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Abstract. A novel approach towards a simplified, though still reliable human 
vision model based on the spatial masking properties of the human visual sys-
tem (HVS) is presented. The model contains two basic characteristics of the 
HVS, namely texture masking and luminance masking. These masking effects 
are implemented as simple spatial filtering followed by a weighting function, 
and are efficiently combined into a single visibility coefficient. This HVS 
model is applied to a blockiness metric by using its output to scale the block-
edge strength. To validate the proposed model, its performance in the blocki-
ness metric is determined by comparing it to the same blockiness metric having 
different HVS-based models embedded. The results show that the proposed 
model is indeed simple, without compromising its accuracy. 

Keywords: Human vision model, image quality assessment, luminance mask-
ing, texture masking, blockiness metric. 

1   Introduction 

During the last decades a lot of research effort was devoted to the development of 
objective image quality metrics, which nowadays are widely used in a broad range of 
image rendering applications, such as for the optimization of video coding or for real-
time quality monitoring in displays. In the video chain of a current TV-set e.g., vari-
ous objective quality metrics, which determine the quality of the incoming video 
signal in terms of blockiness, noise, blur, etc. and adapt the parameters in the video 
processing algorithms accordingly, are implemented to enable an improved overall 
perceived quality for the viewer. To assure that they predict perceived quality, objec-
tive metrics based on models of the human visual system (HVS) are potentially more 
reliable for accurate quality prediction [1]. Indeed, including in an objective metric 
stimulus aspects important to the human eye, while removing perceptual redundancies 
inherent in metrics purely signal based has been proved to enhance the performance 
of a metric [1-2]. 

Advances in human vision research provided crucial information on the structural 
and functional mechanisms of the HVS [2], which has been primarily adopted to 
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design a variety of computational vision models in the literature [1-4]. The essential 
task of modeling the HVS is to quantitatively simulate its operations, which generally 
involves some lower level processing (e.g. sensitivity and masking) and some higher 
level processing (e.g. attention) in the visual system [2], as well as to restrictively 
incorporate them in a vision model [1]. However, as the HVS is extremely complex, 
HVS based objective metrics often are computationally intensive. Hence, from a prac-
tical point of view, it is desirable to reduce the computational complexity of the HVS 
model without significantly compromising its performance.  

Much work has been done trying to incorporate HVS properties into quality met-
rics [4-7]. In some research parametric vision models including certain HVS aspects, 
were constructed. The parameters in these models were defined based on the results 
of a number of psychovisual experiments [6-7]. As a consequence, the accuracy of 
these models largely depends on the parameter selection, and their robustness cannot 
be fully ensured. In other research just-noticeable-distortion (JND) profiles, which 
provide each stimulus being tested with a visibility threshold of the distortion [8-9], 
are used. In these models, the thresholds for various masking effects are different, 
which potentially introduces difficulties in combining different masking effects. In-
stead of only estimating the threshold, the HVS model used in [5] is formulated as a 
weighting function. The main drawback in this approach, however, is that only one 
weighting function, intrinsically combining luminance and texture masking, is taken 
into account, and that efficient integration of different masking effects is not consid-
ered. In our paper, we further rely on the approach taken in [5] by using a HVS model 
as a weighting function for visibility, but extend the idea by including both luminance 
and texture masking, and by combining both masking effects in a simple way into a 
single visibility coefficient. 

To evaluate this approach, we used the model in a blockiness metric comparable to 
[5]. The blocking artifact, which manifests itself as an artificial discontinuity between 
adjacent blocks, is known as the major type of distortion in block-based DCT coding. 
It is checked whether the simple HVS model helps to quantify the visibility of block-
ing artifacts in grey-scale images.  

2   The Simplified Human Vision Model 

The human vision model described in this paper adopts two fundamental properties of 
the HVS, which affect the visibility of a stimulus in the spatial domain: (1) the aver-
aged background luminance surrounding the stimulus, and (2) the spatial non-
uniformity in the background luminance [9]. They are well known as luminance 
masking and texture masking, respectively. Masking is the reduction in the visibility 
of one image component (the target) due to the presence of another (the masker), and 
it is strongest when both components have the same or similar frequency, orientation, 
and location [10]. In our proposed HVS model both spatial masking effects are esti-
mated in a simple way, and efficiently combined into a single visibility coefficient. 
The approach is illustrated in Figure 1. A window, representing the local surrounding 
of a stimulus (i.e. in our case a – possibly deviating – pixel value, e.g. a blocking 
edge), is scanned over all stimuli (i.e. in our case over all pixels in an image). Both 
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Fig. 1. Schematic overview of the proposed human vision model 

masking effects are estimated by analyzing the local signal properties within this 
window. Based on the results a visibility coefficient (VC), which reflects the percep-
tual significance of the stimulus, is defined. 

2.1   Local Visibility Due to Texture Masking 

Texture masking is modeled calculating a visibility coefficient (VCt). The higher the 
value of this coefficient, the smaller the masking effect, and hence, the stronger the 
visibility of the stimulus is. The procedure of modeling texture masking comprises 
three steps: 

− Texture Detection: calculate the local background activity (non-uniformity). 
− Thresholding: a classification scheme to capture the active background regions. 
− Visibility Transform Function (VTF): obtain a visibility coefficient (VCt) based 

on the HVS characteristics for texture masking.  

1 2 0 -2 -1   1 4 6 4 1 

4 8 0 -8 -4   2 8 12 8 2 

6 12 0 -12 -6   0 0 0 0 0 

4 8 0 -8 -4   -2 -8 -12 -8 -2

1 2 0 -2 -1   -1 -4 -6 -4 -1

  T1       T2   

Fig. 2. The high-pass filters for texture detection, and Visibility Transform Function used 

Texture detection can be performed convolving the signal with some form of high-
pass filter. One of the Laws’ texture energy filters [11] is employed here in a slightly 
modified form. As shown in Figure 2, 1T  and 2T  are used to measure the back-
ground activity in horizontal and vertical direction, respectively. A pre-defined 
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threshold Thr  ( 15.0=Thr  in our experiments) is applied to classify the background 

into ‘flat’ or ‘texture’, resulting in an activity value ),( jiIt , which is given by 
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where ),( jiI  denotes the pixel intensity at location ),( ji , and T  is chosen as 1T  for 
texture calculation in horizontal direction, and 2T  for vertical direction. It should be 
noted that splitting up the calculation in horizontal and vertical direction, and using a 
modified version of the texture energy filter, in which some template coefficients are 
removed, is done with the application of a blockiness metric in mind. 

A visibility transform function (VTF) is proposed in accordance to human percep-
tual properties, which means that the visibility coefficient ),( jiVCt  is inversely pro-

portional (nonlinear) to the activity value ),( jiIt . Figure 2 shows an example of such 
a transform function, which can be defined as 
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where 1),( =jiVCt  , when the stimulus is in a ‘flat’ background, and 1>α  ( 5=α  in 
our experiments) is used to adjust the nonlinearity. This shape of the VTF is an ap-
proximation, considered to be good enough.  

2.2   Local Visibility Due to Luminance Masking 

In psychovisual experiments it was found that the human visual system’s sensitivity 
to variations in luminance depends on (is a nonlinear function of) the local mean 
luminance [10]. In this paper, modeling the luminance masking is based on two em-
pirically driven properties of HVS: (1) a distortion in a dark surrounding tends to be 
less visible than one in a bright surrounding [9], and (2) a distortion is most visible for 
a surrounding with an averaged luminance value between 70 and 90 (centered ap-
proximately at 81) in 8bits gray-scale images [5]. The procedure of modeling lumi-
nance masking consists of two steps: 

− Local Luminance Detection: calculate the local averaged background luminance. 
− Visibility Transform Function (VTF): obtain a visibility coefficient (VCl) based 

on the HVS characteristics for luminance masking. 

The local luminance of a certain stimulus is calculated using a weighted low-pass 
filter as shown in Figure 3, in which some template coefficients are set to ‘0’. The 
local luminance ),( jiI l  is given by  
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where L  is chosen as 1L  for calculating the background luminance in horizontal 
direction, and 2L  for the vertical direction. Again, splitting up the calculation in 
horizontal and vertical direction, and using a modified low-pass filter, in which some 
template coefficients are set to 0, is done with the application of a blockiness metric 
in mind. 
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1 2 0 2 1   1 2 2 2 1 

1 2 0 2 1   0 0 0 0 0 
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Fig. 3. The low-pass filters for local luminance detection, and Visibility Transform Function 
used 

For simplicity, the relationship between the visibility coefficient ),( jiVCl  and the 

local luminance ),( jiIl  is modeled by a power law for low background luminance 

(i.e. below 81), and is approximated by a linear function at higher background lumi-
nance (i.e. above 81). This functional behavior is shown in Figure 3, and mathemati-
cally described as 
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where ),( jiVCl  achieves the highest value of 1 when 81),( =jiIl , and 10 << β  

( 7.0=β in our experiments) is used to adjust the slope of the linear part of this function. 

2.3   Integration Strategy 

The visibility of a stimulus depends on various masking effects co-existing in the 
HVS, and how to efficiently integrate them is an important issue in obtaining an accu-
rate perceptual model [8]. Since spatial masking intrinsically is a local phenomenon, 
the locality in the visibility of a distortion due to masking is maintained in the integra-
tion strategy of both masking effects. The resulting approach is schematically given in 
Figure 4. Based on the local image content surrounding a stimulus first the texture  
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Fig. 4. Integration strategy of the texture and luminance masking effects 

masking is calculated. In case the local activity in the area is larger than a given 
threshold (see equation (1)), a visibility coefficient VCt is applied, followed by the 
application of a luminance masking coefficient VCl. In case the local activity in the 
area is low, only VCl is applied. 

3   Blockiness Metric Using Proposed Model 

Given a DCT-coded image, the block-edge strength (BS) can be defined as the inter-
pixel difference across block boundaries (e.g. )1,(),(),( +−= jiIjiIjiBSh  is de-

fined as the inter-pixel difference across horizontal block boundaries, where ),( ji  

denotes the pixel location) [5]. The output of the proposed human vision model VC 
can be used to locally weight the BS to produce a visual blocking strength (VBS), 
which is given by 

 ),(),(),( jiBSjiVCjiVBS ×=  (6) 

The VBS can be easily implemented in a generalized block-edge impairment metric 
[5], which is formulated as 
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where || . || is the L2-Norm, and NBS is defined as the inter-pixel difference between 
pixels, which are not at block boundaries [5]. MO is used to indicate the output of any 
HVS model (in our case VC). The horizontal and vertical blocking artifacts can be 
calculated separately using the appropriate filters for VC, and then added together to 
give the resultant blockiness score, i.e. Metric = Metric(h) + Metric(v). 

4   Performance Evaluation 

The proposed human vision model is validated by its application to an objective 
blockiness metric. In order to analyze the model contribution rather than the perform-
ance of various blockiness metrics, a comparative evaluation is necessarily conducted 
by embedding different human vision models to the same blockiness metric. Based on 
the generalized blockiness metric defined in (7), three options are implemented for 
MO: (1) our proposed model, (2) the model used in [5], and (3) the JND profile used 
in [9]. This results in three blockiness metrics, which we refer to as VBSM, GBIM 
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and JNDM, respectively. The LIVE database [13], which consists of 233 JPEG im-
ages with their subjective Mean Opinion Score (MOS), is used to test the performance 
of these blockiness metrics. According to the Video Quality Expert Group (VQEG) 
[12], the performance of the objective metrics can be quantitatively measured by the 
Pearson linear correlation coefficient and the Spearman rank order correlation coeffi-
cient between subjective MOS and objective ratings after nonlinear regression.  

 

Fig. 5. Scatter plots of MOS vs. VBSM, GBIM and JNDM 

Table 1. Performance comparison of three objective metrics for image quality assessment 

Metric 
Pearson Linear 

Correlation 
Spearman Rank Order 

Correlation 
VBSM 0.9517 0.9251 
GBIM 0.9280 0.9116 
JNDM 0.9401 0.9176 

 
Figure 5 shows the scatter plots of the MOS vs. VBSM, GBIM, and JNDM, re-

spectively. The corresponding correlation coefficients are listed in Table 1. It is veri-
fied that a promising performance is achieved by applying our HVS in a blockiness 
assessment. In contrast to our model, the vision model used in GBIM [5] intrinsically 
combines luminance and texture masking into a single weighting function. Although 
this is statistically acceptable, it might degrade the model’s performance in some 
demanding circumstances, for example when assessing highly textured images. This 
problem is solved in our model by separating the two masking effects, and by adap-
tively combining them based on local signal features. Therefore, our model is more 
reliable in terms of content independency. This is confirmed by repeating the correla-
tion analysis on a limited set of 50 (out of 233) highly textured LIVE database images 
only. For these images the VBSM gives a Pearson correlation of 0.9391, whereas the 
GBIM results in a poorer correlation of 0.7695. Our model is comparable to the ap-
proach chosen in the JND profile [9] with the exception that the JND profile only 
considers a threshold, while our model also estimates supra-threshold visibility. This 
makes our model slightly more accurate and robust (for the limited dataset mentioned 
above the Pearson correlation for the JNDM is 0.9038). Our model also has the intrin-
sic advantage that knowledge on the nature of the artifact can simply be taken into 
account (e.g. by evaluating horizontal and vertical masking separately for blocking 
artifacts), which makes the model simple and efficient. This simplification is less 



 A Simplified Human Vision Model Applied to a Blocking Artifact Metric 341 

obvious in the more generally applicable JND profile model. Nonetheless, we expect 
also our model to be more generally applicable to the visibility of other artifacts 
(mainly by changing size and coefficients in the filters). 

5   Conclusion 

We have presented a simplified and more efficient human vision model based on 
estimating spatial masking effects of the HVS, such as luminance and texture mask-
ing. These masking effects were estimated using spatial filtering followed by a 
weighting function, and were efficiently combined into a single visibility coefficient. 
The application of this model in a blockiness assessment resulted in a strong correla-
tion with subjective ratings. The proposed model is unsupervised and does not need to 
be trained with subjective data. It can be easily integrated into either full-reference or 
no-reference approaches for measuring blocking artifacts.  
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