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Abstract
We present an algorithm that efficiently tracks a predefined
set of landmark points in a time sequence of images. The
algorithm iteratively optimizes the correspondences
between the point measurements in the images, while
allowing for spurious and missing point measurements.
This trajectory based approach hypothesizes missing points
by interpolation. Spurious measurements are either left out
because they do not form the optimal correspondences or
are removed afterwards if they have the smoothness or
other constraint exceed its predetermined maximum.

1.  Introduction

For image sequence analysis the problem of tracking
landmark points is important for a variety of applications,
like among others 3D scene geometry estimation, pose
estimation or object tracking. Our interest lies in real-time
tracking of object deformations. In particular we are
interested in the tracking of changing facial expressions
within the interest of performer-driven animation or model
based coding.

To realize real-time landmark point tracking we consider
landmark points that have relatively simple but unique
image properties, for example points with a specific
(enhanced) color or high hessian points. Then, the detection
can be done relatively simple, e.g. by thresholding, at the
cost of losing the identification of these points. In this paper
we present a fast and efficient solution for tracking these
detected landmark points over a number of images,
allowing an imperfect detection scheme hence missing or
spurious detected points.

Several techniques with polynomial approximations for
this exponential problem have been published [1]. The
Multiple Hypothesis Tracker (MHT) originally developed
by Reid [5], for which Cox and Hingorani [2] made an
efficient approximation, is able to track a variable number
of points and explicitly models spurious and missing point
measurements. The Joint-Probabilistic Data-Association
Filter (JPDAF) algorithm by Fortmann, Bar-Shalom and

Scheffe [3] suits best, when there are a predefined number
of points to track. These techniques are specifically
designed to deal with a lot of spurious point measurements
and hence are rather complex, conceptually as well as
computationally. In our application, with little spurious and
missing measurements, a less complicated technique
suffices.

The algorithm we propose, is based on Sethi and Jain [7].
Their algorithm is a greedy optimization algorithm (Greedy
Exchange, GE) in that it iteratively optimizes point
correspondences. This trajectory based approach optimizes
inherently local and it is sensitive to the initial
correspondences. In addition it explicitly models the
uniqueness constraint, that is one landmark point uniquely
matches one point measurement. Sethi and Jains algorithm
does however not model spurious and missing point
measurements. A modified version of this algorithm [4, 6]
solves both problems a great deal, but it may lead to a
number of short unconnected trajectories and wrong
correspondences.

The algorithm we propose enhances the GE algorithm
differently by preserving as much motion information as
possible, especially in case of missing measurements. It
does not divide trajectories up easily and makes better
correspondences.

After making the problem statement in the next section,
we continue with a description of the proposed algorithm
and end with the conclusions. In the remainder of this paper
we abbreviate landmark points to points and point
measurements to measurements.

2.  Problem statement

We define the tracking problem as follows. Given a
sequence of n time instances. At each time instance tk there
are mk measurements xik, with 1 i mk and 1 k n. At
t1, m points (m m1) are identified among the m1
measurements by an operator or otherwise. The task is to
track these m measurements over the whole sequence. In
other words: return a set of m trajectories, that represent the



motion of the m points from t1, t2, .. to tn. A trajectory is a
list of measurements: , , ..., , with 1 ik mk.

.

3.  The Greedy Exchange Algorithm

The GE algorithm by Sethi and Jain [7] hypothesizes the
correspondences between the measurements and then
repeatedly exchanges correspondences between
trajectories, that better match the optimization criterion
which consists of local smoothness in both the velocity and
the direction.

The original GE algorithm has two major drawbacks.
First, it assumes that there are no missing measurements by
occlusion or otherwise. Second it does not allow for
spurious measurements or false alarms. That is, in the GE
algorithm mk always equals m.

Salari and Sethi [6] solve the missing and spurious
measurements problem by introducing phantom points.
First these phantom points replace missing measurements,
while satisfying local constraints. By having the maximum
allowed local smoothness criterion ( max) and a maximum
displacement (dmax), they also replace spurious
measurements. That is, when spurious measurements are
present in a trajectory they will be replaced by phantom
points, if the phantom points cause a lower criterion value.

This approach generally works fine except that missing
measurements always have the maximum criterion and
displacement. For instance if point p has not been measured
at tk, the algorithm can easily associate a measurement of p
at tk+1, to another point which is within the criterion range

max. Moreover, the phantom points only enforce that the
local movement constraints are satisfied, but by putting a
phantom point in a trajectory, the trajectory is in fact
divided into two trajectories. In other words, the maximum
criterion approach solves the correspondence problem up to
the maximum criterion. Choosing a low maximum leads to
too many undecided trajectory parts and a high maximum
leads to possibly wrong correspondences.

Here, we propose a solution to this problem by
interpolating the missing measurement locations using
preceding and succeeding measurements in the trajectory
established so far. In this way we retain as much motion
information as possible and we are therefore able to make

more plausible correspondences.

3.1.  Algorithm description

We represent the problem data in a matrix with mmax
rows and n columns, with mmax is the maximum among all
mk’s. The measurements are filled in from the first row in
the column and when there are less than mmax
measurements the last rows are kept empty. The first m
rows represent the trajectories of the m landmark points (see
Figure 2. ).

The algorithm repeatedly optimizes the local criterion
from t1 to tn. At tk, we consider the trajectories correct up to
tk and we check if correspondence exchange between any
two trajectories at tk+1 improves the criterion the most.

In our application the (facial) point movements are
hardly restricted by inertia. Therefore, the smoothness
assumption, which [7] uses, will not hold in this situation.
The closeness criterion, which minimizes the total motion
between two time instances suits better in this case. We
define the closeness criterion at tk from row ri to rj
(1 i mk, 1 j mk+1) as:

cij
k = |xik - xik-1| + |xjk+1 - xik|

To cope with missing data, we estimate the distance
|xik - xik-1| by scanning back in the row to collect two
measurements in the nearest past and normalize this
distance by the number of columns (time instances) in-
between them plus 1. If xjk+1 is present and xik is missing,
we estimate the distance |xjk+1 - xik| likewise. We do not
consider a missing measurement at tk+1, because then there
is nothing to exchange.

Besides the closeness criterion, in some experiments we
use the smoothness criterion as in [7] (see 4. Experiments).
For this criterion the missing data are interpolated similar as
described above, which gives estimates for the vectors

and .

In the case of spurious measurements there are mmax - m
spurious trajectories. Clearly we only minimize the criterion
within the m point trajectories. Eventually the spurious
measurements migrate to the spurious trajectories.

xi11 xi22 xinn
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Figure 1. Two moving points, that are each
measured three times. The lines represent the
point correspondences in time.
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Figure 2. An mmax x n matrix, representing the
trajectories of point 1 to point m from t1 to tn. At t3
there is one missing measurement and at t5 there is
one spurious measurement.
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Per time instance the algorithm minimizes the criterion
by exchanging measurements that maximize the gain in the
criterion for the point trajectories including the
measurements in the spurious trajectories.

We define the gain in the point trajectories (1 i, j m)
in the following way:

• gij
k = cii

k + cjj
k - (cij

k + cji
k), when both xik+1 and xjk+1

exist.

• gij
k = cii

k - cji
k, when only xik+1 exists.

• gij
k = cjj

k - cij
k, when only xjk+1 exists.

As the spurious trajectories do not need to meet any
criterion they are very willing to give up their
measurements. That is, if the point trajectory has any favor
by taking a measurement from a spurious trajectory, it may
take it.

Therefore between the point and spurious trajectories
(1 i m and m + 1 j m + mk+1) we define the gain:

• gij
k = cii

k - cij
k, both xik+1 and xjk+1 exist.

This leads to the following algorithm.

1. Initialization: Initialize the point trajectories with
nearest neighbors. That is, starting at t2 assign all
measurements at tk to the trajectory with the nearest

measurement at tk-1, for 2 k n. Ignore ambiguities
during the assignment, like among others a different
number of measurements between tk and tk-1. That is,
assign arbitrarily in such cases.

2. Exchange loop: For t = t2 to tn-1:
a. Compute gain within point trajectories; i.e. for i = 1

to m - 1 and j = i + 1 to m.
b. Compute gain between point trajectories and

spurious trajectories; i.e. for i = 1 to m and j = m + 1
to mk.

c. If there is any gain achievable, then exchange those
measurements that result in the highest gain.

3. Termination: If the exchange loop did not yield gain for
any t, then terminate. Otherwise go back to the exchange
loop.

Because the optimization criterion is always positive or
zero, there will eventually be no gain achievable.
Consequently the algorithm always terminates.

So far we assumed that missing and spurious
measurements do not occur simultaneously. In such cases
some of the presumed spurious measurements remain in the
point trajectories. To discover those points, we calculate the
criterion in all established point trajectories after the
optimization algorithm has terminated. If the criterion cij

k

exceeds a certain threshold ( max) in any trajectory, we
assume that it is caused by a misinterpreted spurious

measurement. We then remove that measurement and
restart the optimization algorithm. This procedure surely
terminates, since the number of measurements is finite.

4.  Experiments

We first tested the algorithm on a sequence of facial
images with enhanced color marks. In this sequence we
used the closeness criterion as described above. Since we
do landmark point segmentation based on a fixed color
threshold, once in a while some measurements can be
missed. To detect outliers (spurious measurements) we
define the maximum closeness criterion max = 100 pixels
in within a trajectory (see Figure 4. ).

The number of spurious measurements and
simultaneously missing and spurious measurements is
usually low. Therefore we used synthetic data to test the
algorithm in these circumstances and to compare it to Salari
and Sethi (S&S) [6].

Figure 3. A sequence of 10 720x576 images
with overlaid detected points. In image 3 to 6
the left upper lip location is missed
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Figure 4. This figure shows 19 trajectories of
enhanced color landmark points taken from the
moving face sequence (see Figure 3. ). The left
upper lip point wa not measured from t3 until t6.
and has interpolated points in this picture.
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In all synthetic data examples we use the smoothness of
velocity and direction criterion as do [6, 7]. To resolve the
unsmooth start problem, we optimize the trajectories
forwards and backwards until there is no gain achievable in
either direction [7]. As an aside, although Sethi and Jain [7]
did not mention it, this way of optimizing may not
terminate.

The first synthetic sequence shows two pairs of moving
landmark points. One of the four points has not been
measured during two time instances. Moreover, there are a
number of (randomly inserted) spurious measurements.
After putting the measurements in random order (per time
instance), the algorithm makes correct correspondences and
correctly handles the spurious and missing measurements.
That is, the spurious measurements end up in the spurious
trajectories and the trajectory of the point with missing
measurements has indeed two empty positions, which we
filled with linear interpolated values (see Figure 5. ).

The last example shows two crossing landmark points
with a missing measurement at t3 for the first and at t4 for
the second point (see Figure 6. ). Our algorithm correctly
finds the point trajectories (see Figure 9. ). The S&S version
either leads to wrong correspondences or to separate
trajectories. We use two different settings of max to show
the shortcomings of the S&S version of the GE algorithm.

First with a high max (> 0.10) the algorithm makes
wrong correspondences (see Figure 7. ). The algorithm
prefers points that have been measured in the last time
instance, if they obey the maximum allowed criterion.

On the other hand, when max is lower (0.05) the
algorithm separates four trajectory parts (see Figure 8. ) and
correspondences between the trajectory parts have to be
made afterwards..
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Figure 5. Result of correspondence optimization in a
data set with both spurious and missing measurements.
In trajectory 1 the missing measurements have been
filled in with linear interpolations.
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Figure 6. The input measurements with 7 time
instances, but at t3 a measurement for point-1 is
missing and at t4 a measurement of point-2 is
missing.
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Figure 7. Three trajectory parts that are found
by the S&S algorithm using max > 0.10 and
dmax = 20. Clearly the correspondence conflict
is wrongly solved at t4.
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Figure 8. Four trajectory parts that are found
by the S&S algorithm using max = 0.05.
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Our GE algorithm interpolates the missing
measurements and forms the most plausible trajectories.
Here we give some example exchange decisions:

At t2: c1•
2 uses x11, x12, xj3 and c2j

2 uses x21, x22 and
again xj3. Clearly xj3 in trajectory 2 gives the highest gain (j
is the trajectory the third measurement is in).

At t3: c1j
3 uses x11, x12, xj4 and c2j

3 uses x22, x23 and
again xj4. Now xj4 clearly fits better in trajectory 1 (j is the
trajectory the fourth measurement is in).

5.  Conclusions

In this paper we showed that our modified version of
Sethi and Jains greedy exchange algorithm works well even
in the presence of spurious measurements and when some
measurements are missing. We also showed that the
phantom points approach [6] to overcome these imperfect
detection problems is in some cases less robust.

In our experiments we used the closeness and
smoothness criterion. The algorithm also applies with other
criteria, as long as they are positive and monotonically
increasing. For instance, the number of previous
measurements taken into account in the local criterion
computation, can be increased to get higher order
smoothness. Besides, including more measurements will
also increase the interpolation quality.

For the missing measurement determination we now
unrestrictedly gather previous measurements in a trajectory.
Interpolating the most recent measurements this way, will
probably lead to problems in case of very long occlusions.
That is, in such cases the motion information of the last
measurements seen, is probably unrelated to the current
motion of these points.

As mentioned, the optimization scope of the algorithm is
limited, because its greedy nature and the way the gain is
computed. The algorithm only considers an exchange of

two measurements, making a cyclic exchange between three
measurements hard to find. Increasing this number leads to
an exponential growth in the number of gain computations,
which is O(m2), in the current scheme.

Finally, in contrast to Salari and Sethi our algorithm is
currently not able to track a changing number of landmark
points. Including more trajectory constraints, enables the
algorithm to be also applicable in those circumstances.
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Figure 9. Resulting trajectories found by our
algorithm. In the figure we interpolated the
missing points, because our algorithm connects
the trajectories. We used max 0.05.
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