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Abstract. In this paper, we propose a competitive image segmentation
algorithm. It is a dynamic evolving optimization method, which we call
the population algorithm. The method is inspired from nature, where the
image segments are a population of entities that struggle for the limited
image space and settle territory expansion conicts locally without cen-
tral authority. Hence, it is a region-based segmentation approach that
locally considers region boundary adjustments in a dynamic way. Ex-
periments con�rm that this metaphor indeed applies when the image
segmentation problem is modeled accordingly.

1 Introduction

Computer vision is the research �eld that aims at automatic interpretation of
the three dimensional world through images with as highest attainable goal
a semantic labeling of all regions in the image. Current achievements in this
research �eld are far from this holy grail and successes have been reported only
in very restricted domains, e.g. [6], and [14]. The main problem is certainly the
lack of appropriate models to describe rich environments.

Computer vision systems can be thought of as the interaction between two
modules, an image segmentation module and a high-level interpretation mod-
ule. The objectives of the segmentation and interpretation modules are quite
di�erent. The segmentation module aims at dividing the image up into disjoint
homogeneous regions, while the interpretation module groups the regions and as-
signs semantic labels to them. Consequently, segmentation is merely a dimension
reduction process for the complex interpretation task, and hence, a segmentation
result should consist of as few regions or segments as possible. There is, however,
a constraint imposed on the segmentation result; once regions are merged they
can not be separated by the interpreter, i.e. merging too greedily will hamper
the interpretation severely (see for overviews on computer vision [5], and [11]).

Segmentation algorithms can be classi�ed as being either region-based or
contour based. Region-based algorithms group pixels based on homogeneity in
spatial related image features. These algorithms are usually less sensitive to



noise, but quite often depend on some random initialization. Contour-based al-
gorithms impose a parameterized shape on the segments. If the shape model is
too exible it becomes sensitive too noise and otherwise it may restrict the shape
of the segments too much (see e.g. [1], [2], [8], [9], and [17]).

In this paper we propose a method for region based segmentation that is less
sensitive to its initialization.We continuously exchange pixels between segments,
and we do so only if that results in a higher quality for the two segments involved.
As a consequence, the segments compete each other for the same region if it
�ts both their local criteria. The metaphor from nature on which the proposed
method is based, is that of a possibly oversized population that is exploring
a limited area, while occupying as much territory as possible. The consequent
conicts are settled between those concerned without the intervention of a central
authority. The analogy can for instance be formulated as follows; a segment
represents a kingdom and a part of the image space is the territory owned by
the kingdom. Then, the kingdommay try to expand at its borders and can merge
with another kingdom by marriage if both expect to take bene�t of it. Because
of its metaphor we have called the proposed optimization scheme the population

algorithm.
In this method, we start with a relatively high number of segments. Then,

pixels repeatedly migrate to the segment that currently �ts best. Consequently,
some segments grow and others shrink or even disappear. The main di�erence
with genetic algorithms is that in this case the entities do not try to satisfy the
same criterion. The current set of pixels maintained per segment determines the
�tness of other pixels.

In the next section we describe the motivation for the chosen approach and
the characteristics of the system. Further, we relate it to other reported ap-
proaches. Then, we formalize the problem and give the details of the algorithm
in the following sections. In the experiments section we illustrate the e�ectiveness
of the algorithm by applying it to synthetic and real images.

2 Distributed Computer Vision

The image segmentation system we are currently building is part of a larger
project that aims at the recognition of facial features in images. For a number
of reasons we have chosen to adopt the multi-agent paradigm for the design of
this facial feature recognition system [16]. The distributed nature of our coop-
erative image interpretation system inspired us in the design of a distributed
algorithm for image segmentation, among others because the best results can
be obtained by close cooperation between segmentation and interpretation al-
gorithms. That is, a global segmentation preprocessing step for a distributed
interpretation system is less exible and makes feed-back of the interpretation
task to the segmentation task very di�cult.

Besides design considerations as motivation for our approach, we expect im-
provements in quality and e�ciency. Quality and e�ciency aspects are both
related to the size of the problem. There is a huge amount of possible image



partitionings, namely over 2N , where N is the number of pixels in the image
(104 � N � 106). Clearly, enumeration of the candidate solutions is out of the
question. Moreover, the problem is not well structured, so any segmentation
algorithm must be an approximation algorithm. However, �nding coherent ho-
mogeneous regions is partly a local search problem. We claim that repeatedly
optimizing this problem locally in a non-greedy way will be more e�cient while
preventing premature convergence.

In this paper we do not consider parallel implementations of known segmen-
tation algorithms (e.g. [4], [10]), because these approaches usually have the same
drawbacks as their sequential counterparts. The algorithms are essentially cen-
tralized and need (simulated) shared memory and/or a lot of communication
overhead to be able to compute and satisfy global criteria.

To our knowledge, only one distributed image segmentation system as part of
an image interpretation system has been reported [12]. This agent-based image
understanding system for aerial image interpretation uses a contour-based seg-
mentation scheme, which they call a cooperative distributed region segmentation
system. For the algorithm the number of segments must be known in advance.
Moreover, the initial segment seeds must be positioned inside the a priori known
segments. Segments grow (and never shrink) while satisfying the contour �t con-
straints. When two segments have conicting (expand) intentions, these conicts
are resolved centrally (which violates the autonomy of the agents). Once a region
has occupied a part of the image there is no way in which it can become part of
another segment later on.

In contrast with [12] our method doesn't need to have the number of seg-
ments nor their positions to be known a priori. Moreover, we resolve the segment
expansion conicts locally, and we dynamically reconsider segment boundaries.
Regarding establishing the inter-segment boundaries, we state that in the fol-
lowing order, our proposed dynamical population algorithm, the distributed seg-
mentation system in [12], and classical region growing algorithms, can be said
to be increasingly greedy.

3 Problem Statement

The image segmentation problem is concerned with partitioning the image into
non-intersecting regions that are connected and homogeneous with respect to
basic image characteristics like grey values, color or texture, while the union
of adjacent regions is not homogeneous. For simplicity reasons, we deal with
grey-valued images and will not consider texture in this paper.

We represent the image in a undirected graph G, where the vertices represent
the pixels, N in total. In the image the pixels form a regular grid. We de�ne
contiguous vertices as being contiguous on that grid, so that every vertex has
exactly four contiguous vertices. We write v1 *) v2 if v1 and v2 are contiguous.
Only if two vertices are contiguous, there can be an edge connecting them.
That is, every vertex can have at most four edges to contiguous vertices. Now a
candidate segmentation graph is a graph for which the following holds: if there



is a path between any two vertices and the vertices are contiguous, then the
vertices are adjacent, i.e. there is an edge between the vertices (see Fig. 1).

v1
v

v3

v4

v2

(a) (b)

Fig. 1. (a) is an image containing a background and two 'objects', making three seg-
ments in total. (b) shows the corresponding segmentation graph and a blown up detail,
where v has two adjacent vertices v1 and v2 and four contiguous vertices, v1, v2, v3,
and v4.

Every maximal connected subgraph (component) in the candidate segmenta-
tion graph is a candidate segment Si, where 1 � i � n (and n being the number
of segments). A candidate segment has a set of vertices V (Si) = fv1; ::; vmi

g,
where mi is the number of vertices in Si and every vertex has a grey value at-
tribute g(vj). We de�ne the quality of a candidate segment1 as the variance �2i
on the grey value attributes of the vertices:

�2i =
1

mi

miX

j=1

[g(vj)� �i]
2
; where �i =

1

mi

miX

j=1

g(vj) (1)

The segmentation problem is to �nd that segmentation graph for which the
overall variance is minimal. Therefore we need to �nd the graph that minimizes
the criterion C(G), where the number of segments n is unknown:

C(G) =

nX

i=1

�2i (2)

If the number of segments is completely free then a trivial and optimal solution
is N segments (one for each vertex (pixel)), which makes C(G) = 0. For most
natural images this will be the only solution, since noise in the image as well
as gradual changes will cause contiguous vertices to have di�erent grey-values.
(Hence, merging them into one segment will violate the homogeneity constraint.)

1 In the remainder, we leave out the 'candidate' addition for the segmentation graph
and the segment subgraphs.



Clearly, this is not a desired solution, since we aim at a high dimension reduc-
tion (low number of segments). Because this e�ect is mostly due to noise in
the images, a lower limit can be set on the homogeneity criterion, i.e. each seg-
ment has a certain minimum grey-value variance �min, that forces contiguous
segments with a low combined variance to be merged. The determination of a
reasonable �min is related to the kernel width estimation for non-parametric
density estimators [13], [15]. In this study �min is given together with the image
to segment.

4 Algorithmic Approach

To �nd the overall minimum criterion C(G), we repeatedly consider the migra-
tion of a vertex from one segment to another. The migration is considered as
contributing to the minimization of C(G) if the sum of the variances of the two
segments considered becomes smaller by migrating the vertex. Clearly, in this
way C(G) decreases monotonically. We assume that we will �nd a reasonable
estimate of the minimum of C(G) in this way, and that the �nal segmentation
graph represents a good segmentation of the image. In the experiments section,
we elaborate on this.

Initially, the number of segments is much higher than the number of actual
segments in the image. The segments are regularly and densely spread over the
image. After initialization, the segments only grow and shrink with one vertex
at a time.

In the algorithm we separate three phases. In the �rst phase, the creation

phase, the segment population is created. Then, during the competition phase,
segments compete for the limited space in a sequence of epochs. In the �nal
termination phase, convergence is detected and the the competition halts.

4.1 Creation

Initially, we de�ne the n segments Si at regular distances d in the vertex grid
containing one vertex each. The remaining vertices are contained in a vertex
collector called the world SW . The vertex collector SW does not adhere to the
segment constraints, i.e. during the processing it may become disconnected, nor
does it compete with other segments for the possession of vertices. SW becomes
the empty set after the processing of approximately d2 epochs. When SW be-
comes empty, G becomes and will remain a valid segmentation graph.

4.2 Competition

The competition phase is a sequence of epochs. In every epoch na expansions
will be considered, where na is the number of active segments. An active segment
is a segment which is not empty, so that na � n. For the selection of a candidate
that may consider expansion, we need to have an expansion �tness measure. The
segment quality, which is de�ned as the variance of the vertices, is not useful for



this measure because it is not an indication for successful expansion. A better
�tness is an estimate of the expected result of an expansion trial. Therefore, we
compute the success rate r(Si) of each segment, which is de�ned as the average
number of successful expansion e(k; Si) in the last ne expansion trials:

r(Si) =
1

ne

neX

k=1

e(k; Si); (3)

where e(k; Si) 2 f0; 1g. We add a small fraction re to the success rate, to ensure
that segments with a zero success rate still have a small chance of being selected
for expansion. This gives the following expansion �tness per segment:

E(Si) = r(Si)(1� re) + re (4)

The reason for adding the re fraction is that over the course of the competition
the chances of a segment may change. Without this fraction a segment would be
excluded from expansion, when the success rate degrades to r(Si) = 0. Conse-
quently, the addition of re makes the algorithm less greedy. To select a number
of segments to allow for an expansion trial, we use stochastic uniform sampling
[3] on the expansion �tness E(Si) of the active segments.

Since segments must be connected, they can only expand at the vertices that
have a vertex degree less than four (recall that the degree of a vertex d(v) is
the number of edges connected to it). For e�ciency reasons we maintain a set of
contiguous segment labels:

Lc(Si) = fSj j9v1 2 V (Si); 9v2 2 V (Sj) : v1 *) v2g (5)

We also de�ne a tuple of contiguous vertices in each segment,

Vc(Si; Sj) = hv1 2 V (Sj)j9v2 2 V (Si) : v1 *) v2i; (6)

where the vertices in the tuple Vc(Si; Sj) are ordered clock-wise around Sj .
In the next sections, we continue the description of the expansion trial for

a segment that consists of three phases; contiguous vertex selection, followed by
vertex negotiation and eventually possible segment update. The segment that
attempts to expand, we call the initiator SI .

Vertex selection A vertex is selected by �rst selecting a segment from Lc(SI ).
If SW is contiguous to SI (SW 2 Lc(SI)), then it will be selected immediately
as target ST . Otherwise the target segment will be selected proportional to the
expected expansion success. Therefore, we di�erentiate the success rate r(Si)
per contiguous segment and again add a small fraction re as in Eq. [4] to the
success rate. By means of a roulette wheel selection scheme [7], we select a target
segment ST from Lc(SI). Then, we select a target vertex vT uniform randomly
from Vc(SI ; ST ).

Since a segment subgraph must satisfy the connectivity constraint, vertex
migrations from one segment to the other, that violate this constraint, are not



allowed. Therefore, we check if the deletion of vT from ST would divide this
subgraph into two disconnected components, in other words, we check whether
vT is a cut-vertex 2. If vT is a cut-vertex then we search in the tuple Vc(SI ; ST )
for the closest non-cut-vertex.

Vertex negotiation Once we have selected a target vertex, the vertex nego-
tiation starts. The negotiation scheme is cooperative, that is, if the segment
update is favorable for the ensemble of the two segments, only then they agree
upon exchange. To this end, both SI and ST compute their current variances.
Additionally, they compute the segment variance for the hypothetical case that
the vertex would migrate from ST to SI . There are three conditions that make
both segments agree upon segment update.

Condition I: improved quality :

�I + �T > �0I + �0T ; (7)

where �I and �T are the variances before and �0I and �0T are the variance after
migration. This condition takes care of the variance minimization. If SI could
not take over vT because it apparently �ts ST too well, it tries to meet the
following condition.

Condition II: contiguous homogeneity :

�0I[T � �min (8)

The condition of contiguous homogeneity lets segments merge, when their com-
bined variance is small. That is, segments decide to form a coalition if their union
is homogeneous, and hence, they expect to struggle for the same vertices.

Condition III: occasional defect :

U(0; 1) < rd; (9)

where U(0; 1) is a number uniformly random generated in the interval [0,1].
Occasionally, we allow a vertex to migrate even if it is not favorable for the

ensemble of segments. The reason is that because of the grain granularity of the
migration process, local minima may stop the vertex exchange between contigu-
ous segments. The defect ratio rd regulates the escape from these situations.

Segment update Once the segments agree, both segments are updated ac-
cordingly. In case of vertex migration, ST removes all edges from its subgraph,
that are connected to vT , and SI inserts edges in its subgraph between the vT
and all contiguous vertices. In case of merging, SI inserts all relevant vertices
and edges into its subgraph. In both cases, the sets Vc(SI ; ST ), and Vc(ST ; SI)
and possibly Lc(SI) and Lc(ST ) are updated.

2 Clearly, as contiguous vertices always become adjacent, adding a contiguous vertex
to SI can never divide it up into two components.



4.3 Termination

The population algorithm terminates when the success rate of all segments equals
zero. That is, every segment failed its last ne expansion trials. For the question
whether this will happen, we don't take Condition III into account, because this
condition exactly aims at getting out of (local) minima. Otherwise, this termina-
tion criterion will certainly be met, since Condition I enforces a monotonically
decreasing sum of segment variances and the variance has a lower limit of zero.
Although Condition II may lead to temporarily increase in overall variance, it
will in the long term also contribute to convergence. Namely, when Condition II

applies, the number of segments decreases and the number of segments is �nite.

5 Experiments

Since ground truth is a di�cult issue in image segmentation [13], we validate our
claims with respect to the problem statement by testing if the proposed method
succeeds in partitioning the image while satisfying the segmentation constraints
as formulated. Here we show the results for an arti�cial image and a natural
image. In both experiments we �xed d = 5, re = 0:05, ne = 50 and rd = 0:05.
Both experiments are run several times, but we only show the results of one run,
since they are similar. This implies that for these examples, the method is not
sensitive to its initial conditions.

In the �rst experiment, we use a synthetic 100x100 image consisting of four
regions having grey value distributions N(50; 102); N(80; 102); N(110; 102); and
N(150; 102) respectively, where N(�; �2) is the normal distribution. Thus, all
regions have di�erent means but the same variances. We set �min = 12. The
results in Fig.2 show that the initial 64 segments gradually merged into the
correct four segments.

(a) (b) (c) (d) (e)

Fig. 2. (a) is the input image consisting of four normal distributed regions. (b), (c),
(d), and (e) are the segmentation results after 20(na = 64), 40(na = 15), 60(na = 5),
and 80(na = 4) epochs respectively.

In the second experiment we use a 64x64 real-life image.We have set �min = 25,
because the objects and background are more irregular than in previous experi-
ment, i.e. there is higher variance. Fig.3 illustrates the results. Again, it can be
seen that the initial (144) candidate segments are reduced to a low number of



segments. Most objects, however, still have small contour 'segments' surrounding
them. Clearly, this leaves room for improvements in the homogeneity criterion.
We discuss some of them in the next section.

Although still in its infancy, the experiments support the possibilities of the
proposed population algorithm. The experiments clearly show that the popula-
tion competes over the limited space. It further shows that the dynamic recon-
siderations of local criteria produces true boundaries between the �nal segments.

(a) (b) (c) (d) (e)

Fig. 3. (a) is the input image consisting of approximately 18 segments (17 foreground
and the background). (b), (c), (d), and (e) show the segmentation results after 50(na =
89), 100(na = 53), 150(na = 41), and 500(na = 30) epochs respectively.

6 Discussion

In this paper, we proposed a new image segmentation scheme. In this scheme
candidate segments act as autonomous entities that compete each other locally
and dynamically for the limited image space. Experiments showed the e�ec-
tiveness of the paradigm, although the natural image example showed that the
number of segments sometimes remains too high. Here, we want to emphasize
the opportunities of this paradigm by discussing some future enhancements that
exploit its local behavior.

Shape and homogeneity constraints. By collecting pixels, the segments already
di�erentiate, but we want to extend this in a number of ways. First, we intend
to incorporate a measure that constrains the shape of the segments. For now
any shape is allowed as long as it improves the variances of the segment itself
and the contiguous segments. Second, we plan to include texture descriptions,
such that regular grey value variations will not degrade the segment quality.

Local noise estimation. Currently, we allow for a certain inhomogeneity �min

in each segment. Estimating the �min parameter makes the method more exible,
while the method also allows for local di�erentiation in �min.

Vertex selection by sampling. We foresee modi�cations with respect to the
vertex selection. Currently, vertices are randomly selected from Vc(SI ; ST ). Sam-
pling a set of vertices and then selecting the best will probably improve the
method. Especially, it will result in a better initial situation, when the world
SW is explored more selectively.



The new image segmentation scheme is an application of our introduced pop-
ulation algorithm that is characterized by the competition within a population
for limited space ('data') by considering local criteria dynamically. It is chal-
lenging to investigate whether this metaphorical optimization scheme can be
successfully applied to other domains as well.
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