
1 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

The Nearest Sub-class Classifier: a Compromise between

the Nearest Mean and Nearest Neighbor Classifier

Cor J. Veenman∗ and Marcel J.T. Reinders†

Abstract We present the Nearest Sub-class Classifier (NSC), which is a classification algorithm

that unifies the flexibility of the nearest neighbor classifier with the robustness of the nearest mean

classifier. The algorithm is based on the Maximum Variance Cluster algorithm and as such it belongs

to the class of prototype-based classifiers. The variance constraint parameter of the cluster algorithm

serves to regularise the classifier, that is, to prevent overfitting. With a low variance constraint value

the classifier turns into the nearest neighbor classifier and with a high variance parameter it becomes

the nearest mean classifier with the respective properties. In other words, the number of prototypes

ranges from the whole training set to only one per class. In the experiments, we compared the NSC

with regard to its performance and data set compression ratio to several other prototype-based meth-

ods. On several data sets the NSC performed similarly to the k-nearest neighbor classifier, which is

a well-established classifier in many domains. Also concerning storage requirements and classifica-

tion speed, the NSC has favorable properties, so it gives a good compromise between classification

performance and efficiency.

Keywords: Classification, regularisation, cross-validation, prototype selection.

∗Corresponding author
†The authors are with the Department of Mediamatics, Faculty of Electrical Engineering, Mathematics and Computer

Science, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, the Netherlands. E-mail: {C.J.Veenman,

M.J.T.Reinders}@ewi.tudelft.nl

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 2

1 Introduction

One of the most intriguing problems in automatic object classification is preventing overfitting to

training data. The problem is that perfect training performance by no means predicts the same per-

formance of the trained classifier on unseen objects. Given that the training data is sampled similarly

from the true distribution as the unseen objects, the cause of this problem is twofold. First, the training

data set contains an unknown amount of noise in the features and class labels, so that the exact position

of the training objects in feature space is uncertain. Second, the training data may be an undersam-

pling of the true data distribution. Unfortunately this is often the case, so that the model assumptions

about the data distribution are not justified. Consider for instance the data set in Fig. 1(a), which is

generated according to two Gaussian distributions. In the figure, a decision boundary is displayed

that was estimated with the nearest neighbor rule, which can be seen to be overfit if one knows the

origin of the data. Clearly, the optimal decision boundary between these two Gaussian distributions is

a straight line. Without such prior knowledge it is much harder to know whether or not a learned clas-

sifier is overfit. In many cases, however, it is profitable to select less complex classifiers. Therefore,

the basic assumption underlying overfitting prevention schemes is that simpler classification models

are better than more complex models (especially in situations where the errors on the training data are

equal). Unfortunately, there are situations in which this assumption does not hold [43], so a proper

classifier validation protocol is essential. Consequently, if the bias for a simpler model was unjust, at

least a proper error estimate can be given.

A common way to prevent overfitting, i.e., poor generalisation performance, is to incorporate a

penalty function as a form of regularisation in the classification scheme. Regularisation is a way of

trading off bias and variance in the classifier model, see for instance [24]. The purpose of the penalty

function is to restrain the complexity of the classifier, so that the decision boundary becomes smoother

or fewer features are effectively utilised. The classifier can be regularised by tuning an additional

parameter that weights the penalty function with some model error. For instance, in ridge regression,

a λ-parameter weights a penalty function that sums the squared weights in a linear classifier model

with the model error [30]. When the total function that sums the model error expression and the λ-

weighted penalty function is minimised, the squared weights are forced to be low proportionally to λ,

leading to stress on or the removal of certain features.

In the case where there is neither undersampling nor noise in the training data, it is easy to model

the data and the labels of unseen samples can be predicted from the model. The question is of course:

3 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

−3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

(a) 1-nearest neighbor rule

−3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

(b) 10-nearest neighbors rule

Figure 1: A data set consisting of two classes that are each generated according to a Gaussian distribu-

tion. In (a) the decision boundary is computed with the 1-nearest neighbor rule and is clearly overfit

to the training data. In (b) the 10-nearest neighbors rule is applied and the corresponding decision

boundary is closer to a straight line, which is optimal for the underlying distributions.

how does one know when there is enough data? Or, in other words: to what extent is the data

representative of the underlying distribution? Other questions are: how does one know how much

noise there is in the features, and whether all features have the same amount of noise? Since these

questions are impossible to answer in general, the best solution is to restrain the training data fit with

some form of regularisation such that the flexibility of the classifier can be controlled by an additional

complexity parameter. Fortunately, the amount of regularisation can be learned from the data. We

will return to this later on.

In this paper, we introduce a prototype-based classifier that employs the Maximum Variance Clus-

ter algorithm (MVC) [48] to find proper prototypes. The number of clusters or prototypes follows

from the imposed variance constraint value of the MVC, so that the number of prototypes can dif-

fer per class. Accordingly, through the variance constraint parameter the proposed classifier offers

a compromise between the nearest mean classifier and the nearest neighbor classifier. Throughout

the paper we will use the term regularisation in a more general way than only referring to the usual

penalty function scheme. We consider any tuning that aims at avoiding overfitting as regularisation.

A good example (without a penalty function) is the tuning of the number of neighbors involved in

the k-nearest neighbors classifier, which clearly constrains overfitting. Compare for instance Fig. 1(a)

and 1(b), where the decision boundary was estimated using the 1-nearest neighbor rule and 10-nearest

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 4

neighbor rule, respectively.

In the next section, we first introduce prototype-based classifiers. In Section 3, we present the

classifier that is based on the Maximum Variance Cluster algorithm. In the experiments, Section

4, we compare the newly introduced classifier to other prototype-based classifiers and focus on the

differences between them such as their performance with unevenly distributed classes.

2 Prototype-based Classification

Prototype-based classifiers are among the oldest types of classifiers. On the extremes of this type of

classifiers are the Nearest Neighbor Classifier (NNC) [13], [14], [21] and the Nearest Mean Classifier

(NMC) [28] (Ch. 13). The first does not abstract the data, but rather uses all training data to label

unseen data objects with the same label as the nearest object in the training set. Consequently, it is

a typical lazy learning algorithm with as many prototypes M as data objects N . The nearest mean

classifier, on the other hand, only stores the mean of each class, i.e., one prototype per class. It

classifies unseen objects with the label of the nearest class prototype.

The nearest neighbor classifier is very flexible and easily overfits to the training data. Accordingly,

instead of 1-nearest neighbor, generally k nearest neighboring data objects are considered. Then, the

class label of unseen objects is established by majority vote. We abbreviate this classifier as NNC(k),

where the parameter k represents the number of neighbors involved. Tuning k as a way to regularise

the NNC gives a trade-off between the distribution of the training data with the a priori probability of

the classes involved. When k = 1, the training data distribution and a priori probability is considered,

while when k = N , only the a priori probability of the classes determines the class label.

The nearest mean classifier is very robust. It generally has a high error on the training data and on

the test data, but the error on the training data is a good prediction of the error on the test data. When

considered as a regularised version of the NNC(1), the NMC has only one prototype per class instead

of as many prototypes as the number of training objects. Clearly, reducing the number of labeled

prototypes is another way of regularising the NNC(1), where a high number of prototypes makes the

classifier more (training data) specific and a low number makes it more general.

In this section, we focus on reducing the set of prototypes in order to regularise the NNC. Addi-

tionally, if not stated differently we employ the 1-nearest neighbor (prototype) rule to classify objects

based on the reduced set of labeled prototypes.

Besides regularisation, there are other reasons for reducing the number of prototypes for nearest

5 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

neighbor classifiers. The most important ones are reducing the amount of required storage and im-

proving the classification speed. Despite the continuous increase in memory capacity and CPU speed,

especially in data mining, storage and efficiency issues become even more and more prevalent, see for

instance [22].

2.1 Prototype Set Design Problem

Before we describe several ways of finding a set of prototypes for a given data set, we first formalise

the problem. Let X = {x1, x2, ..., xN} be a data set where xi is a feature vector in a Euclidian space,

and N = |X| is the number of objects in X . In addition to a feature vector xi, each object has a

class label λi, where 1 ≤ λi ≤ z, and z is the number of classes. Alternatively, we use λ(xi) and

λ(X) to refer to the label of object xi or a set of labels of data set X , respectively. The prototype set

design problem is to find a set P of M = |P | prototypes that represent X such that P can be used

for classification using the nearest neighbor rule. Accordingly, the elements of P are feature vectors

in the same space as the objects in X . Further, P is the union of the class prototypes Pλ, where

Pλ = {q1, q2, ...qMλ
} is the set of Mλ prototypes qi with label λ.

The resulting set of prototypes P is either a subset of the original training set or it may be the result

of a way of abstraction, usually averaging. The first design type is called instance filtering, where

P ⊆ X . The reduced set is then also called a set of S-prototypes (Selection) [37]. When P is obtained

by abstraction from the original training set, the reduction process is called instance averaging or

instance abstraction. In [37] the resulting set is called a set of R-prototypes (Replacement). Instance

filtering can always be used to reduce the set of prototypes. However, in order to apply an instance

abstraction method certain conditions must be met; for example, it must be possible to compute the

mean of two objects. That is, usually a Euclidian feature space is assumed, as we do in this paper.

Combinations of instance filtering and abstraction have recently been reported in [38] and [39].

In the following sections, we shortly review instance filtering and abstraction methods. For the

methods that we use in the experiments, we introduce an abbreviation. Further, in case an algorithm

has a parameter to control the number of resulting prototypes we add that tunable or regularisation

parameter in parentheses.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 6

2.2 Instance Filtering

One of the earliest approaches in prototype selection was to reduce the prototype set size, while the

error on the training set was to remain zero. The result of these so-called condensing methods is

a consistent subset of the training set [27]. The minimal consistent subset is the smallest possible

consistent subset. Finding the minimal consistent subset is an intractable problem [50] for which

many suboptimal algorithms have been proposed like MCS [15] and [1], [23], [27], [42], [46].

There are also methods that relax the prototype consistency property. First, optimisation-based

approaches combine classification accuracy with the minimisation of the prototype set size. Typically

a combinatorial optimisation scheme is formulated to find that prototype set that minimises the sum

of the error on the training set and the α weighted size of the prototype set. Several optimisation

methods have been used ranging from random search [37], hill climbing [45], and genetic algorithms

[37], to tabu search TAB(α) [5], [10].

Another instance filtering technique that does not aim at prototype consistency is called the Re-

duction Technique RT2 [52]. RT2(k) starts with P = X and removes objects from P provided that

the classification performance for other objects is not negatively affected by leaving the object out.

The correct classification of the objects that are among the k nearest neighbors of the examined object

x is considered.

A different example of how to obtain prototypes by instance filtering can be found in [12]. In

this work, first objects in the most dense areas of the data set are identified, while object labels are

ignored. The density around an object is defined as the number of other objects within a certain given

distance hn. Then, a heuristic is used to find a lower limit for the density of prototypes. This leads to

a set of candidate prototypes from which a subset is chosen such that the distance between all object

pairs is at least 2hn. Alternatively, in [40] the Multiscale Data Condensation algorithm MDC(k) is

proposed that defines the density around an object as the distance ri of the k-th nearest object.

Besides, outlier removal methods exist, which are by definition instance filtering approaches. The

objective is to prevent the nearest neighbor rule from fitting to the training data without restrictions.

An early example of such a procedure can be found in [51]. This method first determines whether or

not an object is an outlier by a majority vote amongst the nearest neighbors of the object. If the label

of the object differs from the label of the majority of its k neighbors, it is considered an outlier and the

object is removed from the set of prototypes. We call this scheme the k-Edited Neighbors Classifier

ENC(k) where the parameter k indicates the number of neighbors involved in the majority vote of the

outlier detection scheme. An alternative outlier removal method is the repeatedly edited neighbors

7 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

method, where the procedure is repeated until the prototype set does not change anymore. In [47],

a method is described with a parameter k that starts with P = X . Then, an object is removed from

P if it would be removed by the just described method [51] with either a 1, 2, ...k nearest neighbor

majority vote.

Lately, several combined filtering approaches have been reported like [9], [16], [52], [53]. These

methods select a set of prototypes after the training set has been screened for outliers. For example,

the RT3(k) algorithm [52] (also called DROP3 [53]) is a combination of ENC(k) and RT2(k). ENC

is used to remove outliers or border objects before RT2 is applied.

2.3 Instance abstraction

Also using instance abstraction several condensing methods have been proposed to yield consistent

prototypes. For instance in [7] and [11] the two closest objects are repeatedly merged as long as the

error on the training set remains zero. The main difference between these methods is the way in which

the mean of two objects is computed, i.e., the weighted mean in [11] and the normal arithmetic mean

in [7]. In contrast, in [41] a more advanced class-conditional agglomerative hierarchical clustering

scheme is employed to obtain consistent prototypes.

A simple and reportedly adequate method is the BooTStrap technique BTS(M) [5], [26]. This

method first randomly draws M objects from the data set. A candidate prototype set is constructed

by replacing these objects by the mean of their k nearest neighbors. Then the error on the training set

using the nearest neighbor rule with these prototypes is computed. This procedure is repeated for T

trials and the prototype set with the lowest error on the training set is returned.

Another class of abstraction methods uses a kind of density estimation based on clustering tech-

niques. With clustering techniques, there are several ways to obtain the prototypes and to involve the

class labels in the clustering process. First the class labels can be ignored during the clustering and

the prototypes can be labeled afterwards. These prototype labels can then be obtained in a number of

ways such as using another classifier for this purpose or counting the majority of labels in each cluster.

This scheme is called post-supervised learning in [36]. Second, the objects from the distinct classes

can be clustered separately so that the prototypes directly receive the label of their class. In [36] this

type of class supervision is called pre-supervised learning. The authors conclude that pre-supervised

design methods generally have better performance than post-supervised methods [5], [36]. Moreover,

the authors state that abstraction methods generally outperform filtering methods.

Another possibility is the optimisation of the positions of the prototypes with a certain class label

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 8

by considering objects from all classes, where objects with the same label contribute positively and

objects with a different one negatively. This leads to prototype positioning that can incorporate the

training error in the optimisation. This is neither a pre-supervised nor a post-supervised scheme, but

rather a usual supervised scheme. An example of this type of prototype positioning is the supervised

Learning Vector Quantisation LVQ(M) [5], [35].

Supported by the conclusions from [5] and [36], we propose a method that uses pre-supervised

clustering (abstraction) to reduce the number of prototypes. We attempt to model the classes in order

to reduce overfitting, while assuming certain amount of feature noise. Perhaps, the most widely used

cluster algorithm is the k-means algorithm [3]. One way to find a reduced set of prototypes in a pre-

supervised way is by running this cluster algorithm with a fixed number of clusters separately for each

class. For instance, in Fig. 2 a data set is shown consisting of two curve-shaped classes. In Fig. 2(a) the

data set is shown with a NNC(1) decision boundary and in Fig. 2(b) it is shown with the corresponding

NNC(1) decision boundary based on the four prototypes with which each class is represented. The

prototypes have been determined with the k-means algorithm. We call a classifier based on k-means

prototypes positioning with a 1-nearest neighbor classification rule the K-Means Classifier KMC(M)

where the parameter M indicates the number of prototypes contained in each class [28] (Ch. 13).

When M = 1, the KMC equals the nearest mean classifier (NMC). Other clustering methods can also

be used to estimate a fixed number of prototypes per class, e.g. Gaussian mixture modeling [32] and

fuzzy C-means clustering [4].

The approach of selecting a fixed number of prototypes per class as an overfitting avoidance

strategy seems straightforward, though it can be inadequate. When the class distributions differ from

each other, either in the number of objects, the density of the objects or the shapes of the classes, the

optimal number of prototypes may be different for each class. Consider for instance the data set in

Fig. 3. It consists of a set of 300 objects from a curved class and a set of 100 objects from a radial

class. To estimate a set of prototypes for this data set one needs fewer prototypes for the radial class

than for the curved class. In Fig. 3(a) we show the prototypes and the decision boundary with four

prototypes per class (KMC(4)) and in Fig. 3(b) one class is modeled with only one prototype and

the other class with 4 prototypes. The latter classifier is simpler and from a test on a larger data set

generated according to the same distributions it follows that it has a lower error on test data. With

high dimensional data sets it is certainly not possible to inspect the decision boundary as we do here.

In the experiments section, we study this data set in more detail and we show how to obtain a suitable

number of prototypes in the general case, i.e. without visual inspection.

9 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

(a)

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

(b)

Figure 2: Dataset with two curve-shaped classes. In (a) the decision boundary is constructed using

the NNC(1) rule. In (b) the data set is modeled with four prototypes per class and the corresponding

NNC(1) decision boundary is included, i.e. the KMC(4) classifier.

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(a)

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(b)

Figure 3: Dataset with two classes consisting of 300 and 100 objects. In (a) the data set is modeled

with four prototypes per class and in (b) one class is modeled with four prototypes and the other

with one prototype. The prototypes are positioned using the k-means algorithm and the decision

boundaries are computed using the 1-nearest neighbor (prototype) rule.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 10

The last example shows that when we devise the number of prototypes as a regularisation pa-

rameter of a nearest neighbor classifier, there should be one parameter per class instead of one global

regularisation parameter M for all classes. This is, however, not common practice for prototype-based

classifiers, where all classes usually have the same number of prototypes [28] (Ch. 13). As a result,

some classes may be overfit while other classes are underfit.

In the next section, we propose a scheme that is able to assign a different number of prototypes to

each class based on a single parameter.

3 The Nearest Sub-class Classifier

In this section we introduce the Nearest Sub-class Classifier (NSC). There are two assumptions under-

lying the NSC. First, we assume that the features of every object contain the same amount of noise.

We do not model label noise, so the influence of wrongly labeled objects will be similar to that of

outliers. Further, the undersampling of the classes is the same everywhere in feature space. This

leads to the rationale behind the NSC: find the number of prototypes for each class in the data set

such that the variance ’covered’ by each prototype is the same. We introduce a variance constraint

parameter that imposes the number of prototypes per class instead of the other way around. The clas-

sifier implements a pre-supervised scheme and classifies unseen objects with the label of their nearest

prototype.

Before we describe the nearest sub-class classifier, we first outline the cluster algorithm that is

used for prototype positioning. The cluster algorithm is the Maximum Variance Cluster algorithm

(MVC) which is based on [49] and described in [48]. The MVC is a partitional cluster algorithm

that aims at minimising the squared error for all objects with respect to their cluster mean. Besides

minimising the squared error, it imposes a joint variance constraint on any two clusters. The joint

variance constraint parameter σ2
max prevents the trivial solution where every cluster contains exactly

one object. Moreover, the joint variance constraint generally leads to clusterings where the variance

of every cluster is lower than the variance constraint value σ2
max [49].

More precisely, according to the MVC model a valid clustering of X into a set of clusters C =

{C1, C2, ..., CM}, where Ci ⊆ X and M is the number of clusters, is the result of minimising the

squared error criterion, which is defined as:

∑M

i=1 H(Ci)

N
, (1)

11 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

subject to the joint variance constraint:

∀Ci, Cj, i 6= j : V ar(Ci ∪ Cj) ≥ σ2
max. (2)

where

H(Y) =
∑

x∈Y

‖x − µ(Y)‖2 (3)

expresses the cluster homogeneity with µ(Y) is the mean vector of the objects in Y .

The MVC algorithm is a stochastic optimisation algorithm for the MVC model. We describe the

algorithm while we refer the pseudo code in Alg. 1. The algorithm starts with as many clusters as

samples [line 1]. Then in a sequence of epochs [line 2] every cluster has the possibility to update

its content. Conceptually, in each epoch the clusters act in parallel, or, alternatively, sequentially in

random order [line 5,7]. During the update process, each cluster undergoes a series of tests, each of

which causes a different update action for that cluster. Since all actions aim at rearranging the objects

in order to lower the squared error criterion and to satisfy the joint variance constraint, the algorithm

exploits nearness in feature space. To this end the MVC algorithm maintains two index structures for

each cluster Ca. The first index structure is the outer border Ba of the cluster. The outer border of

order k contains the union of the k nearest foreigners of all cluster objects together with the cluster

in which they are contained. A foreigner of an object is an object contained in a different cluster.

Accordingly, the outer border helps in finding near clusters and objects therein. The second index

structure is the inner border Ia, which simplifies the collection of remote cluster objects. The inner

border of order q is the union of the q furthest neighbors of all objects in a cluster.

We explain the algorithmic steps of the MVC algorithm in detail. The algorithm has six param-

eters: the dataset X of size N , the maximum variance constraint value σ2
max, the maximum number

of epochs without change noChangemax for termination detection, and the order of the inner border

q and outer border k. The output of the algorithm is a set of N clusters Ci, where M clusters are

non-empty.

We continue the explanation assuming that the current cluster is Ca. The three key steps for Ca

are:

S1 Isolation: When the variance of cluster Ca is above σ2
max, it is possible to lower the squared error

criterion by making a singleton cluster from an object in the inner border. Since the constrained

optimisation problem (1)-(3) may result in clusters with a variance higher than σ2
max, we allow

step S1 only for a certain period (Emax epochs). In this way we prevent oscillations between

step S1 and the next step S2.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 12

The isolation step works as follows. Check Ca to see whether its variance exceeds the predefined

maximum σ2
max and the epoch counter does not exceed Emax [line 12]. If so, randomly select

ia = b
√

|Ia|c candidates from the inner border Ia [line 13]. Isolate the candidate that is furthest

from the cluster mean µ(Ca) [line 14]. The isolated sample is removed from Ca [line 15] and

forms a new cluster [line 16].

S2 Union: When the variance of the union of two clusters remains below σ2
max, the joint variance

constraint is violated. These clusters should be merged to enable the satisfaction of the joint

constraint in a future epoch.

This is achieved as follows. Check if the variance of Ca is below σ2
max [line 17]. Then search for

a neighboring cluster with which Ca can be united, where a neighboring cluster is a cluster that

contains an object from the outer border Ba of Ca. To this end, compute the joint variance of

Ca with each of its neighbors [line 18-21]. If the lowest joint variance remains under σ2
max, then

the corresponding neighboring cluster is merged with Ca [line 22]. For termination detection

we remember that a cluster changed in this epoch [line 23].

S3 Perturbation: Finally, if neither S1 nor S2 applies, the squared error criterion (1) can possibly

be lowered by swapping an object between two clusters.

To this end, randomly collect ba = b
√

|Ba|c candidates from the outer border Ba of Ca [line

25]. Compute for these candidates from neighboring clusters the gain in the squared error

criterion that can be obtained when moving them from the current cluster Cb to Ca [line 27-30].

We define the criterion gain between Ca and Cb with respect to x ∈ Cb as:

Gab(x) = H(Ca) + H(Cb) − H(Ca ∪ {x}) − H(Cb − {x}). (4)

If the best candidate xmax has a positive gain then this candidate moves from the neighbor Cm

to Ca [line 31-34].

The algorithm terminates if nothing happened to any of the clusters for noChangemax epochs

[line 38]. As explained for step S1, after Emax epochs object isolation is no longer allowed to prevent

oscillations between S1 and S2. With that precaution, the algorithm will certainly terminate, since

the overall homogeneity criterion only decreases and it is always greater than or equal to zero. For

a performance analysis and a comparison with other techniques like the k-means algorithm and the

13 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

input : Data set X of N objects, constraint value σ2
max

parameters: Emax, noChangemax, k, q

output: Set of N clusters Ci, where M clusters Ci 6= ∅
for i = 1 to N do Ci = xi;1

epoch = lastChange = 0;2

repeat3

epoch = epoch + 1;4

index = randomPermutation({1..N});5

for j = 1 to N do6

a = index(j);7

if Ca = ∅ then continue;8

Ba = outerBorder(Ca, k); ba =
√

|Ba|;9

Ia = innerBorder(Ca, q); ia =
√

|Ia|;10

switch do11

case V ar(Ca) > σ2
max and epoch < Emax12

/* Isolation: lower squared error criterion */
Y = randomSubset(Ia, ia);13

x = furthest(Y, µ(Ca));14

Ca = Ca − {x}; Cm = {x}; /* where Cm was previously empty */15

case V ar(Ca) ≤ σ2
max and ∃b : V ar(Ca ∪ Cb) ≤ σ2

max16

/* Union: satisfy joint variance constraint */
smin = ∞;17

foreach {b | Cb ∩ Ba 6= ∅} do18

if V ar(Cb ∪ Ca) < smin then smin = V ar(Cb ∪ Ca); m = b;19

end20

Ca = Ca ∪ Cm; Cm = {};21

lastChange = epoch;22

otherwise23

/* Perturbation: lower squared error criterion */
Y = randomSubset(Ba, ba);24

gmax = −∞; /* gmax stores the maximum gain */25

foreach x ∈ Y do26

b = (n | Cn ∩ x 6= ∅);27

if Gab(x) > gmax then gmax = Gab(x); m = b; xmax = x;28

end29

if gmax > 0 then30

Ca = Ca ∪ {xmax}; Cm = Cm − {xmax};31

lastChange = epoch;32

end33

end34

end35

end36

until epoch − lastChange > noChangemax;37

Algorithm 1: The MVC algorithm

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 14

mixture of Gaussians technique, refer to [48]. In short, the MVC handles outliers adequately and

clearly better than the k-means algorithm. Further, it finds the (close to) global optimum of its cluster

model more often, and when the number of clusters is high, it is also faster than the k-means algorithm

and mixture of Gaussians technique with EM optimisation.

For the classification problem, class λ has a set of prototypes Pλ = {q1, q2, ...qMλ
}, where qk =

µ(Ck) has been established after clustering the objects Xλ with label λ from X into Mλ distinct

clusters. Further, the estimated label λ′ of an unlabeled object x is established according to the nearest

neighbor rule.

MVC has a few optimisation parameters: Emax = 100, noChangemax, k = 3, and q = 1.

Further, it has only one (tunable) model parameter, namely σ2
max. Consequently, the Nearest Sub-

class Classifier (NSC) also has only one model parameter. We therefore refer to this classifier as

NSC(σ2
max). When σ2

max is set to σ2
max = 0, the variance constraint causes every object to be put

in a separate cluster, so that the NSC turns into the NNC(1) with as many prototypes as objects.

Consequently, when σ2
max is low, the NSC is flexible but it easily overfits to the training data. At the

other extreme, when σ2
max → ∞, the NSC turns into the NMC with its associated properties. In other

words, the σ2
max parameter offers a convenient way to traverse the scale between the nearest neighbor

and the nearest mean classifier. In contrast with the KMC(M) classifier, the number of prototypes is

adjusted per class through the variation of one parameter, i.e. the maximum variance parameter σ2
max.

4 Experiments

In this section, we describe our experiments for the evaluation of the NSC classifier. For the perfor-

mance evaluation, we used one artificial and several real-life data sets as shown in Table 1. We first

elaborate on the tuning of the parameters of the NSC and other classifiers included in the experiments.

Further, we describe the way we rate the classifier performance. Then, we list the algorithms that we

included in the performance comparison and we describe the results.

4.1 Parameter Tuning

When we train a classifier on a labeled data set, we estimate a set of parameters such that the classifier

can predict the labels afterwards. For several classifiers, including prototype-based classifiers that we

consider here, there are additional model parameters that cannot be learned directly from the training

15 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

data. The number of neighbors for the NNC classifier and the maximum variance σmax for NSC are

examples of such parameters. Often these parameters are regularisation parameters that constrain the

fitting to the training data.

For prototype-based classifiers, regularisation is implemented through the number of prototypes.

Two classifiers that we concern in the experiments are based on cluster algorithms; in these cases the

number of prototypes corresponds to the number of clusters. In the classification domain, the usual

way of establishing a suitable number of clusters is not appropriate, that is, by computing cluster

validation criteria for several numbers of clusters and choosing an optimum number, as in [6], [17],

[18], [31]. That is, it is debatable whether well-separated groups of objects per class exist. For the

same reason, the plateau heuristic [48] in the squared error criterion will not help in finding a proper

setting of the σ2
max parameter for the NSC.

Alternatively, the number of prototypes can be optimised by means of a cross-validation proto-

col, either n-fold or leave-one-out. For example, the variance constraint σ2
max in the NSC(σ2

max) that

results in the lowest leave-one-out cross-validation error can be said to optimally regularise this classi-

fier. The resulting classifier is expected to have the best generalisation performance for the respective

parameter setting. However, because the parameter is optimised with a cross-validation feedback loop

this can no longer be called validation. In the experiments we used 10-fold cross-validation. In order

to make the parameter estimation more reliable, we repeated the cross-validation three times, i.e. for

three independent draws of 10 non-overlapping subsets from the training set.

4.2 Performance Estimation

Since the tuning by cross-validation procedure is a specific training procedure, an additional validation

protocol is needed to estimate the performance of the classifier, see e.g. [2], [29], and [34].

In the validation procedure we handle artificial data different from real-life data. Since we know

the distribution of the artificial data sets, we generate a large data set for testing purposes. We draw 20

smaller samples from the same distribution on which we train the classifiers and tune their parameters

by cross-validation. Per sample the error is computed by testing the performance on the large refer-

ence data set. We report the performance as the average of the 20 tests. For real-life data sets on the

other hand, we use a 10-fold cross-validation protocol to estimate the validation performance. In that

case, we repeat the tuning by cross-validation procedure in every fold of the 10-fold cross-validation

procedure. We also repeat the 10-fold cross-validation 10 times and we report the average error. Fur-

ther, we consider the classifier performance for a certain dataset equal to the best classifier, when their

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 16

performance is equal according to the paired t test with significance level α = 0.05.

Among the motivations for prototype set design methods is the reduction of storage requirements

and the increase of classification speed. For instance, one of the algorithms included in the experi-

ments, the MDC algorithm, was especially designed to reduce data storage. For this reason we also

measured the compression ratio rc of the trained classifiers, where rc = |P |
|X|

= #prototypes

datasetsize
.

4.3 Algorithms

In the evaluation of the NSC classifier, we compare it to other prototype-based classifiers. In this

comparison we included the K-Means Classifier KMC(M) [28], the k-Nearest Neighbors Classifier

NNC(k) [13], the k-Edited Neighbors Classifier ENC(k) [51], the Multiscale Data Condensation al-

gorithm MDC(k) [40], the Bootstrap technique BTS(M) with T = 100 and k = 3 [5], [26], and

Learning Vector Quantisation LVQ(M) [5], [35] with α = 0.3, η = 0.8, and T = 100 as in [5]. The

LVQ algorithm we used is LVQ1, which was a top performer (averaged over several data sets) in [5].

We did not consider more advanced LVQ versions because these have even more parameters.

In addition to the classifiers for which we optimised their parameter with tuning by cross-validation,

we included four classifiers with a fixed parameter setting and one parameterless classifier. First, we

included the NNC(3) classifier, which is often considered a reasonably regularised version of the 1-

nearest neighbor classifier, see e.g. [19], [33], [53]. Second, we included Reduction Technique 3

RT3(k) [52], [53], for which we set k = 3 as used in the reported experiments, and Tabu Search

TAB(α) [5], [10] with α = 0.05, Tt = 0.03N , Ti = 20, and T = 100 as in [5]. We did not tune

the parameter of these two classifiers, solely because this process appeared to be too time consuming.

Finally, we compared the performance to that of the MCS condensing algorithm [15].

4.4 Results

In order to stress the difference between the NSC(σ2
max) and the KMC(M), which is the most similar

to the NSC, we used an artificial data set containing classes with different shapes, numbers of objects,

and densities. The artificial data set was generated as a curved distribution around a Gaussian distribu-

tion. The curved distribution was generated as a Gaussian distribution superimposed on a uniformly

distributed half circle. In Fig. 4 we show one sample from this data set with 300 and 100 objects

per class that is used to train and tune by cross-validation. The reference data set that is used for the

testing contains 3000 objects in the curved distribution and 1000 objects in the other distribution.

17 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

For the NSC(σ2
max), KMC(M), NNC(k), ENC(k), MDC(k), BTS(M), and LVQ(M), we first

tuned their regularisation parameter on the sample of 400 objects (that is also shown in Fig. 3). In

Fig. 3(a) and 3(b), we already showed the decision boundary corresponding to the optimal parameter

setting of the NSC and KMC for this sampling of the data set. In Fig. 4 and 5, we additionally show

the decision boundary corresponding to the optimum parameter setting for the NNC, ENC, MDC,

BTS, and LVQ. The validation results (averaged over 20 draws) in Table 2(a) show that the NSC

outperforms the KMC. This is not surprising, since with the optimum σ2
max setting the NSC models

the classes with respectively M1 = 1 and M2 = 4 prototypes, while the KMC utilises M = 4

prototypes for both classes. As a consequence, with the KMC one class is overfit leading to an

unsmooth decision boundary as can be seen in Fig. 3(a) and 3(b). As can be seen in Table 2(a), ENC,

BTS, LVQ and TAB perform similarly with regard to NSC and the NNC(k) performs slightly better

than the NSC.

With the first real-life data set, we wanted to show how the NSC works on a well-known data set

and how its performance relates to the other algorithms. For this purpose we used the Iris data set

[20]. This data set consists of 150 objects that are subdivided in three Iris classes and each object

contains four features. With the optimum regularisation parameter value for the NSC (σ2
max = 0.29),

the number of prototypes per class is M1 = 2, M2 = 3, and M3 = 4. The optimum result of the KMC

gave 3 prototypes per class. The cross-validation results displayed in Table 2(a) show that except the

MCS and RT3 all other algorithms have similar performance.

Further, we used two real-life data sets that clearly show the difference between the KMC and the

NSC. The cause of this difference is that for both data sets one class can be modeled with substantially

fewer prototypes than the other. The first data set is the Wisconsin Breast Cancer Dataset [54]. After

removing incomplete data records, this data set contained 683 objects with 9 numerical features each.

Of the 683 patients, 444 are in the benign class and 239 in the malignant class. Interestingly, for

the optimum σ2
max setting obtained via tuning by cross-validation on the whole data set (σ2

max = 35)

the NSC needed only one prototype for the benign class and 9 prototypes for the malignant class.

However, since the cluster algorithms in the KMC and NSC cannot generally find well-separated

clusters, it cannot be concluded that the clusters in the malignant class represent distinct groups of

patients. On the other hand, the large difference between the numbers of clusters suggests that at least

the variance is larger in the malignant class and that the malignant class possibly contains several

groups of similar tissues. The KMC has a peak in the tuning by cross-validation curve at M =

1 and a second one around M = 9 (see Fig. 6), which illustrates the conflict between choosing

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 18

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(a) NNC(15)

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(b) ENC(6)

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(c) MDC(16)

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(d) BTS(23)

Figure 4: Dataset with two classes consisting of 300 and 100 objects. In (a), (b), and (c) the decision

boundary is drawn according to the tuned NNC(k = 15), ENC(k = 6), MDC(k = 16), and BTS(M =

23).

19 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

(a) LVQ(9)

Figure 5: Dataset with two classes consisting of 300 and 100 objects. The decision boundary is drawn

according to the tuned LVQ(M = 9).

Dataset objects (n) features (p) classes (z)

Artificial 400 2 2

Iris 150 4 3

Breast cancer 683 9 2

Ionosphere 351 34 2

Glass 214 9 6

Liver disorders 345 6 2

Pima Indians 768 8 2

Sonar 208 30 2

Wine 178 13 3

Table 1: Overview of the characteristics of the data sets used in the experiments.

a suitable number of prototypes for the benign class and the malignant class. For the parameter

values obtained with tuning by cross-validation of the other algorithms see Table 2(b), where we

also show the achieved compression ratio of the algorithms. The cross-validation results are shown

in Table 2(a). The results show that indeed the NSC performs better than the KMC by modeling

the classes with a separate, adjustable number of clusters. Among the other tuned classifiers the

differences in performance are generally small, while MCS and RT3 again performed worst.

The second data set that apparently has pronounced differences in class distributions is the Iono-

sphere data set [44]. After removing objects with missing values, the Ionosphere data set contained

351 objects with 34 numerical features. The objects are subdivided in 225 ”good” objects and 126

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 20

0 5 10 15 20
0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98
cross−selection
train

Figure 6: Tuning by cross-validation curve of the KMC classifier for the Wisconsin Breast Cancer

Dataset.

”bad” objects. The parameter values obtained with tuning by cross-validation on the whole data set

are displayed in Table 2(b). The NSC had 9 prototypes in the ”good” class and 100 prototypes in the

”bad” class at its optimal σ2
max value. The cross-validation results are shown in Table 2(a). The results

show again that the NSC performed better than the KMC by modeling the classes with a separate, ad-

justable number of clusters. Moreover, on this problem the NCS performed better than all the other

algorithms in our test.

Finally, we tested all the algorithms on five more data sets from the Machine Learning Database

Repository [8]. The data sets were selected for their numerical features and because they have no

missing data. As can be seen in Table 2(a), in all these experiments the NSC performed similar or bet-

ter than the KMC classifier. The last rows in Table 2(a) summarise the performance of all algorithms.

The table shows that, with respect to the average performance and the number of times the algo-

rithms were top-ranked (not significantly worse than the best algorithm), with the given datasets only

NNC(k) achieves better results than NCS(σ2
max). Further, the tuned NNC(k) consistently performed

better than the NNC(3) classifier.

Remarkably, the tuned MDC often turns into the NNC(1), that is, the optimal parameter setting

was k = 1. Sometimes the resulting MDC classifier was in agreement with NNC(k), but in these cases

NSC performed similarly while resulting in a smaller set of prototypes. As a result, when optimised

for classification performance the storage reduction of the MDC is limited.

When we consider the prototype set size of the trained classifiers, we can conclude that the

KMC(M) and RT3(3) achieved the highest average compression, see Table 2(b). RT3(3) had, how-

21 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

Dataset NSC(σ2

max
) KMC(M) NNC(k) ENC(k) MDC(k) BTS(M) LVQ(M) MCS TAB(0.05) NNC(3) RT3(3)

Artificial 93.9± 0.4 92.2± 0.9 94.5± 0.3 94.2± 0.3 92.6± 1.3 93.7± 0.5 93.9± 0.8 90.1± 1.2 93.9± 0.5 93.8± 0.5 87.4± 4.5

Iris 96.3± 0.4 96.2± 0.8 96.7± 0.6 96.3± 0.7 95.3± 0.4 95.6± 1.0 96.1± 0.6 93.2± 0.9 94.0± 3.7 96.0± 0.3 81.1± 8.6

Breast cancer 97.2± 0.2 95.9± 0.3 97.0± 0.2 96.7± 0.3 95.6± 0.7 97.1± 0.2 96.3± 0.4 93.8± 0.7 97.0± 0.3 97.0± 0.3 94.7± 1.0

Ionosphere 91.9± 0.8 87.4± 0.6 86.1± 0.7 83.3± 0.7 86.0± 0.7 88.9± 1.3 86.4± 0.8 86.9± 0.6 88.5± 1.4 84.8± 0.5 70.2± 3.4

Glass 70.2± 1.5 68.8± 1.1 72.3± 1.2 67.8± 0.7 73.1± 0.7 70.0± 3.2 68.3± 2.0 67.9± 1.5 69.3± 2.5 69.6± 1.1 56.5± 1.5

Liver disorders 62.9± 2.3 59.3± 2.3 67.3± 1.6 67.9± 1.0 61.0± 1.5 63.9± 2.9 66.3± 1.9 57.1± 1.2 64.3± 3.0 64.1± 1.1 60.5± 2.9

Pima indians 68.6± 1.6 68.7± 0.9 74.7± 0.7 74.0± 0.8 67.9± 1.7 74.0± 0.8 73.5± 0.9 63.8± 0.7 74.4± 1.4 69.1± 0.6 68.9± 0.9

Sonar 81.3± 1.1 81.9± 2.5 81.8± 1.4 79.8± 1.4 82.7± 1.0 75.4± 3.1 78.3± 2.4 80.5± 1.9 73.5± 2.1 81.2± 0.8 65.5± 4.1

Wine 75.3± 1.7 71.9± 1.9 73.9± 1.9 68.9± 1.1 75.2± 1.7 70.0± 1.8 72.3± 1.5 72.6± 1.5 72.4± 2.9 73.5± 1.6 67.9± 3.1

Average 82.0± 1.1 80.3± 1.2 82.7± 1.0 81.0± 0.8 81.0± 1.1 81.0± 1.6 81.3± 1.3 78.4± 1.1 80.8± 2.0 81.0± 0.7 72.5± 3.3

Top 4 2 8 3 3 2 1 0 2 1 0

(a) Validation performance

NSC KMC NNC ENC MDC BTS LVQ MCS TAB NNC(3) RT3(3)

Dataset rc σ
2

max

∗

rc M
∗

rc k
∗

rc k
∗

rc k
∗

rc M
∗

rc M
∗

rc rc rc rc

Artificial 1.5 4.25 2.0 4 100 14 96 9 3.5 16 3.8 15 5.5 22 11 12 100 4.8

Iris 7.3 0.25 8.0 4 100 14 96 3 9.3 5 10 15 15 22 9.3 3 100 7.3

Breast cancer 1.8 35.0 0.29 1 100 5 97 5 1.8 19 1.6 11 5.9 40 8.4 7 100 1.3

Ionosphere 31 1.25 4.0 7 100 2 90 2 100 1 11 39 6.8 24 15 24 100 3.7

Glass 97 0.005 17 6 100 1 73 1 100 1 56 119 45 97 38 13 100 15

Liver disorders 4.9 600 11 19 100 14 69 8 100 1 4.1 14 8.4 29 51 18 100 18

Pima Indians 1.7 2600 1.0 4 100 17 74 15 8.1 4 0.3 2 3.4 26 43 15 100 11

Sonar 70 0.050 17 18 100 1 81 3 100 1 18 37 19 40 26 12 100 19

Wine 96 4.0 29 17 100 1 70 16 100 1 4.5 8 32 57 35 7 100 12

Average 35 9.9 100 83 58 12 16 26 12 100 10

(b) Properties of trained classifiers

Table 2: Overview of the experimental results. In (a) the performance (in percentages) of the classi-

fiers is displayed with standard deviation. The performance is printed in bold face, when the respective

classifier performs equally well as the best classifier for that data set. The last rows show for each

algorithm the average performance over all datasets, and how many times each algorithm scored as

best. Table (b) shows the compression ratio rc of the trained/tuned classifiers. The classifiers left of

the double bar were optimised with tuning by cross-validation. In (b), for these classifiers also the

optimal parameter value is shown.

ever, the worst overall classification performance. The proposed NSC also achieved high compression

ratios; better than the ENC, MDC, and of course the NNC. That is, the NNC classifiers use always all

data for classification. The ENC does not aim at redundancy reduction in the first place. Accordingly,

in all experiments its compression ratio is limited.

5 Discussion and Conclusions

In this paper, we introduced the Nearest Sub-class Classifier (NSC), a prototype-based classifier that

uses the Maximum Variance Cluster algorithm (MVC) [48] to position its prototypes in feature space.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 22

In contrast to the K-Means Classifier (KMC) [28] (Ch. 13), which is a typical cluster-based classifier,

the variance constraint parameter of the MVC algorithm results in a different number of prototypes

per class. Consequently, the NSC algorithm requires a single parameter while the KMC needs one

parameter per class to achieve a similar performance.

Our experiments showed that it is indeed beneficial to have a distinct number of prototypes per

class as an overfitting avoidance strategy. With the given datasets, the NSC always performed simi-

larly or better than the KMC. Moreover, the optimisation properties of the NSC are favorable com-

pared to those of the KMC. When the number of prototypes needed is high, the differences between

the underlying clustering algorithms, MVC and k-means, are clear [48]. That is, especially when the

number of clusters is high the MVC finds the (close to) global optimum more often and faster.

In the experiments, we further compared the NSC to the k-Nearest Neighbors Classifier (NNC(k))

[13] the k-Edited Neighbors Classifier (ENC(k)) [51], the Multiscale Data Condensation algorithm

(MDC(k)) [40], the Bootstrap technique BTS(M) [5], [26], and Learning Vector Quantisation LVQ(M)

[5], [35]. These algorithms all have a tunable (regularisation) parameter: the number of neighbors for

classification for NNC, the number of neighbors for editing for ENC, the number of neighbors for the

density computation for MDC, and the number of prototypes for BTS and LVQ. We optimised these

tunable parameters for all classifiers by means of the cross-validation protocol. In the experiments, we

also included the Minimal Consistent Subset algorithm MCS [15], Reduction Technique 3 (RT3) [52]

with k = 3, Tabu Search TAB(α) [5], [10], [25] with α = 0.05, and NNC(3) as reference classifier.

The experiments showed that on several data sets, the proposed NSC performed comparably to

the tuned NNC, which is a well-established classifier in many domains. Apart from the NNC(k), the

NSC has the highest average performance and it scored ’best’ the most times. The NNC(k), however,

needs all training data to classify new objects, which is computationally expensive both in time and

storage.

Based on this set of datasets, it is hard to predict to which type of data sets the NSC should

be applied. The NSC algorithm assumes numerical data without missing values. Further, the NSC

algorithm is a density estimation based classifier. Model bias introduced by the NSC can be beneficial

like in general with density based classifiers. As future work, we consider studying more diverse and

larger data sets as an important step to extend our knowledge on the general applicability of the NSC.

As could be expected and can be derived from the improved performance of the NNC(k) com-

pared to the NNC(3), we can conclude that tuning by cross-validation is indeed profitable. This tun-

ing procedure is, however, computationally demanding. Especially when the tuned classifier has to be

23 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

cross-validated to estimate its performance as in this paper. Consequently, we did not use this tuning

procedure for the RT3 algorithm, which could be the reason for its disappointing performance com-

pared to the other algorithms. Also, the Tabu search algorithm was too time-consuming to be tuned.

Remarkably, its average performance was similar to the NNC(3) and most of the tuned algorithms.

Finally, when storage and classification speed issues are considered, the NSC has favorable prop-

erties. It did not result in the smallest average prototype set size, but it yielded the best compromise

between classification performance and efficiency.

Acknowledgements

This research is supported by PAMGene within the BIT program ISAS-1. We thank Dr. L.F.A.

Wessels for proofreading and valuable comments.

References

[1] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Machine Learning,

6:37–66, 1991.

[2] C. Ambroise and G.J. McLachlan. Selection bias in gene extraction on the basis of microarray

gene-expression data. Proceedings of the National Academy of Sciences (PNAS), 99(10):6562–

6566, May 2002.

[3] G.H. Ball and D.J. Hall. A clustering technique for summarizing multivariate data. Behavioral

Science, 12:153–155, mar 1967.

[4] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,

New York, 1981.

[5] J.C. Bezdek and L.I. Kuncheva. Nearest prototype classifier designs: an experimental study.

International Journal of Intelligent Systems, 16:1445–1473, 2001.

[6] J.C. Bezdek and N.R. Pal. Some new indexes of cluster validity. IEEE Transactions on Systems,

Man, and Cybernetics—Part B, 28(3):301–315, 1998.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 24

[7] J.C. Bezdek, T.R. Reichherzer, G.S. Lim, and Y. Attikiouzel. Multiple-prototype classifier de-

sign. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews,

28(1):67–79, 1998.

[8] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[9] H. Brighton and C. Mellish. Advances in instance selection for instance-based learning algo-

rithms. Data Minig and Knowledge Discovery, 6:153–172, 2002.

[10] V. Cerverón and F.J. Ferri. Another move toward the minimum consistent subset: A tabu search

approach to the condensed nearest neighbor rule. IEEE Transactions on Systems, Man, and

Cybernetics – Part B: Cybernetics, 31(3):408–413, 2001.

[11] C-L. Chang. Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Com-

puters, 23(11):1179–1184, November 1974.

[12] D. Chaudhuri, C.A. Murthy, and B.B. Chaudhuri. Finding a subset of representative points in a

data set. IEEE Transactions on Systems, Man, and Cybernetics, 24(9):1416–1424, 1994.

[13] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Infor-

mation Theory, 13(1):21–27, 1967.

[14] B.V. Dasarathy, editor. Nearest neighbor (NN) norms: NN pattern classification techniques.

IEEE Computer Society Press, Los Alamitos, CA, 1991.

[15] B.V. Dasarathy. Minimal consistent set (MCS) identification for optimal nearest neighbor de-

cision systems design. IEEE Transactions on Systems, Man, and Cybernetics, 24(3):511–517,

1994.

[16] B.V. Dasarathy, J.S. Sánchez, and S. Townsend. Nearest neighbor editing and condensing tools

– synergy exploitation. Pattern Analysis and Applications, 3(1):19–30, 2000.

[17] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1(2):224–227, April 1979.

[18] J. C. Dunn. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4:95–

104, 1974.

25 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

[19] B. Efron and R. Tibshirani. Improvements on cross-validation: The .632+ bootstrap method.

Journal of the American Statistical Association, 92(438):548–560, 1997.

[20] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,

7(2):179–188, 1936.

[21] E. Fix and J.L. Hodges. Discriminatory analysis: Nonparametric discrimination: Consistency

properties. USAF School of Aviation Medicine, Project 21-49-004(Report Number 4):261–279,

1951.

[22] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very large databases. IEEE Computer,

32(8):38–45, 1999.

[23] G.W. Gates. The reduced nearest neighbor rule. IEEE Transactions on Information Theory,

18(3):431–433, 1972.

[24] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural Computation, 4:1–58, 1992.

[25] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Pusblishers, Boston, 1997.

[26] Y. Hamamoto and S. Uchimura amd S. Tomita. A bootstrap technique for nearest neighbor

classifier design. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):73–

79, January 1997.

[27] P.E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information Theory,

14(3):515–516, 1968.

[28] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer, 2001.

[29] R.J. Henery. Machine Learning, Neural and Statistical Classification, chapter 7, pages 107–124.

Ellis Horwood, 1994.

[30] A.E. Hoerl and R.W.Kennard. Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics, 12(1):55–67, 1970.

[31] L.J. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.

Veenman et. al: The Nearest Sub-class Classifier: a Compromise between the Nearest Mean ... 26

[32] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall Inc., New Jersey,

1988.

[33] A.K. Jain and D.E. Zongker. Feature selection: Evaluation, application, and small sample per-

formance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153–158,

February 1997.

[34] R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intelligence, 97:273–

324, December 1997.

[35] T. Kohonen. Improved versions of learning vector quantization. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, volume I, pages 545–550, San Diego, CA, 1990.

[36] L.I. Kuncheva and J.C. Bezdek. Presupervised and postsupervised prototype classifier design.

IEEE Transactions on Neural Networks, 10(5):1142–1152, sep 1999.

[37] L.I. Kuncheva and J.C.Bezdek. Nearest prototype classification: Clustering, genetic algorithms,

or random search. IEEE Transactions on Systems, Man, and Cybernetics, 28(1):160–164, 1998.

[38] W. Lam, C.K Keung, and C.X. Ling. Learning good prototypes for classification using filtering

and abstraction of instances. Pattern Recognition, 35(7):1491–1506, July 2002.

[39] W. Lam, C.K Keung, and D. Liu. Discovering useful concept prototypes for classification based

on filtering and abstraction. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(8):1075–1090, August 2002.

[40] P. Mitra, C.A. Murthy, and S.K. Pal. Density-based multiscale data condensation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 24(6):734–747, 2002.

[41] R.A. Mollineda, F.J. Ferri, and E. Vidal. An efficient prototype merging strategy for the

condensed 1-NN rule through class-conditional hierarchical clustering. Pattern Recognition,

35:2771–2782, 2002.

[42] G.L. Ritter, H.B. Woodruff, S.R. Lowry, and T.L. Isenhour. An algorithm for a selective nearest

neighbor decisionrule. IEEE Transactions on Information Theory, 21(6):665–669, 1975.

[43] C. Schaffer. Overfitting avoidance as bias. Machine Learning, 10:153–178, 1993.

27 IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005

[44] V.G. Sigillito, S.P. Wing, L.V. Hutton, and K.B. Baker. Classification of radar returns from the

ionosphere using neural networks. John Hopkins APL Technical Digest, 10:262–266, 1989.

[45] D.B. Skalak. Prototype and feature selection by sampling and random mutation hill climbing al-

gorithms. In W. Cohen and H. Hirsch, editors, Proceedings of the 11th International Conference

on Machine Learning, pages 293–301, New Brunswick, New Jersey, 1994.

[46] C.W. Swonger. Sample set condensation for a condensed nearest neighbor decision rule for

pattern recognition. Frontiers of Pattern Recognition, pages 511–519, 1972.

[47] I. Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems,

Man, and Cybernetics, 6(6):448–452, 1976.

[48] C.J. Veenman, M.J.T. Reinders, and E. Backer. A maximum variance cluster algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(9):1273–1280, September 2002.

[49] C.J. Veenman, M.J.T. Reinders, and E. Backer. A cellular coevolutionary algorithm for image

segmentation. IEEE Transactions on Image Processing, 12(3):304–316, March 2003.

[50] G. Wilfong. Nearest neighbor problems. In Proceedings of the seventh annual symposium on

Computational geometry, pages 224–233. ACM Press, 1991.

[51] D.L. Wilson. Assymptotic properties of nearest neighbor rules using edited data. IEEE Trans-

actions on Systems, Man, and Cybernetics, 2(3):408–421, July 1972.

[52] D.R. Wilson and T.R. Martinez. Instance pruning techniques. In D. Fisher, editor, Proceed-

ings of the Fourteenth International Conference on Machine Learning, pages 404–411. Morgan

Kaufmann Publishers, 1997.

[53] D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algorithms.

Machine Learning, 38:257–286, 2000.

[54] W.H. Wolberg and O.L. Mangarasian. Multisurface method of pattern separation for medi-

cal diagnoses applied to breast cytology. Proceedings of the National Academy of Sciences,

87:9193–9196, December 1990.

