

Ck(A;Dk); (9)

where Uk is the set of all possible assignment matrices at tk.

4.1 Basic ROAD Tracker

After having introduced the main elements, we now describe the complete ROAD algorithm. The
ROAD tracker has �ve parameters. The �rst parameter is Ak�1 serves to initialize the individual
motion models, hence to compute Dk (for im2). So far, we did not include this parameter in any of the
criterion de�nitions (Eq.4-9). In the recursive calling of the ROAD algorithm, however, we include the
Ak�1 parameter, because the controlled permutation of Ak�1 is the main ingredient of this recursive
algorithm. Clearly, in the �rst frame the assignment for the previous frame Ak�1 is not available,
leading to an initialization problem. We return to this afterwards. The second parameter is the frame
number to be processed k. The third parameter is the (remaining) scope to be optimized s. The fourth
and �fth parameter are the cost bound Cb and the partial solution Ak:s

sol that must be improved. If the
tracker is not able to deliver a solution with lower cost than Cb then it returns the given Ak:s

sol.

The algorithm works as follows, see pseudo code in Tab. 1. First, it computes the criterion matrix
Dk using Ak�1 (line 1). If the scope s = 1, it determines the minimal cost assignment Ak

min with the
Hungarian method, which is the same as the GOA tracker result (line 3). If the cost of Ak

min is below
the cost bound Cb, then ROAD updates the solution Ak:s

sol (line 5).

On the other hand if the scope is larger it starts enumerating the assignments according to increasing
cost. To this end, it accumulates all processed assignments in Y which is initialized to the empty set
(line 8). It computes the next best assignment A excluding Y (line 10), updates Y (line 11), and
computes the cost C0 of A (line 11). Then, it puts the tail from the current best solution Ak:s

sol in T ,
so that it can be returned if it cannot be improved (line 12). Now ROAD calls itself recursively using
A as Ak�1 parameter and other updated parameters for the next recursion level. Further, it stores the
resulting multi-assignment in R (line 14). Then at line 15 it composes a new solution which is tested
against the current bound at line 16. If the cost is lower than the bound, the bound is updated (line 17)
as well as the current best solution Ak:s

sol (line 18).

Finally, the stopping criterion is tested. First, at line 20 the adaptive constraint max is computed.
Then, the algorithm halts if all solutions have been tried (Y = Uk), the cost of the next best assignment
A exceeds the bound (C0 > Cb) or the combined constraint max (C0 > max), see line 21.

4.2 Self-Initializing ROAD Tracker

As mentioned, for the processing of the �rst frame the previous assignment Ak�1(= A1) is not available.
We solve this initialization problem in the same way as in [33], that is, by initializing A1 with the
minimal cost assignment Ak

min using the individual model im1 and running the algorithm once up and
once down. This results in the algorithm shown in Tab. 2.
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ROAD(Ak�1; k; s; Cb; A
k:s
sol)

1 Dk = computeCostMatrix(Ak�1; k) ; composee cost matrix Dk

2 if s = 1 then ; at lowest recursion level?
3 Ak

min = minCostAssignment(Dk) ; �nd minimum cost assignment
4 if Ck(Ak

min) < Cb then ; better than cost bound?
5 Ak:s

sol = hAk
mini ; update solution

6 end
7 else
8 Y = ; ; set of processed matrices
9 do
10 A = getNextBestAssignment(Y;Dk) ; get next best with Murty
11 Y = Y [ fAg ; add to processed set
12 C0 = Ck(A) ; compute cost
13 T = Ak:s

sol[2:::s] ; get default solution
14 R = ROAD(A; k + 1; s� 1; Cb � C0; T ) ; call recursively to improve T
15 Ak:s = hAi Æ R ; concatenate A with new tail
16 if Ck:s(Ak:s) < Cb then ; better than global bound?
17 Cb = Ck:s(Ak:s) ; update global bound
18 Ak:s

sol = Ak:s ; update solution
19 end
20 max = min(F 

l C
k
min; F


g Cb=s) ; compute combined constraint

21 while (Y 6= Uk ^C0 < Cb ^C0 < max) ; stop when global bound or
22 end ; combined constraint exceeded
23 ; or no alternatives are left
24 return Ak:s

sol ; return solution

Table 1: The ROAD tracker for recursive multiple frame assignment optimization

let A1 = A1
min initialize �rst assignment with im1

let k = 2 start at second frame
up: Ak = ROAD(Ak�1; k; s;1; hi) �nd optimal assignment with im2 and scope s

increase k
if k < n go to up

otherwise go to down

down: decrease k
Ak = ROAD(Ak+1; k; s;1; hi) �nd optimal assignment with im2 and scope s
if k > 2 go to down

otherwise done

Table 2: The self-initializing ROAD tracker.
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Figure 2: (a) Shows the track error as a function of the number of points and (b) shows the computation
time as a function of the number of points.

5 Experiments

With the experiments, we intend to show the improved performance that can be achieved by restraining
the assignment decisions using an increased temporal scope (s > 1). First, we did a number of synthetic
data experiments for which we used the PSMG data generator [34]. Afterwards we also applied the
algorithm to a recorded image sequence.

With the PSMG data generator we ran several tests with varying scope s and constraint factors F 
l

and F 
g . For details on the used PSMG parameter settings, see [33]. We always set F 

l equal to F 
g

(both denoted as F ), �max = 0:2, and we fed the algorithm with the true (known) maximum speed in
order to disregard physically impossible correspondences. In the synthetic experiments, we compared
the results with those of the original GOA tracker, which is the same as the ROAD tracker with scope
s = 1. As a reference tracking algorithm we added the well-known statistical MHT [24] as described
and implemented by Cox and Hingorani [5]. The essential parameters of the MHT were trained with a
genetic algorithm on labeled data sets of 50 points; there were no missing or spurious measurements.
For the MHT the parameters referring to the probabilities of detection and false alarms were adjusted
according to the PSMG settings in the respective experiment. Importantly, since the MHT is able to
track a varying number of points, we set the probabilities of track initiation and termination to zero
as to inform that the number of tracked points is �xed. Both for the ROAD tracker and the MHT we
set (additional) pruning parameters to limit the solution space in addition to the model constraints.
Further, the ROAD tracker evaluates no more than 300 candidates at each recursion level. The MHT
has at maximum 300 global hypotheses3 per group, a track tree depth of 3, while the minimum ratio
between the likelihoods of the best and the worst hypothesis is 0.005. All displayed results are the
average of 500 runs. When the average run time of an experiment exceeded 10 seconds, the experiment
was stopped. As a consequence, some curves in the �gures are incomplete.

3The number of candidates for the ROAD tracker and the number of global hypotheses per group for the MHT have
di�erent meanings.
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5.1 Variable Density Experiment.

In the �rst experiment, we explored the performance of the ROAD tracker as a function of the point
density. The performance is expressed as the average ratio of incorrect tracks and total number of
tracks, which we call the track error (Etrack) after [34]. Fig.2(a) clearly shows that the ROAD tracker
outperforms both the GOA tracker and the MHT. Further, the less constrained the combined motion is,
the better the performance. Remarkably, the track error with scope s = 3 is larger than with s = 2 when
the same combined constraint setting is used. This is because with a larger scope s = 3 the global cost
Cb can decrease faster, resulting in a stricter combined motion constraint at the highest search levels.
However, the unconstrained experiments (F 

l = F 
g = 1) show that with s = 3 the best results can

be accomplished4. Although the di�erence between the unconstrained s = 2 and s = 3 performance
can hardly be noticed in the �gure, the signi�cance study below supports that with s = 3 the best
performance can be achieved. Nevertheless the computation time quickly becomes a bottleneck, as the
next experiment will demonstrate.

In order to establish the signi�cance of the relative ranking of the di�erent trackers and/or tracker
parameter settings, we computed the Wilcoxon matched-pairs signed ranks test for the directional
hypothesis that one tracker is better than the other for the tracking of 50 points. The ranking of the
trackers with sigini�cance level �� 0:001 is as follows: ROAD(s = 3; F  =1) > ROAD(s = 2; F  =
1) > ROAD(s = 2; F  = 1:10) > ROAD(s = 2; F  = 1:05) > ROAD(s = 2; F  = 1:01) > GOA
> MHT. So with the same F  setting there is no signi�cant di�erence between the ROAD tracker
performance with scope s = 2 and s = 3, except when F  =1.

5.2 Variable Volume Experiment.

In the next experiment, we varied the number of points while the point density remained the same.
Consequently, the problem remains equally diÆcult. Fig.2(b) shows that the GOA tracker is the fastest
and has polynomial complexity. The ROAD tracker has exponential complexity, but when s = 2 and
F 
l and F 

g are low (1 � F 
l ; F


g � 1:05), the exponential order is also quite low, so that near-polynomial

behavior is achieved over a range from 10 to 100 points. The MHT is slow but, because of the pruning
parameters, it has near-polynomial complexity. It has, however, to be mentioned that the track error
increases considerably with the number of points5.

5.3 Variable Number of Spurious Measurements.

In order to show the importance of deferring correspondence decisions in the presence of noise, we did
an experiment where we gradually incremented the number of spurious measurements. The number
of spurious measurements is normally distributed around the displayed mean ratio Ps of the number
of points (M = 20). As an example: Ps = 0:5 implies an average of 10 spurious measurements per
frame. The position of these measurements is uniformly spatially distributed. Fig.3(a) indeed shows
that the average track error is lower when s > 1. Moreover, deferring the assignment decisions even has
as a result that the di�erence between the ROAD tracker and the GOA tracker becomes larger as the
amount of spurious measurements grows. With the speci�cally trained MHT the average track error
hardly increases. When the noise ratio Ps > 0:1, the MHT performs best on the average. For Ps = 0:25
the di�erence between the ROAD tracker and the MHT is, however, not signi�cant as follows from
the Wilcoxon matched-pairs signed ranks test. Both the ROAD tracker and the MHT indeed perform
signi�cantly better than the GOA tracker (�� 0:001) .

4In the unconstrained experiments we set the maximum average run time to 100 sec. in order to show that the
performance indeed improves.

5In contrast to the MHT, the GOA tracker has a constant track error, and with the ROAD tracker the track error even
decreases with the number of points.
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Figure 3: (a) Shows the track error as a function of the spurious measurements ratio Ps and (b) shows
the track error as a function of the probability of missed detection Pm.

It followed from additional experiments that the GOA tracker and the ROAD tracker performed
worse for high Ps values because of the noise sensitivity of their initialization scheme. That is, especially
the spurious measurements in the second frame result in deviant initial motion vectors. Then, during the
up optimization, some true measurements may be considered as noise. Because the down optimization
scheme only operates on tracks that have measurements in the last frames, it is not always possible
to undo the e�ects of such an ill initialization. However, if there are no spurious measurements in the
second frame, the GOA tracker and the ROAD tracker always perform better than the MHT for all
settings of Ps.

5.4 Variable Number of Missing Measurements.

In the last synthetic experiment, we evaluated the inuence of varying the number missing detections.
In Fig.3(b) we display the track error as a function of the probability that a point was not detected
or missed Pm. According to the problem de�nition, i.e. no scene entrance and exit, all points are
detected in the �rst and last two frames. Again the number of points is M = 20. The ROAD
tracker with various settings performs better than the GOA tracker. Also in this experiment the
di�erence between the ROAD tracker and the GOA tracker increases as the problem becomes more
diÆcult. The MHT turns out to be extremely sensitive to occlusion. Part of the problem is that,
although the probability of detection is set properly, the MHT easily divides tracks into separate
parts. The ranking of the trackers for Pm = 0:25 with sigini�cance level � � 0:001 is as follows:
ROAD(s = 2; F  = 1:05) > ROAD(s = 2; F  = 1:01) > GOA > MHT, while ROAD(s = 2; F  = 1:10)
outperforms ROAD(s = 2; F  = 1:05) with signi�cance � < 0:02.

5.5 Revolving Transparent Plates Experiment.

After the synthetic data experiments, we recorded an image sequence with two transparent plates
revolving on top of each other in opposite direction. The plates that each contain 10 black spots have
similar rotational speed. In Fig. 4 we show some images from this sequence. We applied the trackers
to the spot positions found after segmentation of the images. The diÆculty with this sequence is that
when the spots of both plates meet (see Fig. 4(b)) some spots are occluded and the spot tracks cross,
which leads to many assignment ambiguities.

For both the GOA tracker and the ROAD tracker we set dmax = 100 and �max = 0:1. We ran the
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(a) frame 1 (b) frame 8 (c) frame 14

Figure 4: The �rst, middle, and last image from the revolving plates sequence; recorded with a 25 Hz
progressive scan camera using 2 ms shutter speed.

ROAD tracker once with s = 2=F  = 1:05 and once with s = 3=F  = 1:05. Again the MHT parameters
were trained on manually labeled tracks using a genetic algorithm. It has to be noted that this type of
training is actually undesirable. First, in practical situations the track labels are not available. More
importantly, the derived performance measure is unreliable because the parameters are speci�cally �t
to this set of tracks. Accordingly, the error, that is achieved after training, shows to what extent the
tracker can be adjusted to a certain data set. Since the MHT is quite sensitive to its parameter settings,
it is, however, extremely diÆcult to �nd the right setting. For a parameter sensitivity study we refer
to [33].

As is indicated with an arrow in the respective sub�gures in Fig.5, GOA and ROAD lost track of
one spot. This is caused by an intialization error in the up optimization direction. Further, Fig.5(a)
shows that the GOA tracker makes some additional errors as indicated with the dashed ellipses. The
ROAD tracker with scope s = 2 perfectly tracks the remaining spots (visually inspected) which can be
veri�ed from the displayed track id's at the start and end of the tracks, see Fig. 5(b). With scope s = 3
the ROAD tracker makes one error that the GOA tracker also made. That is, it wrongly connects two
track parts from spots from di�erent plates (track 12) as is indicated with the dashed ellipse in Fig. 5(c).
This error is caused by a misleading assignment that is considered at the deepest recursion level which
turns out to be non-optimal afterwards. With scope s = 4 this error is not made (not shown in the
�gure) leading to the same result as with s = 2. Also the speci�cally trained MHT was able to track
most points, though it made some errors as indicated with arrows and ellipses in Fig. 5(d). Among
others it wrongly connects track parts from di�erent plates (track 5) and it made some initializition
errors (track 14 and 18). Further there are two partial tracks (track 14 and 21), from which track 14
connects some measurements from a point that was temporary occluded (the other trackers completely
missed this track) and track 21 should be the end of the erroneous track that starts as track 5 in the
lower left region, see Fig. 5(d).

6 Conclusion

In this paper, we described the ROAD tracker, a recursive algorithm that establishes motion correspon-
dence by optimizing over several frames using a non-statistical motion framework. At each recursion
level the tracker evaluates candidate assignments in best-�rst order using Murty's algorithm.

As an extension of the GOA tracker, the ROAD tracker uses the same individual, combined and
global motion models. We introduced an approximation of the global motion model, which additionally
has a temporal scope parameter. Further, we introduced an adaptive combined motion constraint max

on top of a branch-and-bound mechanism to reduce the exponential growth in computation time. The
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(a) GOA (b) ROAD s = 2

(c) ROAD s = 3 (d) MHT

Figure 5: Tracking results obtained with (a) the GOA tracker, (b) the ROAD tracker with s = 2 and
F  = 1:05, (c) the ROAD tracker with s = 3 and F  = 1:05, and (d) the speci�cally trained MHT.

various synthetic and real-world experiments showed that the deferment of assignment decisions indeed
improves the tracking performance signi�cantly. Even with a very strict combined constraint setting
(1 � F 

l ; F

g � 1:05), the ROAD tracker clearly outperforms the GOA tracker in all experiments.

Relaxing this constraint further improves the performance, but care must be taken since unconstrained
assignment optimization over several frames is intractable in general, as the experiments have shown.
The experiments have also shown that setting the temporal scope to s = 2 gives the best compromise
between qualitative and computational performance. In the experiments we also included the statistical
MHT. Unlike the proposed algorithm the MHT is able to track a varying number of points. We set
the respective parameters as to inform the MHT that the number of points was �xed. Like in [33], we
noticed that setting the remaining MHT parameters is generally diÆcult. Having said this, the ROAD
tracker also performs better than the speci�cally trained MHT, except when there were a lot of spurious
measurements in the �rst frames. This issue needs further investigation.

Some additional remarks about the eÆciency of the algorithms. The GOA tracker is the fastest and
the only algorithm with polynomial complexity. The MHT is the slowest, though the MHT is diÆcult
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to judge in terms of computational complexity. That is, it was not possible to con�gure the MHT
such that it had a constant track error in the variable-volume experiment. Accordingly, its reported
eÆciency is probably too optimistic.

As the unconstrained experiments show, the track error performance can hardly be improved given
the applied composite motion model. The eÆciency of the proposed algorithm can, however, be im-
proved by implementing optimizations to Murty's algorithm, as reported in [2] and [16].

Finally, the next extension to the ROAD tracker must be to allow for the tracking of a variable
number of points. When points or objects can enter and leave the scene, the algorithm can be applied
in a broader domain.
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