
Opponent Modelling in Automated Multi-Issue Negotiation 

Using Bayesian Learning
Koen Hindriks 

Man-Machine Interaction Group  

Delft University of Technology 

Mekelweg 4, Delft, The Netherlands 

+31.15.2781315 

k.v.hindriks@tudelft.nl 

Dmytro Tykhonov 
Man-Machine Interaction Group 

Delft University of Technology 

Mekelweg 4, Delft, The Netherlands 

+31.15.2783737 

d.tykhonov@tudelft.nl 

 

ABSTRACT 

The efficiency of automated multi-issue negotiation depends on 

the availability and quality of knowledge about an opponent. We 

present a generic framework based on Bayesian learning to learn 

an opponent model, i.e. the issue preferences as well as the issue 

priorities of an opponent. The algorithm proposed is able to 

effectively learn opponent preferences from bid exchanges by 

making some assumptions about the preference structure and 

rationality of the bidding process. The assumptions used are 

general and consist among others of assumptions about the 

independency of issue preferences and the topology of functions 

that are used to model such preferences. Additionally, a rationality 

assumption is introduced that assumes that agents use a 

concession-based strategy. It thus extends and generalizes 

previous work on learning in negotiation by introducing a 

technique to learn an opponent model for multi-issue negotiations. 

We present experimental results demonstrating the effectiveness 

of our approach and discuss an approximation algorithm to ensure 

scalability of the learning algorithm. 

Categories and Subject Descriptors 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 

– intelligent agents, multi-agent systems.  

General Terms 

Algorithms, Performance, Economics, Experimentation, Theory. 

Keywords 

Automated Multi-Issue Negotiation, Opponent Modelling, 

Preference Profiles, Bayesian Learning. 

1. INTRODUCTION 
In bilateral negotiation, two parties aim at reaching a joint 

agreement. They do so by exchanging various offers or bids using 

e.g. an alternating offers protocol [11] called the “negotiation 

dance” in [11]. In reaching such an agreement both parties usually 

aim to satisfy their own interests as best as possible, but have to 

take their opponent’s preferences into account as well to reach an 

agreement at all. This is complicated, by the fact that negotiating 

parties are generally not willing to reveal their preferences in 

order to avoid exploitation. As a result, both parties have 

incomplete information which makes it hard to decide on a good 

negotiation move and hard to reach an optimal agreement.  

Research has demonstrated that human negotiators may feel 

they did well in a negotiation but also shows that the results of 

untrained negotiators are in general suboptimal [1]. One reason 

for this is the limited computing abilities of humans when 

confronted with multiple issues that are negotiated. Software 

agents can outperform humans in well-defined negotiation 

domains [7]. However, in general such agents cannot reach 

optimal outcomes either without sufficient knowledge about the 

negotiation domain or their opponents. As negotiation is 

recognized as an important means for agents to achieve their own 

goals efficiently [12] the challenge thus is to maximize the 

performance of automated negotiation agents given this limited 

availability of information. 

Various options for improving the performance of 

negotiating agents have been outlined in the literature. The 

performance of a negotiating agent is to a large extent determined 

by the strategy used for proposing offers. Typically, in the 

automated negotiation literature concession-based strategies have 

been proposed. A concession-based strategy proposes as a next 

offer a bid that has a decreased utility compared to the previously 

proposed offer. An example of such a strategy, which does not use 

any domain or opponent knowledge, is the ABMP strategy [6]. 

The ABMP strategy decides on a negotiation move based on 

considerations derived from the agent’s own utility space only. 

Such a strategy cannot search through the negotiation outcome 

space for outcomes that are mutually beneficial for both parties 

and thus is not always able to reach so-called win-win outcomes 

[11]. The ABMP strategy will therefore most likely be inefficient 

in complex negotiation domains although it has been shown to 

outperform humans in small domains [1]. 

A natural suggestion then is to try and incorporate additional 

knowledge into a negotiating agent to improve its performance. 

The effectiveness of providing knowledge about the domain of 

negotiation has been demonstrated in the Trade-off strategy 

introduced in [5]. In particular, this paper shows that domain 

knowledge (coded as so-called similarity functions) can be used to 

select bids that are close to an opponent’s bids, thus increasing the 

likelihood of acceptance of a proposed bid by that opponent. In 

this approach, the knowledge represented by similarity functions 

is assumed to be public. As is to be expected, if similarity 

functions can be found, the Trade-off strategy outperforms a 

concession-based strategy such as ABMP [3]. Incorporating 

public domain knowledge into a strategy, however, still does not 

take into account the private preferences or priorities that an 
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opponent associates with negotiated issues. The more knowledge 

of these preferences is available the better the chance of win-win 

scenarios and optimal outcomes. 

The private preferences of an agent will not simply be 

revealed to an opponent. For example, generally it is unwise to 

reveal information about what is minimally acceptable (your 

reservation price) since this will provide an opponent with the 

opportunity to force this outcome [11]. If the negotiating parties 

have a sufficient amount of trust in each other, some information 

might be volunteered. Humans might also offer feedback about 

the bids received from the opponent (e.g., your last bid is actually 

worse than your previous bid). If no information is offered freely, 

an alternative to obtain information about an opponent’s private 

preferences is to derive it from the negotiation moves performed 

by that opponent during a negotiation. Various learning 

techniques have been proposed to uncover such private 

preferences [2, 5, 6, 13]. A complicating factor in this context is 

that the number of moves performed before reaching an 

agreement is limited (typically about 5 to 30 moves), and 

individual bids do not provide much information [14]. 

In this paper, we show that it is nonetheless possible to 

construct an opponent model, i.e. a model of the opponent’s 

preferences, that can be effectively used to improve negotiation 

outcomes. We provide a generic framework for learning both the 

preferences associated with issue values as well as the weights 

that rank the importance of issues to an agent. The main idea is to 

exploit certain structural features and rationality principles to limit 

the possible set of preference profiles that can be learned. We 

present a learning algorithm based on Bayesian learning 

techniques that uses assumptions about the structure of opponent 

preferences and the rationality of the bidding process itself. Our 

approach can be integrated into various negotiation strategies 

since the main focus is on learning an opponent’s utility space. 

The framework allows for the incorporation of prior available 

opponent knowledge but does not require any such knowledge. It 

thus extends and generalizes previous work on learning in 

negotiation by introducing a technique to learn opponent 

preferences for multi-issue negotiation. 

The remainder of the paper is organized as follows. Section 2 

discusses related work in the area of opponent modelling. In 

Section 3 the approach for learning an opponent model is 

introduced and the structural and rationality assumptions that 

enable such learning are explained. Section 4 presents 

experimental results to demonstrate the effectiveness of the 

approach. In Section 5 the learning algorithm is presented and 

additional techniques are introduced to manage the computational 

complexity of the learning algorithm. Finally, Section 6 concludes 

the paper and suggests several directions for future research. 

2. RELATED WORK 
Previous research analyzing various negotiation domains and 

algorithms, see e.g. [3, 5, 14], has shown that efficient negotiation 

requires both knowledge about the negotiation domain as well as 

about opponent preferences. In particular, some idea of what the 

opponent preferences are like is required to avoid so-called 

unfortunate steps in which a bid is proposed that is worse for both 

parties than one of the previous bids [3]. Related work in the area 

of opponent modelling in negotiation has resulted in a variety of 

approaches that usually focus on learning one aspect of the 

negotiation process, such as learning the opponent’s reservation 

point [13], issue priorities (typically weights are used to model the 

relative importance of each issue; [2, 6]), or the negotiation 

strategy itself [8]. This is only natural given the limited amount of 

evidence that can be used to learn from in a single negotiation. 

In order to position our own work, we discuss its relation to 

that of others. In [8] an approach to learn an opponent’s 

negotiation strategy as a sequence of bids made by that party is 

presented. The approach uses Markov chains to model the 

opponent strategy and Bayesian learning to update the 

probabilities of the transitions between states in the Markov chain. 

It does assume, however, that negotiations involve only one issue. 

Automated learning of a negotiation strategy is hard and is only 

feasible using data from multiple, successive negotiations. In this 

paper we do not attempt to learn a negotiation strategy but instead 

assume an opponent uses some form of concession-based 

strategy. The framework we present is able to learn multi-issue 

preferences during a single negotiation. 

In [5] a model is presented that incorporates domain 

knowledge for deciding on a negotiation move. This approach is 

extended in [2], which proposes to use kernel density estimation 

(KDE) to learn the issue priorities (weights) of an opponent. The 

basic framework modelling issue preferences by means of domain 

knowledge remains intact but is complemented to learn private 

issue priorities. We use the same structure of preference profiles, 

which allows for arbitrary sets of issue values and assumes that 

issues are independent [11]. In our approach, however, both issue 

priorities as well as preferences over issue values can be learned. 

Our framework also allows for the incorporation of available 

domain knowledge before a negotiation is started. 

Our approach is most related to work based on Bayesian 

learning. An interesting approach to opponent modelling is that of 

learning some of the parameters of an opponent strategy [13]. The 

opponent modelling proposed by [13] uses the Bayesian update 

rule to learn an opponent’s reservation point in one-issue 

negotiation. In [7] an opponent profile is learned in a qualitative 

negotiation setting. It is assumed that a fixed set of possible 

opponent profiles is given. Bayesian learning then is used to 

determine the likelihood that an opponent has one of these given 

profiles. The profile types are assumed to be public knowledge 

and an agent only has to learn which type of profile its opponent 

most likely has. Our approach to learning opponent preferences is 

also based on Bayesian learning but we introduce a general 

learning algorithm that is able to learn both issue preferences as 

well as issue priorities in a multi-issue negotiation and enables the 

learning of opponent preference profiles that have not been 

previously fixed. 

3. LEARNING AN OPPONENT MODEL 
Our goal is to introduce a learning approach that can be used to 

model an opponent in a negotiation with imperfect information. In 

this sense, negotiation can be viewed as an instance of a Bayesian 

game. In game theory, the class of Bayesian games refers to games 

in which players do not have complete information about each 

others’ preferences (or types) [11]. In such a setting, players can 

use evidence (or so-called signal functions) to update their beliefs 

about the other party. In a Bayesian game, in order to be able to 

learn, it is necessary to specify the strategy spaces and type 

spaces. Ideally, these spaces are defined generically enough to 

allow learning of a rich variety of opponent profiles. At the same 

time, however, these spaces should not be so rich to make it 

impossible to learn an opponent profile from the limited available 



evidence (in our case, the opponent’s bids). In this section, we 

present the hypothesis space that defines the range of opponent 

profiles that can be learned. We do so by introducing various 

reasonable assumptions about the structure of opponent profiles 

as well as about an opponent’s negotiation strategy. These 

assumptions are introduced to ensure the task of learning an 

opponent model is feasible. In Section 4 we present evidence that 

the proposed model is both effective as well as rich enough to 

learn opponent preferences in various negotiation domains. 

3.1 Structural Assumptions 
Our first assumption is a common one, see e.g., [11], and assumes 

that the utility of a bid can be computed as a weighted sum of the 

utilities associated with the values for each issue. Utility functions 

modelling the preferences of an agent thus are linearly additive 

functions and are defined by a set of weights wi (or priorities) and 

corresponding evaluation functions ei(xi) for each of n issues by: 

∑
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where xi is the value of issue i in bid bt in the negotiation round t. 

To ensure that a utility function has a range in [0, 1], the range of 

the evaluation functions is assumed to be in [0,1] and the weights 

are assumed to be normalized such that their sum equals 1. 

In order to learn an opponent’s preference profile or utility 

function U(b) we need to learn both the issue priorities or weights 

wi as well as the evaluation functions ei(xi). The objective of 

learning an opponent model thus is to find a model as defined by 

(1) that is the most plausible candidate or best approximation of 

the opponent’s preference profile. 

Our next assumption concerns the issue priorities in a 

preference profile (1). Some knowledge about issue priorities is 

important in order to be able to propose a trade-off on issues that 

are valued differently by negotiating parties. In [3] it is shown that 

in general it is not sufficient to know issue preferences, i.e. 

evaluation functions ei(xi), to be able to make trade-offs. Trade-

offs are an important means to get closer to the Pareto efficient 

frontier. To be able to propose a trade-off an agent must know at 

least two issues one of which is valued more by itself than its 

opponent and one which is more valued by the opponent than 

itself. In that case, an agent can make a concession on a less-

valued issue that is valued more by its opponent and propose an 

issue value that is more highly valued by the agent itself.  

In [5] it is argued that it is typically sufficient to know the 

ranking of the weights to be able to make trade-offs and 

significantly increase the efficiency of an outcome. We propose to 

define the set of hypotheses Hw about the private weights of an 

opponent as the set of all possible rankings of weights. It is then 

straightforward to associate real-valued numbers again with a 

hj∈Hw about weights, which can be computed as a linear function 

of the rank and also ensures weights are normalized, as follows: 
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where ri
j
 is the rank of weight wi in the hypothesis hj and n is the 

number of issues. 

Finally, we need to impose some additional structure on the 

evaluation functions in order to be able to learn a preference 

profile. To facilitate the learning of an opponent’s preferences 

over issue values we introduce a hypothesis space of predefined 

function types. A third assumption thus concerns the shape of 

evaluation functions and we assume that preferences over issue 

values can be modelled by means of three types of functions: 

- downhill shape: minimal issue values are preferred over other 

issue  values (think, e.g., of price and delivery time for a 

buying agent), and the evaluation of issue values decreases 

linearly when the value of the issue increases; 

- uphill shape: maximal issue values are preferred over other 

issue values (think, e.g., of price and delivery time for a 

selling agent), and the evaluation of issue values increases 

linearly when the value of the issue increases; 

- triangular shape: a specific issue value somewhere in the 

issue range is valued most and evaluations associated with 

issues to the left (“smaller”) and right (“bigger”) of this issue 

value linearly decrease (think, e.g., of an amount of goods). 

Figure 1 below illustrates this set of functions and introduces 

labels he
i,j to refer to the hypothesis that issue i has associated 

evaluation function j.  

 

Figure 1. Hypothesis space of possible evaluation functions. 

The three function types that define the range of possible 

evaluation functions are common in the literature, and, most 

importantly, in combination allow for the modelling of other types 

of function as well (see Figure 2 below). 
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Figure 2. Approximation of an evaluation function that is not in 

the hypothesis space by means of two evaluation functions. 

In order to see this, it should be taken into account that a 

probability distribution is associated with each hypothesis. This 

allows other types of functions to be approximated by associating 

different probabilities with various hypotheses. The predicted 

evaluation of an issue value is derived from all hypotheses that are 
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assigned a non-zero probability. The evaluation thus can be 

viewed as computing a most probable evaluation value of an issue 

value by computing the weighted sum of all evaluations of an 

issue value associated with some hypothesis with non-zero 

probability. Different probability distributions thus allow for 

approximating different types of evaluation functions that do not 

need to match any single evaluation function from the hypothesis 

space. Figure 2 shows an example of the approximation of a more 

complex evaluation function (solid line) that is not present in the 

hypothesis space. Many complex evaluation functions thus can be 

successfully approximated by a composition of several simple 

evaluation functions from the hypothesis space. The preferences 

of an agent can be viewed as a membership function that assigns a 

degree of membership to each hypothesis in the hypothesis space 

similar to membership in fuzzy set theory. In our case the 

membership of an evaluation function is modelled as a probability 

distribution and our approach is similar to that of triangular 

membership functions [9]. 

To summarize, the set of hypotheses concerning an 

opponent’s preference profile is a Cartesian product of the 

hypotheses about issue weights Hw and shapes of issue evaluation 

functions He
i: H = Hw×He

1×He
2×…×He

n. 

3.2 Rationality Assumptions 
The idea is to learn an opponent preference profile from its 

negotiation moves, i.e. the bids it proposes during a negotiation. 

In a Bayesian learning approach, this means we need to be able to 

update the probability associated with all hypotheses given new 

evidence, i.e. one of the bids. More precisely, we want to compute 

P(hj|bt) where bt is the bid proposed at time t. In order to be able 

to use Bayes’ rule to do this, however, we need some information 

about the utility the opponent associates with bid bt. 

As this information is not generally available, we need to 

introduce an additional assumption to be able to make an 

educated guess of the utility value of bt for an opponent. The 

assumption that we need is that our opponent follows a more or 

less rational strategy in proposing bids. In particular, we will 

assume that an opponent follows some kind of concession-based 

strategy. Although assuming such behaviour may not always be 

realistic it typically is necessary to perform at least some 

concession steps in order to reach an agreement. Moreover, in 

game-theoretic approaches and in negotiation it is commonly 

assumed that agents use a concession-based strategy [4, 10]. 

 

Figure 3. Conditional probability distribution of tactics. 

In line with [4] we assume that a rational agent uses a time-

dependent tactics (TDT). In line with such a strategy it starts with 

a bid of maximal utility and moves towards its reservation value 

when approaching the negotiation deadline. Thus, it is assumed 

that an agent’s tactics during a negotiation can be defined by a 

monotonically decreasing function. This assumption still allows 

that an opponent uses various kinds of tactics and no exact 

knowledge about an opponent’s negotiation tactics is assumed. 

More specifically, the rationality assumption is modelled as a 

probability distribution associated with a range of tactics (see 

Figure 3); as a result, each utility associated with an opponent’s 

bid thus also has an associated probability. 

In this paper we use linear functions to estimate the  

predicted utility value: u’(bt) = 1-0.05·t. This assumption allows 

us to compute the conditional probability P(bt|hj) representing the 

probability of bid bt given hypothesis hj at time t. This is done by 

defining the probability distribution P(bt|hj) over the predicted 

utility of bt using the rationality assumption and the utility of bt 

according to hypothesis hj (see Figure 3). Here the predicted 

utility u’(bt) of a next bid of the opponent is estimated as u’(bt-1)-

c(t) using a function c(t) that is the most plausible model of the 

negotiation concession tactic used by the opponent. We use the 

following function to model the conditional distribution, where 

u(bt|hj) is the utility of bid bt according to the hypothesis hj: 
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This probability distribution can be used consecutively to 

update the probabilities of the hypotheses using Bayes’ rule to 

compute P(hj|bt). 

The spread σ of the conditional distribution used in (2) 

defines the certainty of the agent about its opponent’s negotiation 

tactics. If an agent is certain about the utility of an opponent’s bid 

bt then σ can be set to a low value. A higher level of certainty 

increases the learning speed, since hypotheses predicting an 

incorrect utility value of a bid in that case would get assigned an 

increasingly lower probability, and vice versa. Overestimating the 

level of certainty, however, may lead to incorrect results, and 

some care should to be taken to assign the right value to σ. 

3.3 Bayesian Learning Approach 
The framework for learning introduced above can now be applied. 

In order to do so, the first step to perform is to initialize the 

probability distribution associated with each of the hypotheses in 

the hypothesis space H introduced in Section 3.1. This means 

either assigning a probability distribution to hypotheses based on 

available knowledge about opponent preferences, or, if no such a 

priori knowledge is available, to assign a uniform distribution. 

During a negotiation at every time t when a new bid bt is 

received from the opponent the probability of each hypothesis 

should be updated using Bayes’ rule: 
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Here the conditional probability P(bt|hj) represents the probability 

that bid bt  might have been proposed given hypothesis hj  (using 

the predicted utility according to rationality assumption (2)) and 

P(hj) is the current probability of hypothesis hj. The normalization 

factor in the denominator of Bayes’ rule ensures that the 

probability of the entire hypothesis space is 1. 
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The learning approach outlined will increase the probability 

of a hypothesis about an opponent’s preference profile that is 

most consistent with the bid sequence received so far from that 

opponent and provides the best match with the utilities of these 

bids, estimated using the conditional probability distribution 

associated with tactics. As a result, the more consistent the 

predicted utility is with a hypothesis, the higher the probability 

associated with this hypothesis will be. It is possible that several 

hypotheses predict (almost) the same utilities for a given bid 

sequence, but this simply means that it is not possible to 

distinguish different preference profiles based upon that bid 

sequence and more evidence would be needed to do so. 

The spread of the probability distribution P(hj) associated 

with the hypothesis space might also be used as a measure of the 

effectiveness of learning the opponent model. Presumably, 

successful learning of an opponent model will increase the 

probability of some of the hypotheses that best fit the bidding 

sequence received from an opponent and the number of 

hypotheses still considered viable would decrease. If not, the 

probability distributions P(hj) would remain a more or less 

uniform distribution. In the latter case the agent does not learn 

from the bids exchanged and it could use this fact in the 

negotiation strategy. For instance, negotiating against an eratic 

opponent that seems to more or less randomly propose bids, the 

agent might start using a Boulware strategy [4], in order to wait 

until an acceptable offer of the opponent is received. 

Finally, during a negotiation an agent can use the updated 

probability distribution to compute estimates of the utility of 

counteroffers it considers and choose one that e.g. maximizes the 

utility of its opponent, to increase the likelihood of acceptance by 

that opponent. The expected utility ū(bt) of a counteroffer bt may 

be computed as follows, where wi and ei are the weights 

respectively evaluation functions predicted by hypothesis hj∈H:  
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4. EXPERIMENTAL ANALYSIS 
In this section, experiments are performed to show the 

effectiveness of our approach to learn the opponent model and to 

use it to find a good counteroffer. The Bayesian learning agents 

used in the experiment update their opponent model each time a 

new bid is received from the opponent in line with the Bayesian 

learning approach introduced above. 

The strategy used by the Bayesian learning agents is based 

on the smart meta-strategy of [5]. The agent starts with proposing 

a bid that has maximal utility given its own preferences. Each 

consecutive turn the agent can either accept the opponent’s bid or 

send a counter-offer. The agent accepts a bid from its opponent 

when the utility of that bid is higher than the utility of its own last 

bid or the utility of the bid it would otherwise propose next. 

Otherwise, the agent will propose a counter-offer. 

The basic idea of the smart meta-strategy is to propose a 

counter-offer that has the same utility (lies on the same utility iso-

curve) as the previous bid of the agent but improves the utility of 

the opponent whenever possible. Formally, the strategy searches 

for a bid bt+1 that satisfies, where uown denotes the agent’s own 

utility function and τ denotes a target utility: 

( ){ }
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The set ( ){ }δτ ≤−xux own  represents the utility iso-curve that 

have the same utility for the agent, (within a small interval         

[τ-δ;τ+δ]) but might have different utilities for its opponent. The 

strategy selects a bid from the iso-curve that maximizes the 

expected utility of the opponent. The bid bt+1 lies on the predicted 

Pareto frontier according to the current opponent model.  If it is 

not possible to find a bid that thus improves the utility of the 

opponent, a concession step will be performed after performing 

smart steps (i.e. steps that stay on the same iso-curve and try to 

improve the next bid for the opponent by using the updated 

opponent model). The agents perform a concession step by 

decreasing the target utility τ of their next bid by a fixed 

concession step c. 

Two sets of experiments were run: one based on a 

negotiation domain with 5 issues taken from [8], and one based 

on a negotiation domain with 4 issues taken from [5]. To compare 

the performance of the Bayesian learning approach, the agents 

using opponent modelling were compared with agents using the 

Trade-off strategy and the ABMP strategy discussed in Section 2. 

Two variants of learning agents were tested: one with and one 

without initial domain knowledge; the first to compare with the 

Trade-off strategy which uses domain knowledge and the second 

to compare with the ABMP strategy which does not. All agents 

played against the same opponent, which used the Trade-off 

strategy, to be able to compare negotiation traces and results. 

4.1 Experimental Results 
In the first domain, the setting is that of an employee and an 

employer who negotiate about a job assignment and related issues 

such as salary. An interesting aspect of this domain is that both 

parties have the same preferences with regards to one of the 

issues. Figure 4 shows the results of the experiments, including 

the resulting negotiation traces as well as the Pareto efficient 

frontier. The agreements reached are also marked explicitly. 

 

  
Figure 4. Employee-Employer negotiation domain. 

In this domain, the Bayesian agents very efficiently learn issue 

weights when they are provided with domain knowledge, 

indicated by the fact that the negotiation trace almost coincides 

with the Pareto frontier. But even without domain knowledge the 



Bayesian agent needs little time to learn the issue evaluation 

functions and consecutively improves the weight estimations. The 

Trade-off strategy, which uses domain knowledge but simply 

assumes that issue priorities are uniformly distributed, makes a 

number of unfortunate steps in this domain due to the fact that 

different issues are important to each party. Finally, the ABMP 

strategy is clearly outperformed by the strategy using Bayesian 

learning and almost uniformly concedes on all issues without 

considering the opponent’s weights. ABMP lacks the capability of 

trading-in less important issues for more important ones. Since the 

Trade-off strategy is influenced by the efficiency of the 

opponent’s strategy, it moreover performs less efficient against 

the ABMP strategy. Note that only the Bayesian agents were able 

to reach an agreement close to the Pareto efficient frontier. 

Due to space limitations, we only provide the utilities of the 

agreements reached in the second domain, the Service-oriented 

negotiation (SON) domain from [5]. This domain has four issues, 

30 values each (810,000 possible outcomes) and preferences of 

both parties are strictly opposing on all issues. Table 1 shows the 

results, where the dealer role is varied and again, for comparison 

reasons, an agent using the Trade-Off strategy was used to play 

the buyer role. The negotiation traces do not add much 

information compared to the previous domain, although the 

Trade-off strategy performs better on this domain. The results 

provide evidence that the learning approach performs consistent 

over various domains. 

Utility of the outcome 
Strategy of Dealer 

Dealer Buyer 

Bayesian with domain knowledge 0.83 0.76 

Bayesian 0.83 0.76 

Trade-Off 0.78 0.77 

ABMP 0.64 0.56 

Table 1. Negotiation outcomes in the SON domain. 

5. SCALABLE LEARNING ALGORITHM 
In this section, the learning approach is refined and an outline of a 

scalable algorithm is discussed. The experimental results of the 

previous section clearly demonstrate the effectiveness of the 

approach outlined in Section 3. Here our main concern will be the 

size of the hypothesis space H = Hw×He
1×He

2×…×He
n. This space 

is exponential in the number of issues and consists of n!⋅mn 

hypotheses where m denotes the number of evaluation function 

hypotheses (see Figure 1). Clearly, even though the approach is 

very effective in small domains, it is not computationally feasible 

to update this many hypotheses in larger negotiation domains. In 

order to deal with larger domains, some additional independence 

assumptions will be introduced. As is to be expected, this will 

impact the performance of the learning algorithm, but we will 

present additional experiments that show improved performance 

compared to that of the other strategies discussed here. 

To enable scaling of the proposed learning approach for 

negotiation domains of high dimensionality it will be assumed 

that the probability of individual components of a hypothesis 

h=〈hw, he
1, …, he

n〉 about a complete preference profile can be 

learned independently. That is, it will be assumed that weight 

ranking hypotheses hw and the shape of each issue evaluation 

function he
i can be learned independently from each other.  This is 

a reasonable approximation since each bid may be presumed to 

give at least some information about one issue relative to the 

available knowledge about the other issues. 

First, we will explain how each of the evaluation function 

hypotheses can be learned independently. The idea is illustrated in 

Figure 5. Figure 5(a) shows the approach outlined in Section 3 as 

a Bayesian network whereas Figure 5(b) illustrates how the 

independence assumption can be exploited to split up each 

hypothesis into its components and add these as nodes to the 

network. To simplify the notation we assume that symbol he
i,j  can 

be applied to a bid as a function and results in an evaluation value 

of the bid according to the evaluation function of hypotheses j for 

the issue i.  The size of the local probability distribution table of 

each hypothesis in the original approach is n!⋅mn-1. In the 

approximation method, which introduces additional nodes for 

every hypothesis, the size of such a local probability distribution 

table is only m. Each of these additional nodes represents an 

expected value of the evaluation function for a given bid:  
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Second, we need to consider an approximation method for 

learning weight ranking hypotheses. Note that the number of 

possible weight orderings is n! which is prohibitive for large n. To 

reduce the number of weight ranking hypotheses the 

normalization requirement associated with weights is relaxed. 

Instead of n! hypotheses a set of m hypotheses for each weight is 

introduced, where each hypothesis represents a possible value of 

the weight. Similar to the hypotheses for evaluation functions we 

introduce the symbol hw
i,j to denote the hypothesis about the value 

of the weight for issue i according to hypothesis j, and will also 

sometimes use it to denote the value of the associated weight, i.e. 

hw
1,1=0, hw

1,2=0.1, hw
1,3=0.2,…. Then, the expected value of an 

issue weight can be calculated as follows: 
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The nodes of expected values for evaluation functions and 

weights are used to update local probability distributions only. 

The expected utility of a bid bt is now calculated as follows: 
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Since a utility function is assumed to be linearly additive this 

approximation of weight ranking hypotheses does not influence 

the selection of a bid that maximizes the opponent’s utility (when 

computing a counteroffer). However, the approximation may 

affect the prediction of the utility of an opponent’s bid thus 

influencing the quality of learning when updating the probability 

of the hypotheses in line with the conditional distribution 

associated with the opponent’s tactics. 

Now we proceed and show that this approximation solves the 

scalability problem. Note, that instead of normalizing probabilities 

over complete set of possible utility spaces the probability 

distribution over weights and evaluation functions are normalized 

for every issue: 
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Taking this into account, we can show that the expected utility of 

a bid is the same as in the original approach when the same a 

priori probability distributions are used. The main idea concerns 

the modification of the learning itself, i.e. the update of the 

probabilities associated with hypotheses about single weights and
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Figure 5 – Bayesian network representing learning probabilities (a) over complete preference profiles hypotheses and over (b) individual 

hypotheses for weights and shapes of evaluation functions. 

 

evaluation functions of single issues. Instead of calculating the 

probability distribution for a given hypothesis with respect to all 

possible partial opponent models we now use the best prediction 

(or expected value) of the current model. In other words, the 

probability distribution of a hypothesis is estimated by using the 

probability distributions provided by the model learned so far. 

The update of the probability of a hypothesis thus assumes that 

these probability distributions of other hypotheses yield a 

reasonably good prediction of the opponent’s preferences. 

It can be shown that if this is the case, the obtained 

probabilistic model would correspond to the same model built for 

the hypothesis space over complete preference profiles. In other 

words, we can show for hk∈H that: 
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It thus is clear that the approach will greatly benefit from the use 

of partial domain knowledge when available. In that case, the 

update of the probability distribution associated with a hypothesis 

would not be based on probabilistic information associated with 

the opponent model but on given domain knowledge. 

5.1 Updating Probabilities of Hypotheses 
Because the first bid has maximal utility for a negotiator 

according to one of the rationality assumptions introduced earlier, 

this bid does not provide any information about an opponent’s 

issue priorities. The first bid thus only can be used to update 

probability distributions of hypotheses about an opponent’s 

evaluation functions and the probability distributions of 

hypotheses about weights can be updated only after the agent has 

received more than one bid from an opponent. 

Taking this into account, the conditional distribution 

associated with tactics can be used to update the hypothesis of 

issue k using the expected evaluation values and weights of the 

rest of the issues as defined by the current opponent model. So, 

suppose we need to update the probability distribution of the 

hypothesis for issue k after receiving a bid bt from the opponent. 

In order to do so, we introduce a partial expected utility 

( )tk bu >−<
 of bid bt that does not take the contribution of issue k 

to the utility of the bid into account, and is defined as follows: 
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The probability of the hypotheses over the shape of the evaluation 

function can then be updated according to Bayes’ rule as follows: 
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where w

kh  is the expected value of the weight of issue k. 

The probability of the hypotheses related to the weight of 

issue k can be updated in a similar way as follows: 
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Because the application of Bayes’ rule to multiple 

hypotheses needs to be implemented as a sequential procedure, 

care should be taken to perform a Bayesian update by using the 

expected utility, weights and evaluation values that are derived 

from the probability distribution before any Bayesian update has 

been performed. Otherwise, any hypotheses that are updated after 

other hypotheses have been updated would be biased by the 

updated probability distributions of these hypotheses that already 

have been updated. Additionally distributions of a priori 

probabilities have to be adjusted in such a way that the sum of the 

expected values of the weights equals one, i.e.: 
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5.2 Experimental Results 
In this section, additional results are presented to 

demonstrate the effectiveness of the scalable learning algorithm 

on larger domains. The same experimental setup is used as in 

Section 4.1. However, a more complex domain is used: the 

AMPO vs. City domain of [11], which consists of 10 issues, 5 

values in average each (total of 7,128,000 possible outcomes). 

The results on this domain presented in Figure 6 show, as is only 

to be expected, that it becomes harder to stay close to the Pareto 

efficient frontier. The performance of the Bayesian learning agents 



is now similar to that of the agent based on the Trade-Off strategy 

and both stay close to the Pareto frontier. The ABMP strategy 

shows similar behaviour as on the earlier negotiation domains, 

and is outperformed by the other strategies. The results thus are 

still very good. Also, note that the agreement reached by the 

Bayesian agents has a higher utility than that reached by the other 

strategies and that both the Bayesian agent without domain 

knowledge as well as the Trade-off agent make quite big 

unfortunate steps. 

 

 

Figure 6. Negotiation dynamics for the AMPO vs. City domain.  

6. CONCLUSIONS AND FUTURE WORK 
In this paper, an opponent modelling framework for bilateral 

multi-issue negotiation has been presented. The main idea 

proposed here to make opponent modelling in negotiation feasible 

is to assume that certain structural requirements on preference 

profiles and on the strategy of an opponent are in place. Due to 

the probabilistic nature of the model, these assumptions still allow 

for a great diversity of potential opponent models. 

The learning approach has been tested on several domains to 

demonstrate the effectiveness of the approach. The results 

moreover showed the effectiveness of using an opponent model in 

a negotiation strategy to improve the efficiency of the bidding 

process. In the future work we will analyze the quality of the 

learned opponent modelled with respect to the original 

preferences profile of the opponent. We will investigate influence 

of the negotiation domain, preference profile, and opponent’s 

strategy on the quality of the learning. 

The learning approach does not rely on prior knowledge 

about e.g. the domain, but if such knowledge is available it can be 

incorporated and used to initialize probability distributions in the 

opponent model. However, domain knowledge would be useful to 

increase the efficiency of learning a correct opponent model in the 

scalable learning algorithm proposed. 

One interesting line of future research is to test and initialize 

the learning algorithm for specific domains with an “average 

preference profile” derived from (large sets) of negotiator profiles 

for that domain. It is expected that performance of the algorithm 

on specific domains can be further enhanced. We are currently 

setting up an experiment to collect preference profiles for a 

negotiation domain and will test how our learning algorithm 

performs when it is initialized with such an aggregated profile. 

Another direction for future research concerns the hypothesis 

space used in the opponent modelling framework. Although we 

think the evaluation functions proposed in this paper provide a 

good basis for approximating many preference profiles in practice 

other choices of function types might prove more effective in 

certain domains. 
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