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ABSTRACT
A novel no-reference blockiness metric that can automatically and
perceptually quantify blocking artifacts of DCT coding is
presented. The proposed metric is built upon the specific structure
information of the artifact itself combined with the properties of
the human visual system (HVS) by means of a simple and efficient
model of visual masking. Investigations are conducted to reduce
the additional cost introduced by the human vision model, without
compromising its overall prediction ability. The proposed metric is
validated through comparing its performance to state-of-the-art
HVS model based blockiness metrics with respect to accuracy,
reliability and computational complexity.

Index Terms— Blocking artifact, human vision model,
texture masking, luminance masking, image quality assessment

1. INTRODUCTION

Objective metrics have the aim to provide a quantitative measure
for perceived image quality aspects. They are of fundamental
importance to a broad range of image and video processing
applications [1]. In current video chains, the receiving end, for
example a TV-set, typically contains various objective quality
metrics, which are implemented to improve the overall perceived
quality of artifact impaired video. These metrics determine the
quality of the incoming signal in terms of blockiness, ringing, blur,
etc. and adapt the parameters in the video enhancement algorithms
accordingly. Since in a digital chain the receiver usually has no
access to the encoding parameters of the bit-streams, these
objective metrics are constrained to a no-reference approach. This
means that the impairment assessment only relies on the
reconstructed image. Furthermore, taking into account the way
human beings perceive quality aspects, while removing perceptual
redundancies inherent in purely signal–based metrics can be
greatly beneficial for matching objective quality prediction to
human perception of quality. However, since an objective metric
based on a model of the human visual system (HVS) often is
computationally intensive for real-time applications, it is highly
desirable to reduce the complexity of the HVS model embedded as
well as the metric itself without compromising the overall
performance.

A blocking artifact, which manifests itself as an artificial
discontinuity between adjacent blocks, is known as the most
annoying distortion type at low bit-rate DCT coding, and
subjective experiments have indicated that blockiness is highly
correlated with the overall perceived quality of MPEG-2 video e.g.
[2]. Therefore, during the last decades a lot of research effort is
devoted to the development of blockiness metrics. Most of these
metrics, however, require a reference image or video (see for
example [3] and [4]). Although designing no-reference metrics is

much more promising for real-world applications, it is still an
academic challenge mainly due to the limited understanding of the
human visual system [1]. Much work is done trying to incorporate
relevant and accurately known properties of the HVS into no-
reference blockiness metrics [5-7]. The generalized block
impairment metric (GBIM) [6] expresses the blockiness as the
inter-pixel difference across block boundaries scaled with a
weighting function, which simply models the HVS masking effect.
The total amount of blockiness is then normalized by the same
measure calculated inside the coding blocks. The main drawbacks
for GBIM are: (1) an efficient combination of different masking
effects is not considered in modeling the HVS; and (2) the metric
is designed such that the human vision model needs to be
calculated for every pixel in an image, which is computationally
very intensive. The blockiness metric based on a locally adaptive
algorithm [7], which we refer to as LABM, examines the severity
of blockiness block by block, and estimates its corresponding
visibility by means of a just-noticeable-distortion (JND) profile.
Subsequently, the resultant value is averaged over all the blocks in
the image to yield the blockiness score. This metric is potentially
more accurate, however, it exhibits several drawbacks: (1) as the
blockiness is measured based on a fixed 8x8 block unit, the
stability of this metric is doubted in case of spatial scaling; (2)
calculating the JND profile is complex, and it cannot predict
perceived annoyance above threshold; and (3) the JND is also
calculated for every pixel in an image, which largely increases the
computational cost of the metric. Furthermore, none of these
metrics involves a detection phase for explicitly locating the
precise grid position of block boundaries, which is practically
needed in order to account for deviations in the blocking grid in
the incoming signal or as a consequence of spatial scaling [8-10].

In this paper, we further rely on the locally adaptive approach
taken in [7], but extend the idea by first detecting the precise grid
position. Moreover, the extent of blockiness is locally measured,
over each individual blocking artifact, with a purely pixel-based
metric including the visibility of the distortion due to masking.

2. PROPOSED ALGORITHM

The schematic overview of the proposed algorithm is illustrated in
Figure 1. Initially, a detection phase is adopted in order to identify
the precise grid position of block boundaries. After locating all
potential blocking artifacts in an image, a local level processing is
carried out to individually examine each pre-detected blocking
artifact by analyzing its surrounding content with a limited extent.
This consists of two parallel steps: (1) a local blockiness metric
(LBM), calculating the degree of distortion purely pixel-based; and
(2) a human vision model, indicating the perceptual significance of
the artifact to the human eye and outputting a visibility coefficient
(VC). The resultant LBM and VC are integrated into a local
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perceptual blockiness metric (LPBM). Finally, the LPBM is
averaged over all detected artifacts in the image to produce a score
of blockiness assessment (i.e. NPBM).

2.1. Blocking Artifact Location
In order to successfully measure blocking artifacts, one must be
able to identify where they occur in a given image. Most, if not all,
of the existing blockiness metrics simply assume that the grid of
blocks of 8x8 pixels, on which blocking artifacts appear, starts
exactly at the top-left corner of the image, however, this is not
necessarily the case, e.g. after scaling decoded images, or due to a
deviation in the incoming signal itself [8-10]. Hence, especially for
a no-reference blockiness metric, where the bit-stream information
is not available, a grid position detection approach is indeed
required to ensure a reliable metric.

Based on the nature of the blocking artifact (i.e. spatial
discontinuity) and the periodic property of the block-based coding
scheme, a simple algorithm that maps the image into a 1-D signal
profile, is proposed. Then, the precise grid position can be
extracted from the amount of energy present in the gradient in 1-D
signal profile in horizontal or vertical direction by means of the
following procedure.

We denote the image of MxN (height x width) pixels as
),( jiI for ],1[],,1[ NjMi ∈∈ , and calculate the gradient map

]1,1[,),()1,(),( −∈−+= NjjiIjiIjiGh (1)
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In the resulting 1-D signal profile, the grid position, which
should be present as a periodic impulse train of signal peaks, might
be masked by image content, such as object edges. The periodicity
of the blocking grid, however, can be clearly revealed in the
frequency domain using DFT, where the real block size (i.e. the
period of the impulses) is obtained. The offset of the grid can then
be directly retrieved from the 1-D signal. From the periodicity and
the offset all blocking edges are calculated assuming a regular grid.
The entire procedure is performed once in horizontal and once in
vertical direction to address a possible asymmetry in the size or the
offset of the blocks. The procedure has been shown to be robust
against scaling and offset as occurring in daily-life applications.

2.2. Local Blockiness Metric

Since blocking artifacts intrinsically are a local phenomenon, their
behavior can be reasonably described as a local distortion metric,
indicating the relative signal discontinuity within a region of image
content. Hence, a local blockiness metric (LBM), which examines
each of the pre-detected blocking artifacts and individually
provides a numerical measure of distortion, is proposed. This
approach is potentially more accurate than a global approach, since
the visual strength of the block discontinuity is primarily affected
by its local surroundings. Furthermore, the local analysis based on
each individual blocking artifact instead of on a fixed block unit, is
practically more efficient in case of a deviating block size. In this
paper, the blockiness is locally characterized as a blocking edge
that stands out from its spatial vicinity, and is defined as the local
gradient energy normalized by its neighboring pixels. This is done
separately along each dimension. Figure 2 shows an example of a
block discontinuity along the horizontal direction, where two
adjacent blocks (i.e. A and B) are extracted from a real JPEG
image.

Fig. 2. Local blockiness metric (LBM).

LBM is estimated within a template centered on the blocking
artifact at pixel location ),( ji as shown in Figure 2
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where ( 1= in our experiments) is used to adjust the amount
of energy present in the gradient, hBG and hNBG are

),( jiGBG hh = (4)
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and the template size of (2n+1) depends on the detected block size.

Fig. 1. Schematic overview of the proposed algorithm.
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2.3. The Human Vision Model
A simplified human vision model based on the spatial masking
properties of the HVS is already proposed in [11]. It contains
texture masking and luminance masking, which both are highly
relevant to the perception of blocking artifacts. Both masking
effects are implemented, based on the local characteristics of image
signals, using spatial filtering followed by a weighting function.
Then, they are efficiently combined into a single visibility
coefficient (VC), which reflects the perceptual significance of the
artifact quantitatively. In the following, the block discontinuity
along the horizontal direction is discussed, but it can be done in
the same way for the vertical direction.

2.3.1. Local Visibility due to Texture Masking

Texture masking is modeled simply calculating a visibility
coefficient (VCt); the higher its value, the smaller the masking
effect, and hence, the stronger the visibility of the artifact. The
procedure involves: (1) calculating the local background activity
using a texture detector; (2) a classification scheme to capture the
active background regions by thresholding; and (3) a visibility
transform function (VTF) to obtain a visibility coefficient.
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Fig. 3. High-pass filter and visibility transform function used.

As shown in Figure 3, a high-pass filter T is used to measure
the background activity (i.e. ),( jit ) for each blocking artifact, and
then a pre-defined threshold Thr (Thr=0.15 in our experiments) is
applied to classify the background into “flat” or “texture”, resulting
in an activity value ),( jiIt , which is given by
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A visibility transform function (VTF) is proposed in
accordance to human perceptual properties, where the visibility
coefficient is inversely proportional (nonlinear) to the activity
value. Figure 3 shows an approximation of the VTF, considered to
be good enough, and already introduced in [11]. It is defined as
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where 1> ( 5= in our experiments) is used to adjust the
nonlinearity.

2.3.2. Local Visibility due to Luminance Masking

It was found that the human visual system’s sensitivity to
variations in luminance depends on (is a nonlinear function of) the
local mean luminance [11]. Modeling the luminance masking

consists of: (1) calculating the local averaged background
luminance; and (2) a visibility transform function (VTF) to obtain
a visibility coefficient (VCl) based on empirically driven properties
of the HVS for luminance masking [11].
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Fig. 4. Low-pass filter and visibility transform function used.

The local luminance ),( jiIl is calculated using a weighted
low-pass filter as shown in Figure 4
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The relationship between the visibility coefficient and the
local luminance is modeled based on the VTF shown in Figure 4
and discussed in [11]

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−⋅⎟⎠
⎞

⎜⎝
⎛ −

≤≤⎟
⎠
⎞

⎜
⎝
⎛

=

otherwisejiI

jiIif
jiI

jiVC

l

l
l

l

1)),(81(
174
1

81),(0
81
),(

),(

2/1

(10)

where 10 << ( 7.0= in our experiments) is used to adjust
the slope of the linear part of this function

2.3.3. Integration Strategy

Since the visibility of an artifact depends on various masking
effects co-existing in the HVS, an efficient integration strategy is
needed to obtain an accurate perceptual model. In our approach,
based on the local image content surrounding a stimulus, first
texture masking is calculated. In case the local activity in the area
is larger than a given threshold (see equation (6)), a visibility
coefficient VCt is applied, followed by the application of a
luminance masking coefficient VCl. In case the local activity in the
area is low, only VCl is applied. The application of VCl, where
appropriately combined with VCt, results in an output value VC.

2.4. The Perceptual Blockiness Metric

The output of the proposed human vision model (VC) is used to
locally weight the pixel-based blockiness metric LBM, resulting in
a local perceptual blockiness metric (LPBM). Since the horizontal
and vertical blocking artifacts are calculated separately, the LPBM
for the block discontinuity along the horizontal direction is
described as

),(),(),( jiLBMjiVCjiLPBM hh ×= (11)
which is then averaged over all detected blocking artifacts in the
whole image to determine the blockiness metric

)( hh LPBMmeanNPBM = (12)

A metric vNPBM can be similarly defined for the blockiness
along the vertical direction. Assuming no interaction and no
difference in sensitivity to blockiness in horizontal and vertical
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direction, the two metrics are added together to give the resultant
blockiness score

2
vh
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Since, in our case, both the local blockiness metric and the
human vision model are calculated at the locations of the blocking
artifacts only, and not for all pixels in an image, the computational
load of this metric is largely reduced.

3. PERFORMANCE EVALUATION
Subjective ratings resulting from psychovisual experiments are
widely accepted as the benchmark for evaluating objective quality
metrics. In our work, the LIVE JPEG database [12], which consists
of 233 JPEG images with their Mean Opinion Score (MOS), is
adopted to validate various objective blockiness metrics. An
evaluation is carried out comparing two most closely related
blockiness metrics, namely GBIM and LABM (as implemented
based on the descriptions in [6] and [7], respectively), to our
proposed metric NPBM for the same image database. The
performance of an objective metric can be quantitatively evaluated
in terms of accuracy, monotonicity, and consistency with the
Pearson linear correlation coefficient, the Spearman rank order
correlation coefficient, and the outliner ratio between the MOS
scores and the metric’s predictions, respectively [13]. As suggested
in [13], nonlinear correlations using mapping functions for the
objective predictions may be computed as alternatives. They
usually yield higher correlation coefficients as demonstrated with
our results reported in [11]. They, however, have the disadvantage
of minimizing performance difference between metrics. Hence, to
make a more critical comparison, only the linear correlations are
calculated in this paper (to make a comparison with nonlinear
regression possible, it should be noted that NPBM results in a
Pearson correlation of 0.94 in that case).

Fig. 5. Scatter plots of MOS vs. blockiness metrics.

Metric
Pearson
Linear

Correlation

Spearman
Rank Order
Correlation

Outlier Ratio

GBIM 0.736 0.912 0.099
LABM 0.834 0.832 0.009
NPBM 0.900 0.904 0

Table 1. Performance comparison of blockiness metrics.

Figure 5 shows the scatter plots of the MOS versus GBIM,
LABM and NPBM, respectively, and the performance evaluation
results are listed in Table 1. It demonstrates that our proposed
metric outperforms the other two in the prediction of perceived
quality. Furthermore, the most promising feature achieved with
NPBM is that its major computational cost introduced by the
human vision model is reduced, by simplifying the model itself as

well as minimizing the number of times the model is calculated in
the whole process of determining the blockiness score for an
image. For example, in our experiments, the total amount of time
needed to compute the vision model in NPBM, is only 1/8 of that
required in both GBIM and LABM.

4. CONCLUSIONS

A novel no-reference blockiness metric that is highly consistent to
the perception of blocking artifacts is presented. The proposed
metric involves a grid detection phase, which is used to account for
a block size change or grid shift, and intrinsically ensures the
subsequent local processing of the blocking artifacts. For each pre-
detected blocking artifact the blockiness is individually calculated
as a signal discontinuity relative to its local content and its
visibility due to masking is locally estimated. Combining the
results in a simple way yields a metric that shows a promising
performance with respect to practical reliability, prediction
accuracy, and computational efficiency.

5. REFERENCES

[1] Z. Wang and A. Bovik, Modern Image Quality Assessment,
Morgan & Claypool, USA, 2006.
[2] C. C. Koh, S. K. Mitra, J. M. Foley and I. Heynderickx,
“Annoyance of Individual Artifacts in MPEG-2 Compressed Video
and Their Relation to Overall Annoyance,” Proc. SPIE, vol. 5666,
pp. 595-606, Jan. 2005.
[3] Z. Yu, H. R. Wu, S. Winkler and T. Chen, “Vision-Model-
Based Impairment Metric to Evaluate Blocking Artifacts in Digital
Video,” Proceedings of the IEEE, vol. 90, pp. 154-169, Jan. 2002.
[4] S. A. Karunasekera and N. G. Kingsbury, “A Distortion
Measure for Blocking Artifacts in Images Based on Human Visual
Sensitivity,” IEEE Trans. Image Processing, vol. 4, no. 11, pp.
713-724, June 1995.
[5] S. Liu and A. C. Bovik, “Efficient DCT-Domain Blind
Measurement and Reduction of Blocking Artifacts,” IEEE Trans.
on CSVT, vol. 12, no. 12, pp. 1139-1149, Dec. 2002.
[6] H. R. Wu and M. Yuen, “A Generalized Block-edge
Impairment Metric for Video Coding,” IEEE Signal Processing
Letters, vol. 70, no. 3, pp. 247-278, Nov. 1998.
[7] F. Pan, X. Lin, S. Rahardja, W. Lin, E. Ong, S. Yao, Z. Lu
and X. Yang, “A locally adaptive algorithm for measuring
blocking artifacts in images and videos,” Signal Processing: Image
Communication, vol. 19 i6, pp. 499-506, 2004.
[8] E. Lesellier and J. Jung, “Robust wavelet-based arbitrary grid
detection for MPEG,” Proc. IEEE ICIP, pp 417-420, 2002.
[9] R. Muijs and I. Kirenko, “A No-reference Blocking Artifact
Measure for Adaptive Video Processing,” Proc. EUSIPCO, 2005.
[10] S. Tjoa, W. S. Lin, H. V. Zhao and K. J. R. Liu, “Block Size
Forensic Analysis in Digital Images,” Proc. ICASSP, 2007.
[11] H. Liu and I. Heynderickx, “A Simplified Human Vision
Model Applied to a Blocking Artifact Metric,” Proc. CAIP, LNCS
4673, pp. 334-341, 2007.
[12] LIVE: http://live.ece.utexas.edu/research/quality.
[13] VQEG: http://www.vqeg.org.

868


