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ABSTRACT 

This paper investigates how saliency obtained from eye-
tracking data can be integrated into objective metrics for 
JPEG compressed images. The objective metrics used in this 
paper are both based on features, locally extracted from the 
images and serving as input to a neural network for the 
overall quality prediction. We compare various weighting 
functions to combine saliency with these objective metrics, 
taking into account the possible distraction due to artifacts 
that might affect the quality judgment. Experimental results 
indicate that including saliency into objective metrics in an 
appropriate way can further enhance their performance. 
 

Index Terms— Image quality assessment, objective 
metric, visual attention, neural networks

1. INTRODUCTION

Modern research on image quality metrics [1,2] seems to 
favor the integration of saliency in distortion quantification 
models. When observing an image, the human eye traverses 
it to gather visual information efficiently, neglecting poorly 
informative regions (typically, background areas). Hence, 
one would expect intuitively that visual attention plays a 
significant role in distortion visibility, by enhancing or 
reducing the actual visibility depending on saliency.  

Attention data can be either collected with subjective 
experiments using an eye tracker, or can be modeled. As a 
starting point, the use of eye-tracking data seems to be more 
appropriate, making the results independent of the reliability 
of the existing models. It has been shown in the past that 
eye-tracking data collected when evaluating image quality 
differ from those collected during free looking, especially in 
the case of JPEG compressed images [3,4]. These results 
indicate that artifacts may distract attention away from the 
natural scene saliency, and as such may affect the observer’s 
quality judgment. It should also be noticed that artifacts can 
degrade some regions more heavily than others, e.g. due to 
luminance or texture masking. In the case of JPEG 
compression this can result in a higher annoyance for 
artifacts in the background than in the foreground (Fig. 2). 
This distraction away from natural scene saliency seems to 
depend on the specific kind of distortion [3,5]. 

The core problem in defining an effective strategy for 
the integration of saliency into objective metrics is finding 
coherence with human perception. The typical integration 
strategy [2, 6], consisting of the multiplication of each local 
objective metric value with the corresponding measured 
saliency (Fig.1a), implies that artifacts in neglected regions 
are assumed to be less annoying than those in attention 
areas. This strategy showed limitations when dealing with 
distortions such as JPEG compression [6]. This might be 
due to underestimating the distracting power of background 
artifacts, and their impact on the quality judgment [3,5].  

In [7], a less trivial integration strategy (PF-SSIM) is 
proposed, taking into account both the saliency and the 
annoyance level of artifacts. In a first step, areas 
corresponding to fixations are weighted higher; afterwards, 
objective metric values are amplified for regions poor in 
quality (independent of their saliency). In this way, 
neglecting heavily distorted background regions is partially 
avoided. The effectiveness of this approach proves that 
more sophisticated integration strategies are worth to be 
investigated. However, PF-SSIM seems to perform 
differently for different distortions, obtaining less prominent 
results for JPEG compressed images.  

This paper investigates various saliency integration 
strategies to predict perceived quality especially for JPEG 
images. Instead of simply using the saliency data, the 
refined scheme weights the local distortion with a specific 
function of the saliency data (see Fig. 1b). Artificial Neural 

Figure 1 - A common approach for attention information integration into the 
quality assessment process (a), and our proposed approach (b) 
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Networks are exploited to perform the non-linear mapping 
between the locally weighted distortion metrics and the 
overall quality estimation. The investigation is applied to 
two objective metrics targeted to JPEG compressed images. 
In Section 2 these two objective metrics are explained in 
more detail. Section 3 describes the integration strategy. 
Section 4 presents the use of a neural network for modeling 
the nonlinearity. The experimental validation of the 
approach is reported in Section 5. 
  

2. OBJECTIVE METRICS TO QUANTIFY 
PERCEIVED BLOCKINESS

The two objective metrics considered in this paper are a 
blockiness-specific metric (NPBM) [8] and a Color 
Distribution-based [9] (CDM) metric. Both metrics aim at 
predicting quality degradation due to JPEG compression, 
but differ in several aspects: first, NPBM is a no-reference 
metric, whereas CDM is a reduced-reference one; secondly, 
NPBM quantifies the annoyance due to blockiness, while 
CDM encompasses the quality degradation due to all 
compression artifacts; finally, the two metrics are computed 
on a different local basis (see Fig. 3). 

Given an image, Io, and its distorted version, Id, NPBM 
first identifies the grid of blocking artifacts in Id, and then 
assigns to each pixel on the grid a value proportional to the 
blockiness visibility. CDM estimates the annoyance of 
artifacts by analyzing the color distribution across sub-
regions of the image; the procedure yields a pair of vectors 
(one based on Io and the other on Id), holding as many 
values as the number of blocks in which the image is split. 
In both cases the local values first need to be combined with 
local saliency, and then serve as input for the neural network 
to estimate an overall quality score. 
 

3. INTEGRATING SALIENCY INTO THE 
METRICS

 
The saliency integrated in the objective metrics is the 
natural scene saliency (NSS), obtained from eye-tracking 
experiments on original, uncompressed images. As 
mentioned above, the overall quality assessment might be 

affected by distraction of attention to the artifacts, but this is 
included in a later step by suitably weighting the natural 
scene saliency data before integration. Hence, when using 
the distracted saliency of distorted images, the artifact 
annoyance information might be double and overestimate 
the importance of artifacts in the overall quality estimation. 

3.1. Estimating local saliency 
Eye tracking records the observer’s pupil movements in 
terms of fixation points and saccades. From these data, a 
saliency map is constructed by applying to each fixation 
point a gray-scale patch, having a Gaussian intensity 
distribution with variance, , that approximates the size of 
the fovea (about 2° visual angle). The saliency value, 
NSSi(k,l), at location (k,l) of the saliency map for image Ii 
(having WI x HI pixels) is defined as: 
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where k [1, WI], l [1, HI]; (xj, yj) are the spatial coordinates 
of the jth fixation (j=1…T) recorded for all subjects. 

3.2. Integration strategy 
To integrate human saliency in the objective quality 
prediction, the principle of locally weighting distortion 
metrics is still applied. The integration process instead is 
modified, including the use of specifically designed 
functions of the saliency. Hence, the following steps need to 
be performed (see also Fig.1.b): 
1. A predefined function of the saliency data W(S) is 

computed; 
2. The local distortion values are weighted with the local 

modified saliency values; 
3. A spatial pooling strategy assembles a global 

descriptor of the image. 
Let NSS(x,y) be the value of natural scene saliency 

measured experimentally; this research considers three 
weighting functions for the saliency data: 
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Figure 2. Effects of JPEG compression (b) on a high quality sample (a). 
By simple weighting artifact visibility according to salience (c) the 

annoyance of the background is neglected. 

NPBM CDM 
Input: Image Id, size
WI x HI

Input: Images Id,Io,
size  WI x HI

1.Detect the grid of 
blocking artifacts 
BG(x,y)in Id

1. Split Id, Io into nb
square, adjacent non 
overlapping regions 

2. For each pixel(x,y) 
in the grid
Gd [x,y] = BM(Id[x,y])

2. For each region bi
in Id, Io
BVo[i] = CDM(bi,o)
BVd[i] = CDM(bi,d)

Output: distortion grid 
Gd, dimension WI/8xHI/8

Output: BVo, BVd, both 
of dimension 1 x nb

Figure 3. Pseudocode for objective blockiness metrics, assuming the size 
of blocking artifacts is 8x8. 
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 WNSS1 (as also used in [6]) privileges foreground 
areas higher, but avoids the inconvenience of nullifying all 
background areas. WNSS2 highlights both foreground and 
background regions, attenuating the transition (e.g., edges) 
areas. Finally, WNSS3 is a smoothed version of WNSS2, 
being a reverse Gaussian window. 

The procedure that integrates saliency in the objective 
metrics operates on a local basis, and therefore complies 
with the local computation strategy involved in the specific 
quality metrics. The procedure for the NPBM metric 
operates on the distortion grid, whereas the procedure 
associated with CDM proceeds on a region-by-region basis. 
The associated pseudo-codes are outlined as follows: 
NPBM
Inputs: a distortion grid Gd, a saliency map 
NSS,a weighting function WNSS 
1. Extract from NNS(x,y) pixels included in the 

Gd and store them in a salience grid
SG[x,y] = {NSS(x,y)|(x,y) Gd}

2. For each pixel in the grid, compute the 
weighting coefficient 

WSG[x,y] = WNSS(SG[x,y])
3. For each pixel (x,y) in the grid Gd compute 

the weighted metric WSM 
WSM_NPBM[x,y] = Gd[x,y]*WSG[x,y]

Output: WSM_NPBM, of dimension WI/8 x HI/8
CDM
Inputs: two distortion vectors BVo, BVd, a 
saliency map NSS, a weighting function WNSS. 

1. Divide NSS(x,y) in nb sub-regions bi of np
pixels, corresponding to those employed for 
the CDM computation, and for each bi compute 
the average salience value: 

SB[i]=
ibyxp

yxNNS
n ),(

),(1

2. For each block in the vector, compute the 
weighting coefficient 

WSB[i]=WNSS(SB[i])
3. For each element i in BVd compute the weighted 

metric WSM 
WSM_CDMo[i]=BVo[i]*WSB[i]

            WSM_CDMd[i]=BVd[i]*WSB[i]
Output: WSM_CDMo,WSM_CDMd, both of dimension 1xnb

The third step involves spatial pooling to aggregate the 
locally weighted distortion information into a single global 
descriptor. A statistical approach is employed for that 
purpose, and uses a percentile-based representation of the 
distribution of the weighted metric values over the image. 
The resulting global descriptor feeds the neural network. 
 

4. NEURAL NETWORKS FOR OBJECTIVE 
METRICS ENHANCEMENT  

 
Machine learning tools can bring a significant contribution 
to quality assessment systems [9]. In fact, previous research 
proved that the use of computational intelligence methods to 

map a numerical image description into a quality score can 
render the process of human perception quite effectively. To 
that end, an extension of the Multi Layer Perceptron 
paradigm, namely, the “Circular Back Propagation” (CBP) 
neural network (NN) [10] is proposed. A CBP NN includes 
an additional input, computed as the sum of the squared 
values of all input elements. This addition allows the NN 
either to adopt the standard sigmoidal behavior, or a bell-
shaped radial function, depending on the data. As a result, 
the NN does not need any a-priori assumption to formulate 
the model, yet allowing the use of conventional back-
propagation algorithms for training.   

The task of the CBP NN is to approximate the 
mapping function between the percentile-based global 
descriptor of the objective metric and the actual subjective 
quality rating. In case of the NPBM metric a single CBP NN 
was employed. When dealing with the CDM color based 
metric, the ensemble strategy described in [8] was adopted. 

 
5. EXPERIMENTAL RESULTS 

5.1. Visual attention data collection 
To obtain the visual attention data, eye movements were 
recorded with an infrared video-based tracking system 
(iView X RED, SensoMotoric Instruments), having a 
sampling rate of 50 Hz, a spatial resolution of 0.1°, and a 
gaze position accuracy of 0.5°-1.0°. A chin rest was 
employed to reduce head movements and to ensure a 
constant viewing distance of 70 cm. The 29 source images 
of the LIVE database [11] were displayed on a 19-inch CRT 
monitor with a resolution of 1024x768 pixels and an active 
screen size 365x275mm. The images were shown to twenty 
inexperienced participants, who were requested to freely 
look to the images during 10s. Each session was preceded 
by a 3x3 point grid calibration. The intensity of the resulting 
saliency map was linearly normalized to the range [0, 1].

5.2. Experimental validation 
For the experimental validation only the JPEG dataset of 
LIVE was employed, being a well established benchmark 
for quality metrics’ tests. The dataset was divided into two 
groups: a training set including 161 stimuli, and a second 
group for testing the generalization ability of the NN, 
including 72 stimuli. Image content included in the test set 
was not part of the training set, to ensure a robust mapping, 
independent of the particular content of the samples.  

NPBM was implemented as described in [8], and 
CDM as reported in [9]. Eleven percentiles of the 
distribution of the blockiness visibility computed with 
NPBM were taken for the global descriptor, while for CDM 
6 percentiles of the distribution of metric values for both the 
original and the distorted image were merged in a single 
global descriptor. All NN employed in the experiment were 
equipped with 3 hidden neurons.  

For both metrics the performance was validated: 
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1. without any saliency information; 
2. with integration of saliency using proportional 

weighting (WNSS0 in the following); 
3. with integration of saliency using the three weighting 

functions WNSS1, WNSS2, WNNS3.  
To evaluate the metrics’ performance, the correlation 

coefficients and the RMSE were chosen as significant 
indicators [12] and reported in Table I for both metrics and 
every studied weighting function. Table I also gives the 
difference in performance of every weighted metric with 
respect to the original one (i.e., without integrating salience 
information). A first, clear outcome is that the proportional 
weighting penalizes the metrics’ performance, as also 
observed in [6]. Conversely, when enhancing the metrics 
with a more specific weighting function of the saliency data, 
an improvement in performance can be observed, 
consistently for both metrics. In particular, WNSS1 provides 
the highest gain in performance, indicating that indeed 
regions of interest should be weighted higher, but 
background regions should not be nullified. WNSS3 yields a 
slightly worse performance with respect to WNSS2: this 
may be explained by the fact that the WNSS3 weights mid-
saliency regions to zero, causing again the loss of possible 
important information for quality evaluation.  

Compared to PF-SSIM [7], our proposed approach 
proves to be more effective, in terms of improvement of 
performance with respect to the original metric, independent 
of the weighting function used.  Evaluating the accuracy of 
each metric, it should be taken in account that in [7], no 
subset of images was used to test the regressed model; 
therefore its robustness is not proved. Conversely, the 
proposed model is proved to be reliable and independent of 

the specific image content. 
Overall results indicate that the proposed integration 

strategy is promising, although in a preliminary stage. 
Designing appropriate saliency weighting functions, related 
to the particular artifact observed, could indeed bring some 
added value to objective quality metrics, provided those 
functions contribute to consistently model the attention 
distraction caused by artifacts. 

5. CONCLUSIONS 

A new method for integrating visual attention into quality 
assessment systems for JPEG compressed images is 
proposed. Instead of directly weighting the local distortion 
metric values with the actual saliency values, appropriate 
functions are used to weight the attention data, before 
combining them with the distortion metric values. 
Experimental results seem to validate the proposed 
approach, confirming an enhancement in performance when 
appropriately weighted human saliency is embedded in the 
metric.  
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Table 1 - Performance indicators (Pearson Correlation Coefficient and 
RMSE) for NPBM and CDM, for every studied weighting function. 

Performance of the PF-SSIM metric is also given as a term of comparison. 

Pearson  
CC 

Diff. wrt 
No Salience RMSE Diff. wrt 

No Salience 

N
B

P
M

No Salience 0.9119        -   11.1536 - 

WSSN0 0.8188 - 0.0931 16.2731 5.1195 

WSSN1 0.9301 0.0182 9.9035 - 1.2501 

WSSN2 0.9221 0.0102 10.3373 - 0.8164 

WSSN3 0.9216 0.0097 10.3243 - 0.8293 

C
D

M

No Salience 0.9005 - 6.1895 - 

WSSN0 0.6596 - 0.2409 11.5149 5.3254 

WSSN1 0.9109 0.0104 5.8793 - 0.3102 

WSSN2 0.9103 0.0098 5.9984 - 0.1911 

WSSN3 0.9056 0.0051 6.1151 - 0.0745 

M
oo

rt
h 

y 
an

d 
B

ov
ik

SSIM 0.9695 - 6.4217 - 

PF-SSIM 0.9737 0.0042 6.4385 0.0168 

MS SSIM 0.9635 - 6.4982 - 

MS PF-SSIM 0.9659 0.0024 6.2847 - 0.2135 
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