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A Maximum Variance Cluster Algorithm

C.J. Veenman, M.J.T. Reinders, and E. Backer �

Abstract We present a partitional cluster algorithm that minimizes the sum-of-squared-error cri-

terion while imposing a hard constraint on the cluster variance. Conceptually, hypothesized clusters

act in parallel and cooperate with their neighboring clusters in order to minimize the criterion and to

satisfy the variance constraint. In order to enable the demarcation of the cluster neighborhood without

crucial parameters, we introduce the notion of foreign cluster samples. Finally, we demonstrate a new

method for cluster tendency assessment based on varying the variance constraint parameter.

Keywords: cluster analysis, partitional clustering, cluster tendency assessment, cluster validity.

1 Introduction

Data clustering is an extensively investigated problem for which many algorithms have been reported

[18], [26]. Roughly, cluster algorithms can be categorized in hierarchical and partitional algorithms.

Hierarchical algorithms deliver a hierarchy of possible clusterings, while partitional cluster algorithms

divide the data up into a number of subsets. In partitional cluster analysis most algorithms assume

the number of clusters to be known a priori. Because in many cases the number of clusters is not

known in advance, additional validation studies are used to �nd the optimal partitioning of the data

[6], [8], [11], [16].

In this paper, we propose an algorithm for partitional clustering that minimizes the within cluster

scatter with a constraint on the cluster variance. Accordingly, in contrast to many other cluster

algorithms, this method �nds the number of clusters automatically. Clearly, a proper value for the

variance constraint parameter has to be selected. We present a way to discover cluster tendencies to

�nd signi�cant values for this variance parameter in case this information is not available from the

problem domain. We �rst formally de�ne the cluster problem.
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University of Technology, P.O.Box 5031, 2600 GA, Delft, The Netherlands. E-mail: fC.J.Veenman, M.J.T.Reinders,

E.Backerg@its.tudelft.nl
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Let X = fx1;x2; :::;xNg be a data set of N = jXj feature vectors in a p-dimensional metric space.

Then, the cluster problem is to �nd a clustering of X in a set of clusters C = fC1; C2; :::; CMg, where

M is the number of clusters, such that the clusters Ci are homogeneous and the union of clusters is

inhomogeneous.

The most widely used criterion to quantify cluster homogeneity is the sum-of-squared-error criterion

or simply the square-error criterion1:

Je =

PM
i=1H(Ci)

N
; (1)

where

H(Y ) =
X
x2Y

kx� �(Y )k2 (2)

expresses the cluster homogeneity and

�(Y ) =
1

jY j

X
x2Y

x (3)

is the cluster mean.

Straight minimization of (1) leads to a trivial clustering with N clusters; one for each sample.

Therefore, additional constraints are imperative. For instance, one could �xM , the number of clusters,

to an a priori known number like among others the widely used K-means model [23]. In the image

segmentation domain, a maximum variance per cluster is sometimes used in addition to a spatial

connectivity constraint, e.g. [1], [15]. In this paper, we present an algorithm that is based on a

model proposed for intensity-based image segmentation [28]. The constraint that is imposed on the

square-error criterion (1) within this model states that the variance of the union of two clusters must

be higher than a given limit �2max, i.e.:

8Ci; Cj ; i 6= j : V ar(Ci [Cj) � �2max; where V ar(Y ) =
H(Y )

jY j
(4)

A consequence of this model is that the variance of each resulting cluster is generally below �2max [28].

This does, however, not imply that we could impose a maximum variance constraint on each individual

cluster instead. That is, if we would replace the joint variance constraint (4) with a constraint for

individual clusters (8Ci : V ar(Ci) � �2max) the minimization of (1) would lead to a trivial solution

with one sample per cluster.

Clearly, since the model imposes a variance constraint instead of �xing the number of clusters,

the resulting optimal clustering can be di�erent from the K-means result, even if the �nal number of

clusters is the same.
1Usually the sum-of-squared-error criterion is not averaged over the whole data set. As de�ned here, Je expresses the

average distance to the cluster centroids instead of the total distance.
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Figure 1: Illustration of the cluster neighborhood with the 2 nearest-neighbors method. In (a) the

neighbor ranking for sample A is shown. (b) and (c) display the neighborhood of the grey colored

cluster with respectively 3 and 4 samples, where in (c) the set of expansion candidates is empty.

2 Algorithm

For the optimization of the cluster model, we propose a stochastic optimization algorithm. In the

literature other stochastic clustering algorithms have been reported that generally optimize the K-

means model or fuzzy C-means model either using simulated annealing techniques [7], [20], [25] or using

evolutionary computation techniques [10], [13], [22], [29]. Accordingly, these stochastic approaches

focus on the optimization of known cluster models. The algorithm we propose, however, shows more

resemblance with the distributed genetic algorithm (DGA) for image segmentation as introduced by

Andrey and Tarroux [2], [3]. We also dynamically apply local operators to gradually improve a set of

hypothesized clusters, but, in contrast with the DGA approach, we consider the statistics of the whole

cluster in the optimization process. Before describing the algorithm itself, we �rst elaborate on the

neighborhood relationships of samples, which play a crucial role in the proposed algorithm.

Both for e�ectiveness and eÆciency the algorithm exploits locality in the feature space. Namely,

the most promising candidates for cluster expansion are in clusters that are close in the feature space.

Similarly, the most distant cluster members are the least reliable, hence, they are the �rst candidates

for removal. The computational performance can also pro�t from feature locality because cluster

update operations can be executed in parallel when the optimization process applies locally. For these

reasons, we consider the optimization process from the individual clusters' point of view, i.e. each

cluster can execute a number of actions in order to contribute to an improvement of the criterion as

well as to satisfy the variance constraint.

In order to collect the expansion candidates of a cluster, we need to �nd neighboring samples of

that cluster. A common way to de�ne the neighborhood of a sample is to collect its k nearest neighbors

using the Eucledian distance measure, where k is a prede�ned number. In this way, the neighborhood

of a cluster would be the union of the neighbors of all samples in the cluster. Accordingly, the set of

expansion candidates of a cluster consists of the samples from its neighborhood, excluding the samples
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Figure 2: Illustration of the cluster neighborhood with the 8 nearest-neighbors method. In (a) the

neighbor ranking for sample A is shown. (b) and (c) display the neighborhood of the grey colored

cluster with respectively 3 and 4 samples.

from the cluster itself. The problem with this approach is that the value of k becomes an integral part

of the cluster model, e.g. [12], [19], [24]. If k is set too low, then even for small clusters all k nearest

neighbors are in the cluster itself, so there are no expansion candidates left, see Fig. 1. On the other

hand, if k is set too high, then the neighborhood is always large, so all clusters have a major part of

the samples as expansion candidates, which clearly violates the idea of locality. As a consequence, the

set of expansion candidates will be a mix of good and bad candidate samples without preference, see

Fig. 2.

We take another approach to collect the expansion candidates. First, we call the set of expansion

candidates of cluster Ca the outer border Ba of cluster Ca. Further, we introduce the notion of foreign

samples, which we de�ne as neighboring samples that are not in the cluster itself. Accordingly, the

k-th order outer border Ba of cluster Ca is the union of the k nearest foreigners of all samples in Ca,

leading to:

Ba(k) =
[
x2Ca

F (x; k; Ca; X); (5)

where F (x; k; Ca; X) is the set of k nearest foreigners of x according to:

F (x; k; Ca; Y ) =

8><
>:
fnf(x; Ca; Y )g [ F (x; k � 1; Ca; Y � fnf(x; Ca; Y )g); if k > 0

;; if k = 0
(6)

and nf(x; Ca; Y ) is the nearest foreigner of sample x 2 Ca in X de�ned as:

nf(x; Ca; Y ) = arg min
y2Y�Ca

ky � xk2 (7)

Consequently, the outer border of a cluster always has a limited number of samples and it never

becomes empty (unless there is only one cluster left). In Fig. 3 we illustrate how a second-order outer
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Figure 3: The �gures illustrate the cluster border construction with respect to sample A and its cluster.

In (a) the distance ranking for sample A is shown and (b) and (c) display the second-order border of

the grey colored cluster with respectively 3 and 4 samples.

border evolves with the growing of a cluster. An appropriate value for the order of the outer border

depends on the constellation of the clusters and the actual data.

Besides the expansion candidates, we also need to collect candidates for removal from the cluster

in order to impose the variance constraint. To this end, we introduce the q-th order inner border Ia

of cluster Ca. The inner border Ia consists of those samples that are the furthest cluster mates of the

samples in Ca. Accordingly, the q-th order inner border can be expressed as follows:

Ia(q) =
[
x2Ca

G(x; q; Ca); (8)

where G(x; q; Ca) is the set of q furthest cluster mates of x, or, in other words the q furthest neighbors

of x in Ca according to:

G(x; q; Y ) =

8><
>:
ffn(x; Y )g [G(x; q � 1; Y � ffn(x; Y )g); if q > 0

;; if q = 0
(9)

and fn(x; Y ) is the furthest neighbor of x in Y as in:

fn(x; Y ) = argmax
y2Y

ky � xk2 (10)

Since the set of foreigners of a sample changes every time the cluster is updated, for eÆciency

reasons we introduce a rank list Ri per sample xi, containing indices to all other samples in X in order

of their distance to the given sample. The rank list Ri is an N -tuple de�ned as Ri = Rank(xi;X)

according to:

Rank(x; Y ) = hnn(x; Y ) Æ Rank(x; Y � fnn(x; Y )g)i; (11)

where Æ is the concatenate operator and nn(x; Y ) is the nearest neighbor of x in Y as in:

nn(x; Y ) = argmin
y2Y

ky � xk2 (12)
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The k nearest foreigners of a cluster sample can now easily be found by scanning the rank list,

starting at the head while skipping those elements that are already in the cluster. To this end, some

bookkeeping is needed for both the clusters and the samples.

After the de�nitions of the inner and outer border of a cluster, we now describe the maximum

variance cluster (MVC) algorithm. Since the optimization of the model de�ned in (1) { (4) is certainly

an intractable problem, exhaustive search of all alternatives is out of the question. In order to prevent

early convergence of the consequent approximate optimization process, we introduce sources of non-

determinism in the algorithm [4].

The algorithm starts with as many clusters as samples. Then in a sequence of epochs every cluster

has the possibility to update its content. Conceptually, in each epoch the clusters act in parallel or

alternatively sequentially in random order. During the update process, cluster Ca performs a series of

tests each of which causes a di�erent update action for that cluster.

1. Isolation

First Ca checks whether its variance exceeds the prede�ned maximum �2max. If so, it randomly

takes a number of candidates ia from its inner border Ia proportional to the total number of

samples in Ia. It isolates the candidate that is the furthest from the cluster mean �(Ca). It

takes a restricted number of candidates to control the greed of this operation. Then the isolated

sample forms a new cluster (resulting in an increase of the number of clusters).

2. Union

If on the other hand, Ca is homogeneous (its variance is below �2max), then it checks if it can

unite with a neighboring cluster, where a neighboring cluster is a cluster that contains a foreign

sample of Ca. To this end, it computes the joint variance with its neighbors. If the lowest joint

variance remains under �2max, then the corresponding neighbor merges with Ca (resulting in a

decrease of the number of clusters).

3. Perturbation

Finally, if none of the other actions applies, the cluster Ca attempts to improve the criterion by

randomly collecting a number of candidates ba from its outer border Ba. Again, to control the

greed, a restricted number of candidates is selected proportional to the size of the border. Then

Ca ranks these candidates with respect to the gain in the square-error criterion when moving

them from the neighboring cluster Cb to Ca.

We de�ne the criterion gain between Ca and Cb with respect to x 2 Cb as:

Gab = H(Ca) +H(Cb)�H(Ca [ fxg) �H(Cb � fxg) (13)



7 IEEE Transactions on PAMI, vol. 24, no. 9, pp. 1273-1280, September 2002

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

(a)

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

J e

σ2
max

σ2
A σ2

B

Je

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

M

σ2
max

M

(b)

Figure 4: In (a) the R15 data set is shown, which is generated as 15 similar 2-D Gaussian distributions.

In (b) Je and M are displayed as a function of �2max for the R15 data set.

If the best candidate has a positive gain then this candidate moves from the neighbor to Ca.

Otherwise, there is a small probability Pd of occasional defect, which forces the best candidate

to move to Ca irrespective the criterion contribution.

Because of the occasional defect, no true convergence of the algorithm exists. Therefore, after a

certain number of epochs Emax, we set Pd = 0. Further, since it is possible that at the minimum of

the constrained optimization problem (1) { (4) the variance of some clusters exceeds �2max (exceptions

to the general rule mentioned in Section 1), after Emax epochs also isolation is no longer allowed in

order to prevent algorithm oscillations. With these precautions the algorithm will certainly converge,

since the overall homogeneity criterion only decreases and it is always greater than or equal to zero. In

case two clusters unite, the criterion may increase, but the number of clusters is �nite. Still, we have

to wait for a number of epochs in which the clusters have not changed due to the stochastic sampling

of the border.

3 Experiments

In this section we demonstrate the e�ectiveness of the proposed maximum variance cluster (MVC)

algorithm with some arti�cial and real data sets. First, however, we show that the maximum variance

constraint parameter can be used for cluster tendency assessment.

Clearly, since the clustering result depends on the setting of �2max, the square-error criterion Je also
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changes as a function of �2max. Accordingly, cluster tendencies can be read from trends in Je. Consider

for instance the data set shown Fig. 4(a). The corresponding square-error curve resulting from varying

�2max can be seen in Fig. 4(b). The �gure shows some prominent plateaus in the square-error criterion.

Clearly, these plateaus can both be caused by hierarchical cluster structures and random sample

patterns. If there is real structure in the data then the variance constraint can be increased up to

the moment that true clusters are lumped together. On the other hand, if the resulting clustering

is random in character, then the clusters will easily be rearranged when the variance constraint is

increased.

Let �2A be the starting point of a Je plateau and �2B the end point of that plateau, as for example

in Fig. 4(b). Then, we de�ne the strength S of a plateau as the ratio:

S(�2A; �
2

B) =
�2B
�2A

(14)

Accordingly, the strength of a plateau gives an indication of whether or not the corresponding

clustering represents real structure in the data. Intuitively, we expect that two real clusters will be

lumped together if the variance constraint is higher than roughly twice their individual variance. This

implies that the strength of a plateau in Je should be greater than 2 in order to be a signi�cant

plateau, that is, to represent real structure. To test this hypothesis, we did experiments with uniform

random data and various numbers of samples. For each data set, we measured the maximum plateau

strength Smax and subsequently computed the distribution of Smax. In Fig. 5 we show the cumulative

distribution of Smax for di�erent sizes of the random data sets. Only when N was very low (N < 50),

signi�cant plateaus were occasionally found, which is to be expected with low numbers of samples.

On the other hand, the experiments with structured data, among which the ones that we describe in

this section, indeed resulted in signi�cant Je plateaus.

The advantage of this cluster tendency assessment approach is that the same model is used for

the clustering as for the cluster tendency detection. In our view the usual approach, where di�erent

criteria are used for the clustering and the detection of the cluster tendency, is undesirable, like for

instance in [6], [8], [11], [16]. That is, the cluster algorithm may not be able to �nd the clustering

corresponding to the local minimum or knee in the cluster tendency function2.

Some additional remarks need to be made about the signi�cance of Je plateaus. First, it has

to be noted that because of fractal like e�ects, �2A must be higher than a certain value in order to

rule out extremely small 'signi�cant' plateaus. Second, in case there are multiple signi�cant plateaus,

these plateaus represent the scales at which the data can be considered. Then, the user can select the

2When additional criteria are used to discover cluster tendencies, they are usually called cluster validity functions or

indices.
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Figure 5: Cumulative distribution of the maximum plateau strength for di�erently sized random 2-D

data sets. The distributions have been calculated from 1000 independent draws.

appropriate scale and corresponding plateau. In our view, there is no best scale in these cases, so the

selection is fully subjective.

In all experiments, we compared the performance of the MVC algorithm to the K-means algorithm

[23], and the Gaussian mixtures modeling (GMM) method with likelihood maximisation [18] using

the EM algorithm [9]. For both the K-means and the GMM method the numbers of clusters is set

to the resulting number (M) found by the MVC algorithm. Further, since both the MVC and the

K-means algorithm prefer circular shaped clusters we constrained the Gaussian models of the GMM

to be circular too in order to reduce its number of parameters. For the MVC algorithm we set

Pd = 0:001, Emax = 100, k = 3, q = 1, ia = b
p
jIajc, and ba = b

p
jBajc. It has to be noted that

these parameter values appeared to be not critical (experiments not included). They merely serve

to tune the convergence behavior similar as in other non-deterministic optimization algorithms, like

for instance the mutation rate and population size parameters in genetic algorithms [14]. Since all

algorithms have non-deterministic components3, we ran them 100 times on each data set and display

the result with the lowest square-error (MVC and K-means) or highest likelihood (GMM), i.e. the

best solution found. Further, we measured the average computation time, and the number of times

the best solution was found (hit rate). For the MVC algorithm we did not add the computation time

of the rank lists, since this time only depends on the size of the data set and not on the structure.

Moreover, these lists have to be computed only once for a data set and can then be used for tendency

assessment and the subsequent runs to �nd the optimal clustering.

We start with the already mentioned data set from Fig. 4(a) consisting of 15 similar 2-D Gaussian

clusters that are positioned in rings (R15). Though we know an estimate of the variance of the

3The K-means and GMM algorithm are initialized with randomly chosen cluster models.
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Figure 6: Results of applying the clustering algorithms to the R15 data set. In (a) the results of the

MVC and K-means algorithm with 15 clusters is shown and in (b) the results of the GMM method

with 15 clusters is shown.

clusters, we �rst varied the �2max constraint in order to discover the cluster tendency. Fig. 4(b) shows

the resulting curves for Je and the number of found clusters M . The �gure shows a number of

prominent plateaus in Je, from which the �rst [4:20:::16:5] has strength S = 3:93. This signi�cant

plateau corresponds to the originating structure of 15 clusters. Further, there is a large plateau

[67:5:::122] with strength S = 1:80 which corresponds to the clustering where all inner clusters are

merged into one cluster. This plateau is, however, not signi�cant according to our de�nition. This is

because the total variance of the clusters lumped in the center is much higher than the variance of

the outer clusters. The resulting clusterings for MVC (�2max = 10), K-means (M = 15) and GMM

(M = 15) were the same (Fig. 6), and also for MVC (�2max = 100), K-means (M = 8) and GMM

(M = 8). Table 1 shows that the MVC algorithm is clearly more robust in converging towards the

(possibly local) minimum of its criterion. That is, the hit rate for the MVC algorithm is much higher

than for the K-means and the GMM algorithm. Further, the K-means algorithm that is known to be

eÆcient is indeed the fastest.

The next arti�cial data set consists of three clusters with some additional outliers (O3), see

Fig. 7(a). Again, we �rst varied the �2max parameter for the MVC algorithm in order to discover

cluster tendencies. Although we roughly know the variance of the clusters, in this case it is certainly

useful to search for the proper �2max value, since the outliers may disrupt the original cluster variances.

Fig. 7(b) clearly shows only one prominent plateau [22:0:::82:0]. This plateau is signi�cant, because

its strength is S = 3:73. In the corresponding clustering result all three outliers are put in separate

clusters leading to a total of six clusters, as is shown in Fig. 8(a). Because the K-means algorithm

does not impose a variance constraint it could �nd a lower square-error minimum and corresponding
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method parameter hit M time (ms)

MVC �2max = 10 100 15 122

MVC �2max = 100 100 8 99

K-means M = 15 3 � 20

K-means M = 8 10 � 12

GMM M = 15 4 � 280

GMM M = 8 10 � 160

Table 1: Statistical results of applying the algorithms to the R15 data set.

method parameter hit M time (ms)

MVC �2max = 50 94 6 27

K-means M = 6 1 � 2.5

K-means M = 3 14 � 1.2

GMM M = 6 1 � 17

GMM M = 3 10 � 4.3

Table 2: Statistical results of applying the algorithms to the O3 data set. The hit rate of the GMM

method with M = 6 certainly refers to a local maximum.

clustering with M = 6 than the MVC as can be seen in Fig. 8(b). The algorithm split one cluster

instead of putting the outliers in separate clusters. This supports the statement that using one model

for the detection of cluster tendencies and another for the clustering is undesirable. Also the GMM

algorithm was not able to �nd the MVC solution (see Fig. 8(b)), though the MVC solution indeed had

a higher likelihood. WhenM = 3, the K-means and the GMM algorithm merged two true clusters and

put the outliers in one clusters. Table 2 shows the statistics of this experiment. Again, the K-means

and GMM algorithm were clearly less robust in �nding their respective (local) criterion optimum than

the MVC and the K-means was the fastest.

We repeated this experiment several times with di�erent generated clusters and outliers. The

results were generally the same as described above, i.e. if there was a di�erence between the cluster

results of the algorithms, the MVC handled the outliers better by putting them in separate clusters

or it converged more often to its criterion optimum.

For the last synthetic experiment, we used a larger data set (D31) consisting of 31 randomly

placed 2-D Gaussian clusters of 100 samples each, see Fig. 9(a). The tendency curve resulting from

varying �2max for the MVC algorithm shows one signi�cant plateau [0:0030:::0:0062] (S = 2:07), which

corresponds to the original 31 clusters. Remarkably, the K-means and the GMM algorithm were not
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Figure 7: In (a) the O3 data set is shown which is generated as 3 similar 2-D Gaussian distributions

with some additional outliers. In (b) Je and M are displayed as a function of the �2max constraint

parameter.
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Figure 8: Results of applying the clustering algorithms to the O3 data set. In (a) the results of the

MVC algorithm are shown resulting in 6 clusters. (b) and (c) show the results of the K-means and

GMM algorithm, respectively. The GMM puts a remote cluster sample in a separate cluster.
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Figure 9: In (a) the D31 data set is shown which is generated as 31 similar 2-D Gaussian distributions.

In (b) Je and M are displayed as a function of the �2max constraint parameter.

method parameter hit M time (ms)

MVC �2max = 0:004 100 31 930

K-means M = 31 1 � 390

GMM M = 31 1 � 220

Table 3: Statistical results of applying the algorithms to the D31 data set. The K-means and GMM

algorithm were not able to �nd the originating structure, so the hit rate refers to a local optimum.

able to �nd the originating cluster structure, not even after 10000 trials. The statistical results in

Table 3 show that the MVC algorithm consistently found the real structure, while the di�erence in

computation time between the algorithms becomes small.

Next, we applied the algorithms to some real data sets. We started with the German Towns data

set which consists of 2-D coordinates of 59 German towns (pre-'Wende' situation). In order to �nd a

signi�cant clustering result, we again varied the �2max parameter for the MVC algorithm. The resulting

curves of Je and M are displayed in Fig. 10(a). The two plateaus [1290:::1840] and [1940:::2810] have

strengths S = 1:43 and S = 1:45 respectively. Although both plateaus are not signi�cant, we show

the clustering results of the �rst plateau with 4 clusters in Fig. 10(b), which equals the result of the

K-means algorithm with M = 4. The GMM algorithm came up with a di�erent solution consisting of

three main clusters and one cluster containing a single sample. When we visually inspect the data in

Fig. 10(b), we can conclude that it is certainly arguable if this data set contains signi�cant structure.

Table 4 shows similar hit rates as before and the K-means algorithm was again the fastest.
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Figure 10: (a) shows Je andM as a function of the �2max constraint parameter for the German Towns

data set. In (b) the clustering result of the MVC and the K-means algorithm with 4 clusters is

displayed.

method parameter hit M time (ms)

MVC �2max = 1500 100 4 27

K-means M = 4 29 � 0.56

GMM M = 4 1 � 12

Table 4: Statistical results of applying the algorithms to the German Towns data set.
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Figure 11: Je and M as a function of the �2max constraint parameter for the Iris data set.

method parameter hit M time (ms)

MVC �2max = 1:0 100 3 43

MVC �2max = 2:0 100 2 25

K-means M = 3 36 � 1.6

K-means M = 2 99 � 0.83

GMM M = 3 8 � 4.2

GMM M = 2 99 � 1.6

Table 5: Statistical results of applying the algorithms to the Iris data set.

Finally, we processed the well-known Iris data set with both algorithms. The Iris data set is

actually a labeled data set consisting of three classes of irises each characterized by four features.

Fig. 11 illustrates the cluster tendencies resulting from varying �2max for the MVC algorithm. The

�gure displays several plateaus, from which [0:76:::1:39] and [1:40:::4:53] are the strongest. The plateaus

with strengths S = 1:83 and S = 3:24 correspond to three and two clusters, respectively. Hence, only

the latter is signi�cant. All three algorithms found similar results for the same number of clusters.

Since it is known that the three classes cannot be separated based on the given features, it is not

surprising that the clustering with M = 3 does not correspond to the given labels. However, from the

clustering withM = 2 (corresponding to the signi�cant plateau), one cluster almost perfectly matches

the samples of class I and the other cluster matches the samples of class II+III of the Iris class labels.

The statistics in Table 5 show similar di�erences between the MVC, K-means, and GMM algorithm

as in the other experiments.
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4 Discussion

We presented a maximum variance cluster algorithm (MVC) for partitional clustering. In contrast

to many other algorithms, the MVC algorithm uses a maximum variance constraint instead of the

number of clusters as parameter. In the experiments, we showed that the method is e�ective in �nding

a proper clustering and we compared its results to those of the widely used K-means algorithm and the

Gaussian mixtures modeling (GMM) method with likelihood maximisation with the EM algorithm.

In contrast to the proposed MVC method both the K-means and the GMM method need the number

of clusters to be known a priori.

We showed that the MVC method copes better with outliers than the K-means algorithm. The

GMM method is in principle able to separate the outliers, but has problems with the optimization

process leading to convergence into local criterion optima. The MVC algorithm is more robust in

�nding the optimum of its criterion than both the K-means and GMM algorithm. We must note that

other and better optimization schemes for both the K-means model (e.g. [5], [21]) and the Gaussian

mixtures modeling (e.g. [17], [27]) have been developed. However, the improved optimization of

these algorithms is achieved at the cost of (considerable) additional computation time or algorithm

complexity.

The MVC algorithm is up to 100 times slower than the very eÆcient K-means algorithm, especially

for small data sets and a low number of clusters. This is partially caused by the fact that we did not

adjust the maximum number of epochs parameter Emax to the size of the data set. For larger data sets

with a higher number of clusters the di�erences in computation time between both algorithms almost

disappear. An advantage of the MVC algorithm with respect to computational eÆciency is that it

can be implemented on parallel and distributed computer architectures relatively easily. Accordingly,

for large data sets the MVC algorithm may be advantageous also for eÆciency reasons. In such a

distributed computing environment, clusters can be maintained by separate processes. Then, only

clusters that are neighbors communicate with each other. The main point of consideration will be how

to balance the cluster processes on the available computers when clusters merge and when samples

are isolated into new clusters.

An interesting property of the proposed method is that it enables the assessment of cluster ten-

dencies. Generally, the curve resulting from varying the maximum variance constraint parameter as

a function of the square-error displays some prominent plateaus that reveal the structure of the data.

We indicated a way to �nd signi�cant structure in the data by rating the strength of the plateaus.

Accordingly, we were able to �nd proper settings of the maximum variance constraint parameter,

which is the only model parameter.

A drawback of the MVC algorithm may be that it uses a distance rank list for every sample.
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The size of this rank list grows proportional to the square of the number of samples, so the amount

of storage needed can become substantially. The main problem, however, lies in the computation

of these rank lists. Since these lists are sorted, their construction costs O(Nlog(N)) operations. In

order to prevent the rank list from becoming a bottleneck for the application of the MVC algorithm,

a maximum distance constraint dmax can be imposed in addition to the maximum cluster variance

constraint, e.g. dmax = 2�max. Then only those samples need to be ranked that are within the dmax

range of the reference sample.
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