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Abstract. In multi-issue negotiations, issues may be negotiated independently 

or not. In the latter case, the utility associated with one issue depends on the 

value of another. These issue dependencies give rise to more complex, non-

linear utility spaces. As a consequence, the computational cost and complexity 

of negotiating interdependent issues is increased significantly compared to the 

case of independent issues. Several techniques have been proposed to deal with 

this increased complexity, including, for example, introducing a mediator in the 

negotiation setting. In this paper, we propose an alternative approach based on 

a weighted approximation technique to simplify the utility space. We show that 

given certain natural assumptions about the outcome of negotiation the applica-

tion of this technique results in an outcome that closely matches with the out-

come based on the original, interdependent utility structure. Moreover, using 

the approximated utility structure, each of the issues can be negotiated inde-

pendently which ensures that the negotiation is computationally tractable. The 

approach is illustrated by applying and testing it in a case study.  

1   Introduction 

Negotiation is a process by which a joint decision is made by two or more parties 

[10]. The parties first express contradictory demands and then move towards agree-

ment by a process of concession making. Negotiation is an important method for 

agents to achieve their own goals and to form cooperation agreements, see e.g. 

[2,4,15,16]. Raiffa [11,12] explains how to set up a preference profile for each nego-

tiator that can be used during negotiation to determine the utility of exchanged bids. 

For more information on utility and other game theoretic notions the reader is referred 

to e.g. [3,9]. Representing agent’s preferences in terms of mathematical formulae 

expressing relationships between values of issues and the utility of bids allows the 

development of software support for negotiations. The complexity of these relation-

ships determines the computational complexity of the negotiation process. One way to 

avoid such computational complexity is, as proposed in e.g. [5], to build up profiles as 

combinations of independent and simple evaluation functions per issue. This approach 

corresponds to the way the average human tackles negotiation. Humans tend to sim-

plify the structure of their preferences ([17]) and prefer to negotiate one issue at a 

time, which means that issues influence the utility of a bid independently from each 



other. Absence of issue dependencies allows for the use of efficient negotiation strate-

gies. Until now this approach is only applicable if the values of the different attributes 

in the domain are independent from each other. However, in some domains the issues 

are interdependent. 

In some domains, however, issue dependencies influence the overall utility of a bid. 

In such cases it is no longer possible to negotiate one issue at a time and Klein at al in 

[6] argue that there is no efficient method that an agent can use to negotiate multiple 

issues, even if the agent tries to guess the opponent’s profile. The authors propose to 

use a mediator who uses a computationally expensive evolutionary algorithm that can 

solve non-linear optimization tasks of high dimensionality. Bar-Yam [1] shows that in 

a multi-issue negotiation with issue dependencies the utility can only be described by 

non-linear functions of multiple issue variables. 

In this paper, we present a new approach to tackle the complexity problem of a util-

ity space with interdependent issues that is based on the following observations. First, 

not all bids are equally important for negotiation: there are some bids which are not 

acceptable for the agent or are too optimistic to be an outcome of the negotiation.  In 

effect, it is possible to indicate an expected region of utility of the outcome. Second, 

in real life cases a profile can be modeled by utility functions that are far from “wild”; 

they have a structure that is far from random. This paper proposes weighted averaging 

as a method to approximate complex utility functions with simpler functions that is 

based on these observations. Furthermore, the method provides a way to check the 

adequacy of the approximation by a measure of the introduced error. 

The paper is organized as follows. The next section provides a formal definition of 

utility spaces containing interdependencies between issues. Section 3 describes the 

approximation method for eliminating such dependencies. A leading case study is 

used throughout the paper to illustrate the method. The theme of Section 4 is the 

analysis of the approximation with respect to the original utility space in the same 

negotiation setup. Section 5 summarizes the paper with conclusions about the pro-

posed approximation method. 

2 Utility of Interdependent Issues 

The overall utility of a set of independent issues can be computed as a weighted sum 

of the values associated with each of the separate issues. As is common (see e.g. 

[5,12]), an evaluation function is associated with each issue variable and the utility of 

a bid then is computed by the following weighted sum of the issue evaluation func-

tions: 

)()(),( 22211121 xevwxevwxxu +=  (1) 

In equation (1), the (weighted) contribution of each issue to the overall utility only 

depends on the value associated with that issue and the contribution of a single issue 

can be modeled independently from any other issues. Evaluation functions for inde-

pendent issues thus have exactly the same properties as the utility function associated 

with the bids that consist of multiple issues: it maps issue values on a closed interval 



[0; 1]. This setup can be used for issue values that are numeric (e.g., price, time) as 

well as for issue values taken from ordered, discrete sets (e.g., colors, brands).  

Bid utility functions that are weighted sums of the contribution of single issue val-

ues to the overall utility cannot be used, however, for modeling dependencies between 

issues. The value of one issue may depend on that of another, thus influencing the 

utility of a bid that includes both issues. For two issues, dependencies between these 

issues give rise to a generalization of equation (1) to: 

),(),(),( 2122211121 xxevwxxevwxxu +=  (2) 

It is easy to generalize (2) to more than two issues. In that case, dependencies be-

tween selected subsets of issues instead of all issues may have to be considered. 

As an illustrative example of dependent issues, in this paper, we consider the nego-

tiation of an employment contract where two important issues are at stake: the number 

of days that have to be worked and the number of days that childcare will be provided 

by an employer. In the example, the candidate employee additionally has to take into 

account a dependency between these two issues: working time (issue variable x1) 

needs to be balanced with the time s/he needs to spend with his/her child (issue vari-

able x2). Assuming that the partner of the candidate is working too and can take re-

sponsibility for only part of the childcare, the candidate has promised that s/he will 

take care of the child for at least 2 days, either by taking care in person, or by finding 

professional childcare. Thus the child care issue is really important and in case the 

employer proposes a contract for 5 days our candidate will try to negotiate a result 

which includes at least 2 days of childcare. In terms of utility, bids with 5 working 

days and less than 2 days of childcare have a low utility (e.g. u(5,0)≈0.1, u(5,1)≈0.5). 

In case the employer proposes a contract for only 4 days, the candidate will need to 

negotiate a result including only one day of childcare and a bid of 4 working days and 

one day of childcare has an acceptable utility value associated with it (e.g. 

u(4,0)≈0.25,  u(4,1)≈0.55) though the candidate would prefer to work more. With 

respect to bids of the employer that require the candidate to work 3 days or less, there 

is no problem regarding the caretaking of the child. In that case, the childcare issue 

has much less influence on the value of the bid (e.g. u(3,0)≈0.35,  u(3,1)≈0.55. Even 

in this relatively simple example, the values associated with each of the issues cannot 

be modelled independently and overall utility cannot be calculated using equation (1). 

The contribution of the childcare issue to overall utility depends on the number of 

working days associated with the other issue and vice versa in a way that introduces 

non-linear dependencies between the issues. Such non-linear dependencies can only 

be modelled by equation (2). To make the example concrete, the candidate’s prefer-

ences are modelled using the following evaluation functions: 
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Figure 1 shows the utility space of the candidate employee defined by the evalua-

tion functions (3) and (4) and weights w1 = w2 = 0.5. 
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Fig. 1. Utility space of the candidate employee with issue dependencies 

The representation of a complex, interdependent utility space by evaluation func-

tions as in equation (2) is similar to the model proposed in [6]. In contrast with Klein 

et all., who discuss binary issues only, however, we allow multi-valued, discrete, as 

well as continuous issues. Even so, they show that the computational complexity of 

searching through a utility space based on issue dependencies grows exponentially and 

cannot be handled efficiently by either agent when the opponent’s utility function is 

unknown. Such complex negotiations are most efficiently handled by revealing the 

utility functions of the negotiating agents to a mediator that is trusted by both parties 

(cf. [6]). Computationally simple and efficient approaches covered in [7] mostly rely 

on the independence of issues to determine their next bid and are not applicable.1 

3   A Method for Approximating Complex Utility Spaces 

Due to the inherent computational complexity and the limited number of negotia-

tion strategies that can be used to handle issue dependencies in negotiations, it would 

be beneficial to have methods that simplify the negotiation process of dependent is-

sues without using a mediator. One particularly interesting option is to investigate the 

complexity of the utility space itself and try to eliminate the dependencies between 

issues. In case issue dependencies can be eliminated, various alternatives for efficient 

negotiation become available: Searching through the utility space of multi-issue bids 

becomes feasible and negotiation strategies for independent issues can be applied. 

In this section, a method based on weighted approximation is proposed to eliminate 

issue dependencies. It uses an averaging technique in which some general observa-

tions about negotiation have been integrated and which can take available knowledge 

about a negotiation domain into account. In particular, knowledge about the relative 

                                                           
1 As we discuss below, however, the approach can be adapted by using exhaustive search 

through the utility space, but becomes intractable and in practice works only for small utility 

spaces. 



importance of bids and about outcomes which reasonably can be expected are part of 

the weighted averaging method. 

Although elimination of issue dependencies implies a loss of information and accu-

racy with regard to utility, it is shown in this paper that if the influence of one issue on 

the associated value of another issue is “reasonable” (i.e., the utility space is not too 

wild) a good approximation of the complex utility space can be obtained.  

The averaging technique proposed in this paper for eliminating dependencies is 

valid for utility spaces that have a certain “smooth” structure. The technique averages 

the values of bids close to each other. Therefore, utilities should not fluctuate too 

much from one bid to another within the proximity range set by the technique. In real 

life, common negotiations, this limitation on the applicability of the method is not 

seen as a problem considering that it is cognitively hard to make sense of wildly fluc-

tuating utility spaces. As an indication, we think that the techniques are applicable to 

utility functions that can be modeled by polynomial functions of modest power. If the 

nature of the utility space is not clear, the applicability of the proposed techniques has 

to be tested for that case. A case study illustrates that the elimination of dependencies 

does not result in significant changes of the negotiation outcome. Additionally, a 

method for analyzing and assessing the difference between the original and approxi-

mated utility space is provided. This method analyze and assess the results can always 

be applied to arbitrary utility spaces. 

Our main objective thus is to find and present a method for transforming a utility 

space u(x1,x2) based on dependent issues that can be represented by equation (2) to a 

utility space u’(x1,x2) without such dependencies that can be represented by equation 

(1). There exist various techniques to transform complex (utility) spaces with non-

linear functional dependencies between variables to spaces which are linear combina-

tions of functions in a single variable [18]. For our purposes, we are particularly inter-

ested in the linear separability of non-linear evaluation functions of dependent issues. 

The main idea is to transform a utility space u(x1,x2) into an approximation u’(x1,x2) of 

that space by approximating each of the evaluation functions evi(x1,x2) by a function 

ev’i(xi) in which the influence of the values of other issues xj, j≠i, on the associated 

value evi(x1,x2) have been eliminated. Mathematically, the idea is to “average out” in a 

specific way the influence of other issues on a particular issue.  

 

The weighted averaging method takes as input a utility space based on non-linear 

issue dependencies (i.e. issues cannot be linearly separated2 and transforms it into a 

utility space that can be defined as a weighted sum of evaluation functions of single 

issues (i.e. issues are independent). The weighted averaging method consists of the 

following steps: 

1. As a first step, estimate the utility of an expected outcome that is reasonable 

(given available knowledge). This estimate is called the “m-point” and is 

                                                           
2 In geometry, when two sets of points in a two-dimensional graph can be completely 

separated by a single line, they are said to be linearly separable. In general, two groups are 

linearly separable in n-dimensional space if they can be separated by an n − 1 dimensional 

hyperplane. 

 



used to define a region of utility space where the actual outcome is expected 

to be. 

2. Select a type of weighting function. The selection of a weighting function is 

based on the amount of uncertainty about the estimated m-point (expected 

outcome) in the previous step. 

3. Calculate an approximation of the original utility space based on non-linear 

issue dependencies using the m-point and the weighting function determined 

in the previous step. The result of this step is a utility space that can be de-

fined as a weighted sum of evaluations of independent issues (a function of 

the form of equation (1)).3 

4. Perform an analysis of the difference of the original and approximated utility 

space by means of a δ-function to assess the range of the error for any given 

utility level. In this final step, based on the assessment, thresholds for break-

ing off the negotiation or accepting opponent’s bids can be reconsidered. 

Finally, the results of the approximation method can be used in combination with a 

particular negotiation strategy. In section 4, we study the results of using an approxi-

mated utility space for the child care example in a negotiation strategy and compare 

the results with an approach based on the original utility space. The sections below 

explain each of the steps in more detail and illustrate how these steps achieve the 

objective of eliminating issue dependencies.  

3.1 Estimate an Expected Outcome 

Any approach based on using uniform arithmetical averaging methods has the effect 

of discarding information uniformly. Such an approach does not take the final goal of 

negotiation into consideration: the negotiation outcome. A uniform averaging method 

is indifferent to the fact that even before negotiation starts it can be assumed that cer-

tain regions of the utility space are more relevant to the negotiation than others. Some 

general observations about the structure of utility spaces that can be associated with 

negotiations taken from actual practice provide additional insight that can be used to 

increase the effectiveness of an approximation technique. 

Consider, to make clear what we mean, a worst case scenario in which two agents 

A and B associate completely opposite utilities with bids. In other words, what is 

valuable for agent A is of no value for agent B. Formally, we can express this opposi-

tion in terms of utility functions as follows: 

( ) ( )2121 ,1, xxuxxu BA −=  (5) 

Given these utility functions, it is easy to see that the Nash product is 0.25 with as-

sociated utility values uA(x1,x2)=uB(x1,x2)=0.5 and the same point within the utility 

space is an efficient negotiation outcome when using Kalai-Smorodinsky criteria, that 

is, a Pareto-optimal outcome with equal utilities for both parties. Assuming such op-

                                                           
3 In the more general case of more than two issues, an evaluation function may depend on more 

than two issues and one of those issues has to be selected to be separated from the other is-

sues. 



posite interests, none of the agents would ever accept a bid which has a utility below 

0.5. 

Typically, however, negotiations do not fit such worst case scenarios and there is 

something to gain for both parties. Formally, this means that there exist acceptable 

negotiation outcomes, i.e. bids, with associated utilities that are higher than 0.5. In 

such cases, the utility spaces of the negotiating opponents are not completely opposite 

as expressed by (11). This line of reasoning makes clear that in general we may as-

sume that the expected outcome of the negotiation is located somewhere in the open 

utility interval (0.5; 1) and this region in the utility space is generally of more impor-

tance in a negotiation. 

It follows from the previous considerations that some regions within the utility 

space are more important for obtaining a good negotiation outcome than others and in 

the approximation method proposed should be approximated as good as is possible. 

As a first step to identify these regions, an agent can estimate an expected outcome 

which would identify with some probability one of the more relevant points in the 

utility space. We call this point the “m-point”. 

An agent will be able to estimate an expected outcome with reasonable exactness 

only if it has some knowledge about the opponent’s profile. In that case, as we illus-

trate below, the m-point can be computed in two steps. But even if an agent lacks any 

information whatsoever about its opponent an m-point can be based on considerations 

of the agent’s own utility space. In the latter case, we propose that the m-point can be 

identified with the average of the break-off point (an agent breaks off a negotiation in 

case any utility with a lower utility is proposed) and the maximum utility in the utility 

space. In the childcare example, the break-off point equals 0.37, which is equal to the 

minimum utility that still satisfies the candidate employee’s childcare constraint.  

A second, more informed method to determine an expected outcome can be used 

when the agent does have some information, e.g. based on previous experience, con-

cerning the opponent’s profile. In the childcare example, assuming that the employer 

will take the child care request seriously into consideration, but will try to minimize 

his contribution in this regard, bids with 1-2 child care days are reasonable to expect. 

Additionally, it may be more or less certain that the employer prefers the employee to 

work as much as possible and that these issues are independent from the other. Then, 

as an estimated model of the opponent’s profile, the following evaluation functions 

can be used, which, using equal weights of .5, result in the utility space depicted in 

figure 2: 

( ) 5111 xxev =  (6) 

( ) ( ) 33 222 xxev −=  (7) 
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Fig. 2. Estimated Profile of Employer 

An estimate of the expected outcome can now be computed from the agent’s own 

utility space and the educated guess of the opponent’s utility space using Kalai-

Smorodinsky criteria, which ensures that a Pareto-optimal outcome is selected and the 

expected outcome is not strongly biased in favour of either one of the parties (see 

figure 8). Calculating the utility in our example yields m=0.74. This estimate may still 

be quite uncertain, but we will discuss this issue more extensively below. The esti-

mated outcome only defines one parameter of the approach.  

3.2 Select Weighting Function 

As discussed above, not all points within the utility space are equally important for 

obtaining a good negotiation outcome. To take into account the relative importance of 

certain regions within the utility space, we introduce a weighting function associating 

a weight with each point (its “importance”) in the utility space. In general, there are 

two useful considerations that can be made which provide clues for constructing an 

appropriate weighting function. 

The first consideration is that a certain range of utility values are of particular inter-

est in the negotiation. Also, certain bids may be more “appropriate” than others in a 

negotiation. As an example, bids with utility values below a break-off point are less 

significant than other bids and do not have to be approximated as well as others. In the 

childcare example, provided with the relevant domain knowledge, it is moreover un-

reasonable for our candidate employee to propose to do no work and at the same time 

to request 5 childcare days. 

The first consideration concerning the approximation of the utility space can be 

given a formal interpretation by associating the highest weight with the expected out-

come (the “m-point” identified above, located within the (0.5;1) interval).  

The second consideration is the fact that an agent may be more or less uncertain 

about its estimate of the utility of the negotiation outcome. To take this into account, 

we propose to use two different functions depending on the level of uncertainty that 

the agent has about the estimate of the m-parameter. In case the agent does not have 



information about the opponent, nor any past experience with the particular negotia-

tion domain and is quite uncertain about the most probable outcome, a relatively 

broad range of utility values around the expected outcome should be assigned a high 

weight. As a consequence, bids in a rather wide neighborhood of the m-point are 

equally important for the negotiation and only extreme points (with utilities close to 

one or zero) do not have to be approximated very accurately. Given a relatively large 

uncertainty, we propose to use a polynomial function of the second order, which is 

rather flat near the m-point and declines closer to the extreme utilities (see figure 2a). 

The corresponding weighting function ψ then can be computed as follows: 
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In the case the agent is reasonably certain about the estimate, for example, when the 

most probable region of the negotiation outcome is well defined on the basis of do-

main knowledge, knowledge about the opponent or experience gained in previous 

negotiations, a weighting function with a stronger differentiation of utilities values can 

be used. In that case, a Gaussian function that is defined in terms of a maximum point 

m and spread σ can be used that assigns high weights only to bids with a utility close 

to the expected outcome m (see figure 2b): 
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The spread parameter σ provides an indication of the agent’s certainty about expected 

outcome. In both cases, the m-parameter represents the expected outcome and is a 

point in the interval (0.5; 1); ψ assigns the m-point the maximal weight of 1.0.  
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Fig. 3.  Example of ψ function for m=0.74. 

In our example, an educated guess of the opponent’s profile could be made and 

therefore a Gaussian weighting function is selected and a value for the “spread” σ 



needs to be determined. To this end, we use the 3σ rule (or “Empirical rule”), which 

says that (most likely) 99,7% of all outcomes will be in the interval (m -3σ ,m +3σ), 

which gives us σ=(0.37+0,74)/(2*3) = 0,19. 

3.3 Compute Approximation of Utility Space 

Using the weighting function ψ a weighted approximation technique can be de-

fined. The weighted approximation technique proposed here first multiplies each 

evaluation value with its corresponding weight and then averages the resulting space 

by integration. In the equation below, a function ω is introduced instead of ψ since the 

weighting must be normalized over the interval of integration. The range of integra-

tion is identical to the range of the integrated issue.4 
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Formally, the weighting function ω is defined by: 
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So far we have been assuming a negotiation with only two issues. It is not difficult, 

however, to generalize the approximation technique to arbitrary numbers of issues. In 

case a negotiation involves N issues with interdependencies between these issues, and 

evaluation functions evi(x1,x2,…,xN) for the ith
 issue are given, equation 14 generalizes 

to the equation below: 

( ) ( ) ( )∫=′
V

NNiii dVxxxevxxxxve ,..,,,..,, 2121ω  
(12) 

Here V is a volume of N-1 dimensionality build on the dimensions {x1,x2,…,xi-

1,xi+1,…,xN}. Of course, not all issues have to depend on all others. The approximation 

technique can be applied sequentially for each evaluation function in the negotiation 

setup, which involves dependencies between issues.  

As an illustration, we apply the weighted averaging technique to our employment 

contract negotiation. Figure 4 shows the ψ-functions for the original utility space using 

a polynomial function (8) for the left chart and a Gaussian function (9) for the right 

one. The flat section in the middle of the left chart represents a rather wide neighbor-

hood of the m-point: this corresponds to the expected outcome and weights in its 

neighborhood are high. Outside this region the weighting function slowly declines to 

zero. For the Gaussian function (right chart) we obtain a different picture: the function 

                                                           
4 If the issue has discrete values, integration simply means summation over all these values. 



has high values (close to 1) for the small band of bids with utility values close to the 

m-point and declines rapidly for the remainder of the utility space. 
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Fig. 4. Examples of ψ-functions for the employee’s utility space: (a) polynomial function with 

m=0.74; (b) Gaussian function with m=0.74 and σ=0.19. 

We apply expressions (10) and (11) to the evaluation functions of our employment 

contract negotiation example to derive an approximated utility space without interde-

pendencies from the original utility space. Figure 5 shows the original and approxi-

mated utility spaces obtained by approximation with a polynomial weighting function 

(b) and obtained by using a Gaussian weighting function (c).  
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Fig. 5. The original utility space (a) and new utility spaces of the employee obtained by (b) the 

weighted averaging method using a polynomial weighting function with m=0.74 and (c) the 

Gaussian weighting function with m=0.74, sigma=0.19.  

The utility spaces obtained by approximation with the polynomial and Gaussian 

weighting functions have a similar structure. However, the Gaussian weighting func-

tion due to its stronger utility discrimination power makes it more precise in the vicin-

ity of the m-point. This is explained in more detail in the next section. 

3.2 Analyze Difference δ with Original Utility Space 

The technique presented approximates the original utility space and consequently, 

introduces an error in the utility associated with bids. To obtain a measure for the 

distance of the values of bids in the original utility space compared to the bids in the 

approximated utility space, a difference function δ can be defined as follows: 

),(),(),( 212121 xxuxxuxx ′−=δ  (13) 

As is to be expected, the δ-values for the approximation using the Gaussian weight-

ing function shift the utility considerably for some bids. For certain bids in the child-

care example, the difference is almost 0.5. However, this only is the case for bids that 

are unreasonable and are not relevant for reaching a negotiation outcome. In particu-

lar, this shift in utility occurs for bids that involve more days of child care than work-

ing days. Approximations of the utility of bids that are close to the m-point are very 

good and close to zero. 

To see the effect of the weighted averaging method near the m-point we take a sec-

tion in the original utility space for the m-point (m=0.74 for our negotiation example). 

By fixing the utility to 0.74, an expression can be obtained for the value of one of the 

issues as a function of another one: 

( ) ( )2121 74.0, xfxxxu =⇒=  (14) 



The function thus obtained can be substituted into the expression of the delta func-

tion (10). This provides us with the values of δ for a fixed utility as a function of only 

one of the issues, and can be obtained for other utility values in a similar way. 
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Fig. 6.  Graphs depicting values of the δ functions for utility equal to (a) - 0.5, (b) – 0.7, (c) – 

0.9 in the original space based on a polynomial weighting function (solid line), and a Gaussian 

weighting function (dashed line).  

The δ-values obtained by weighted averaging with the polynomial weighting func-

tion and the Gaussian weighting function for utility equal to 0.74 are rather small for 

both (see Figure 6b), but weighted averaging with a Gaussian function produces 

smaller approximation errors: it is almost twice as good. For bids with utilities of 0.9 

the δ-values (see Figure 6c) rise in comparison with that of 0.7, however, the Gaussian 

weighting function still gives a better result. For bids with a utility of 0.5 (see Figure 

6a) the δ-values are quite similar.  
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Fig. 7. Original and averaged utility values running through maximum δδδδ-point.  

In figure 7, a worst case analysis is illustrated. It presents the utilities for extreme 

values of childcare (figure 7a) and for the number of working days (figure 7b) that run 

through the maximum δ-value, corresponding to the bid with 0 working days and 3 

days of childcare. It shows that the evaluation function associated with 0 days of child 

care (0 working days) is almost mirrored with respect to the evaluation function asso-

ciated with 3 days of child care (5 working days). In effect, this shows that our child 

care example presents a serious test for our approximation method that somehow has 

to average these differences.  

4   Case Study 

In this section, a particular negotiation strategy is used to study the bids that an agent 

will offer during a negotiation using the original as well as the approximated utility 

space. The negotiation strategy that an agent decides to use should not only fit the 

agent’s personality profile and culture, its experience in general and the current do-

main and negotiation partner, but it also has to be applicable given the utility space. 

A transformation of the utility space will have an effect on the negotiation process 

as well as on the negotiation outcome. To assess the impact of the weighted averaging 

approximation method, a negotiation strategy is applied to the employment contract 

example. Here, we use the ABMP-strategy proposed by Jonker and Treur [5].  

The ABMP-strategy determines a bid in two steps: the strategy first (a) determines 

the target utility for the next bid, and then (b) determines a bid that has that target 

utility. The (b) part of the strategy is very efficient for independent utility spaces. For 

the purpose of comparison, however, we can use exhaustive search through the com-

plete utility space to find a bid in the second step, provided that the space is discre-

tized in a suitable manner (using small enough steps). In this way, the first step (a) in 

the ABMP-strategy followed by the second step (b) using exhaustive search can be 
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applied to the original utility space whereas the original ABMP strategy can be ap-

plied to its approximation. 

An additional check is incorporated into the strategy when the approximated utility 

space is used to avoid the risk of accepting bids with low utilities in the original space 

that have much higher utilities in the approximated space. The bids with high δ-values, 

that have shifted significantly due to application of the averaging method, can be fil-

tered out in this additional step. The check applies both to a received bid as well as to 

the computation of a proposal for a new bid. When the agent receives a bid from its 

opponent, the agent has to calculate the associated original utility as well and compare 

it with the bid acceptance threshold. When a new bid is send to the opponent, the 

agent also has to check the associated utility in the original space to ensure that the bid 

is not worse than the current utility acceptance level. If the bid does not satisfy this 

condition, then agent has to find an alternative bid with the same utility value but with 

different issue values. These new values can be selected by systematically going 

through the bid space using (variants of) equation (12). This procedure guarantees that 

the agent will never propose or accept a bid which has a very low utility in the original 

utility space. 

This additional check in itself is computationally cheap, involving only a simple 

calculation using the original utility equations. Still, the computational costs may 

increase again since an agent may repeatedly need to find new bids that are accept-

able. The probability of finding an appropriate bid, however, is high in regions close 

to the m-point. Adding a check thus still results in significant reduction of the compu-

tational costs compared with exhaustive search. 

 

In our experiments, the same profile of the employer was used in the original as well 

as in the approximated case. The employer’s profile that has been used is the same as 

that introduced above. 

Figure 8a shows the outcome space build up out of the utilities of the employer and 

employee per bid. Each point on the chart represents one bid. The coordinates of the 

bid are the utilities of the opponents (x-coordinate is the employer’s utility of the bid, 

y-coordinate is the employee’s utility of the bid). The Nash product representing a bid 

with the highest utilities simultaneously for both opponents of the original utility space 

equals 0.53 and corresponds to a bid of 5 working days with 2.5 days of childcare, 

which satisfies the employee’s constraints. The Kalai-Smorodinsky solution is 1.5 

days of child care and 5 working days. This bid is found by locating a bid on the 

Pareto-optimal frontier, which is closest to the line drawn from points with utilities of 

(0; 0) to points with utilities (1; 1). This bid represents a negotiation outcome where 

both parties get the same utility. Using the ABMP strategy with exhaustive search for 

both parties, the negotiation lasts 4 rounds (4 bids from each side, the employer starts) 

and finishes when the employee accepts a bid of 2 days of childcare with 4.5 working 

days. 

Figure 8b presents the result using the original ABMP strategy for both parties, 

where the profile of the employee has been approximated. The bids in the utility space 

are now concentrated around the employees original and approximated utility level of 

0.7 (the m-point) with some spread towards lower utilities. The Nash product shifts to 



the bid of 5 working days and 1.5 days of childcare and the Kalai-Smorodinsky solu-

tion now is 4 working days and 1.5 days of childcare.  
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Fig. 8. Outcome space, optimality criteria, and negotiation paths (a) for the original utility 

space of the employee, and (b) for the approximated utility space of the employee. 

The original outcome space and the approximated one are significantly different. 

However, the difference is not critical for the negotiation itself due to the fact that 

most of the bids for which the difference is significant will not be used in a negotiation 

and we basically aim for the efficient solutions (Kalai-Somorindinsky point, and Nash 

Product). Also note that the bids are shifted only on the vertical axis (employee’s 

utility), because the employer’s profile remains the same. 

The negotiation performed for the same setup but using the approximated em-

ployee’s utility space is also finished in 4 rounds as in the previous experiment and 

also results in a deal of 4.5 working days and 2 days of childcare.  

This example shows that the approximation procedure leads to some shifts in the 

efficient outcomes of the negotiation with respect to Nash and Kalai-Smorodinski. 

However, it also confirms that these bids and those around them preserve their mean-

ing for the negotiator. Negotiation outcomes for both utility spaces are rather close 

even though the negotiation paths are different.  

5 Conclusion 

In this paper we introduced a new approach that allows agents to deal with complex 

utility functions in a negotiation environment with interdependent issues. Instead of 

representing the negotiation task as an optimization task for interdependent issues we 

propose an approximation method to simplify the agent’s utility using the observation 

that in common negotiation settings the expected negotiation outcome is approxi-

mately known and the insight that the nature of utility spaces for such common nego-

tiation settings has enough structure to make our approach applicable. The method 
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provides a means to analyze the impact of the approximation on a particular utility 

space, thereby making it possible to determine up front, whether or not the approxima-

tion is useful in any particular domain.  

The main advantage of the proposed method is that it enables applicability of a 

wider range of computational negotiation strategies without introducing a mediator 

into the negotiation. Available information about the domain and the most probable 

negotiation outcome can be used to increase the accuracy of the method in the utility 

area around the expected outcome, which is most important for the negotiation. The 

additional check that compares the utility of exchanged bids with the utility of the 

original utility space during a negotiation prevents an agent from accepting low-utility 

bids in the original space with a high δ (error) in the approximated space. This check 

in itself is computationally cheap and ensures reasonable negotiation performance. 

Robu at al. in [14] propose a graph-based technique to learn complex opponent’s 

profiles. The authors propose an algorithm of exponential computational complexity 

for searching through a learned utility space of the opponent. The main interest in 

[14], however, is the scalability of a model for representing an opponent’s profile 

which is different from the approach proposed here to simplify an agent’s profile.  

In future research, we want to identify in more detail which classes of utility func-

tions can be approximated by weighted averaging sufficiently accurate. Another inter-

esting direction for research would be a modeling experiment with humans, to gain a 

better understanding of the nature of the complexity of human preferences and the 

ways in which humans simplify the negotiation task. 
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