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Abstract.
of the self-attribution of agency is presented, based onnéiegithe-
ory of apparent mental causation. A model to compufeeding of
doingbased on first-order Bayesian network theory is introdukeat! t
incorporates the main contributing factors to the formatbsuch a
feeling. The main contribution of this paper is the presgéoaof a
formal and precise model that can be used to further test gvisgn
theory against quantitative experimental data.

1 INTRODUCTION

The difference between falling and jumping from a cliff isigrsfi-
cant one. Traditionally, this difference is characterizetérms of the
contrast between something happening to us and doing someth
This contrast, in turn, is cashed out by indicating that thespn in-
volved had mental states (desires, motives, reasonstionenetc.)
that produced the action of jumping, and that such factore \ab-
sent or ineffective in the case of falling. Within philosgpimajor
debates have taken place about a proper identification oéteeant
mental states and an accurate portrayal of the relationdegtwhese
mental states and the ensuing behavior (e.g. [2, 22, 6, 4,511
to name but a few). In this paper, however, we will focus ony ps
chological question: how does one decide that oneself iotige
inator of one’s behavior? Where does the feeling of agenegeco
from? Regarding this question we start with the assumptian an
agent generates explanatory hypotheses about eventseninen-
ment, a.o. regarding physical events, the behavior of sthad of
him/herself. In line with this assumption, in [19] Wegnestsngled
out three factors involved in the self-attribution of aggrtbe prin-
ciples of priority, consistency and exclusivity. Althougls account
is detailed, both historically and psychologically, Wegdees not
provide a formal model of his theory, nor a computational ngec
nism. In this paper, we will provide a review of the basic atp®f
Wegner’s theory, and sketch the outlines of a computatioradel
implementing it, with a particular focus on the priority pciple.

The paper is organized as follows: Section 2 provides anneutl
of Wegner's theory and introduces the main contributingdiescin
the formation of an experience of will. In section 3, it is @ed that
first-order Bayesian network theory is the appropriate riogédool
for modeling the theory of apparent mental causation anddehaf
this theory is presented. In section 4, the model is insagadi with
the parameters of tHeSpyexperiment as performed by Wegner and
the results are evaluated. Finally, section 5 concludegied some
directions for future research.
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In this paper, a first step towards a computational model2 APPARENT MENTAL CAUSATION

Part of a theory of mind is the link between an agent’s statigtarac-
tions. That is, agents describe, explain and predict agfioterms of
underlying mental states that cause the behavior. In péatichuman
agents perceive their intentions as causes of their behdaoeover,
intentions to do something that occur prior to the corredpanact
are interpreted as reasons for doing the action. This utaheli®ig
is not fully present yet in very young children. But by the aget

or 5, children also are able to distinguish intentions froesices or
preferences and from the outcomes of intentional actiond3B

But even to adults it is not always clear-cut whether or noa@n
tion was caused by ones own prior intentions. For exampl&nwh
one finds someone else on the line after making a phone call to a
friend using voice dialing, various explanations may comentnd.
The name may have been pronounced incorrectly making it toard
recognize it for the phone, the phone’s speech recognitiinnoay
have mixed up the name somehow, or, alternatively, one mag ha
more or less unconsciously mentioned the name of someogre els
only recognizing this fact when the person is on the line. fiéreep-
tion of agency thus may vary depending on the perception ekon
own mind and the surrounding environment.

In the self-attribution of agency, intentions play a crlicide, but
the conscious experience of a feeling that an action waspeed
by the agent itself still may vary quite extensively. We wamgain
a better understanding of the perception of agency, inquaati of
the attribution of agency to oneself. We believe that thetaition of
agency plays an important role in the interaction and thgnession
of interaction between agents, whether they are human oputan
based agents. As the example of the previous paragraptraties, in
order to understand human interaction with a computerebagent
itis also important to understand the factors that play airohuman
self-attribution of agency. Such factors will enhance audlerstand-
ing of the level of control that people feel when they find tisehaes
in particular environments. One of our objectives is to dbailcom-
putational model to address this question which may alsoskéuu
in the assessment by a computer-based agent of the levehwbto
of one of its human counterparts in an interaction.

As our starting point for building such a model, we use Wegner
theory of apparent mental causation [20]. Wegner arguesttaee is
more to intentional action than forming an intention to aud @er-
forming the act itself. A causal relation between intentol action
may not always be present in a specific case, despite thehtatcit t
is perceived as such. This may result in an illusion of cdn¥fize
versa, in other cases, humans that perform an act do notiyerce
themselves as the author of those acts, resulting in moressrdu-
tomatic behavior (automatisms). As Wegner shows, the tdinka



between intention and action cannot be taken for granted.

Wegner interprets the self-attribution of agency as an gspee
that is generated by an interpretive process that is fundtaihe sep-
arate from the mechanistic process of real mental causgt@jnHe
calls this experience thieeling of doingor the experience of wilf
The fact that Wegner’s theory explains the feeling of doisgte
result of an interpretive process is especially intergstom our pur-
poses. It means that this theory introduces the main fathiatplay
a role in interpreting action as caused by the agent itselbspec-
tively. It thus provides a good starting point for constimigta com-
putational model that is able to correctly attribute ageiocy human
agent when it is provided with the right inputs.

Wegner identifies three main factors that contribute to Kpeg-
ence of conscious will, or a feeling of doing: (i) An intentito act
should have been formed just before the action was perfarfrieat
is, the intention must appear within an appropriately swalldow
of time before the action is actually performed. Wegnersddis the
priority principle. (i) The intention to act should be consistent with
the action performed. This is called tensistency principlegiii)
The intention should exclusively explain the action. Tretreuld not
be any other prevailing explanations available that woufdan the
action and discount any intention, if present, as a caudeedidtion.
This is called theexclusivity principle

A crucial factor in assessing the contribution of the ptiogrin-
ciple to the feeling of doing is the timing of the occurrendethe
intention. In [21] it is experimentally established thas #xperience
of will typically is greatest when the intention is formedoaib 1 sec-
ond before the action is performed. As Wegner argues, thogityri
principle does not necessarily need to be satisfied in ocdbate a
feeling of doing.People may sometimes claim their acts were willful
even if they could only have known what they were doing dfier t
fact[19]. Presumably, however, an agent that makes up an iotenti
after the fact to explain an event will (falselgglievethat it occured
prior to that event.

The contribution of the consistency principle to the expece of

emotions, habits, reflexes, traits, and (ii) external oneh sas ex-
ternal agents (people, groups), imagined agents (spétits), and
the agent’s environment. In the cognitive process whicHuawas
self-agency these alternative causes may discount artiotieas the
cause of action. Presumably, an agent has background kegsvle
about possible alternative causes that can explain a pkntievent
in order for such discounting to happen. Wegner illustrétésprin-
ciple by habitual and compulsive behavior like eating a dabag
of potato chips. In case we know we do this because of conwaulsi
habits, any intentions to eat the chips are discounted asesduy
knowledge of such habits.

3 COMPUTATIONAL MODEL

One of our aims is to provide a computational model in ordesate
idate and explicate Wegner’s theory of apparent mentalateums
This theory defines the starting point for the computationael.
But the theory does not describe the functioning of the &ffec
cognitive mechanisms that lead to a feeling of doing at tkel lef
detail which is required for achieving this goal. We thuséntvmake
some modeling choices in order to spedifyw a feeling of doing is
created. In this section a computational model is introdubat pro-
vides a tool for simulating the feeling of doing. In the negtton
the model is instantiated with an experiment performed bygivde
as a means to validate that the model also fits some of the ieaipir
evidence that Wegner presents to support his theory.

It is clear that any model of the theory of apparent mentasaau
tion must be able to account for the varying degrees or lendlse
experience of a feeling of doing, the variation in timing ofention
and action, the match that exists between those, and theetbmp
tion that may exist between various alternative causeghiieone
of these factors nor the feeling of doing itself can be regme=d
as a two-valued, binary state, since humans can experieace an
less control over particular events. As observed in [19n@ur con-
scious intentions are vague, inchoate, unstudied, or jizéb@bsent.

will depends [...] on a cognitive process whereby the thoughts ocyye just don't think consciously in advance about everythieglo,

curring prior to the act are compared to the act as subsedyqrar-
ceived. When people do what they think they were going tddee t
exists consistency between thought and act, and the erperiaf

will is enhanced19]. The comparison of thought and action is based

on a semantic relation that exists between the content ahtheght
and the action as perceived. The thought may, for examphee e
act, or contain a reference to its execution or outcome. Téehar
nism that determines the contribution of the consistenirciple to a
feeling of doing thus relies on a measure of how strongly hioeight
and action are semantically related. Presumably, theibatitn of
the consistency principle is dependent on the prioritygipie. Only
thoughts consistent with the act that occurred prior to gregved
act, within a short window of time, contribute to a feelingduiing.
The contribution of the exclusivity principle to the experce of
will consists in the weighting of various possible causest tire
available as explanations for an action. The principle istedhat
when the own thoughts of agents do not appear to be the exelusi
cause of their action, they experience less consciousanitl; when
other plausible causes are less salient, in turn, they e more
conscious will [19]. People discount the causal influencers po-
tential cause if there are others available [1]. Wegnelirdjsishes
between two types of competing causes: (i) internal onek asc

3 Feeling of doingand experience of willare used interchangeably in this
paper. Wegner sometimes also uses the plegserience of contras syn-
onym for the former phrases.

although we try to maintain appearances that this is the case

Given the considerations above, it seems natural to usebapro
bilistic approach to model the degrees of priority, and tsieacy
and to weigh the various competing alterative explanatiMre-
over, the cognitive process itself that results in an exgoee of will
is an interpretive or inferential process. Given the vagimputs re-
lating to time and perceived action, a cause that explaiesdtion
is inferred which may or may not induce a feeling of doing. AuRa
ral choice to model such dependencies is to use Bayesiamrstw
Bayesian networks [17] have been used extensively to maaelat
inference based on probabilistic assessments of variatss afeevi-
dence (see for examples of this in research d¢imeary of minde.g.
[8, 18]). Bayesian networks also allow us to use symbolicesgnta-
tions of the thoughts formed and the actions performed bygenta
which need to be compared in order to compute a feeling ofgdioin
the theory of apparent mental causation.

However, Bayesian networks have their limitations. ESabnt
Bayesian networks define a joint probability distributiorepa pre-
defined set of propositions. To stay within the topic of thiper,
one could easily construct a Bayesian network for a pagicsgt of
intentions, actions and alternative causes for the actibasn ex-
ample, Figure 1 shows a simple causal network modeling ttet t
closing of a door can be caused either by a strong wind or kecau
of the intention of an agent to close the door. The principlegri-
ority and consistency can be encoded in the strengths ofgperd



dencies in the graph, i.e. in the conditional probabilityl¢éaassoci-
ated with the node labeled d$e door closesSuch models can be
constructed for every particular situation, but obvioutlis would
not provide a generic account. In the example, if we would ti&
additionally consider the possibility that another personld have
closed the door, a new network would have to be introducedaand
new conditional probability table would have to be definedtéad,
what is needed is a more general, higher-level theory thatbea
used to reason over any event and its potential causes. Tdel mo
moreover should explicitly model the general principlegpobrity,
consistency and exclusiveness introduced above as wéledsnter-
actions between them, rather than hide these contribugicigis in

a single probability distribution.
There is a
strong wind
The door
closes

Figurel. A Simple Causal Network

| want to
close the
door

As many have noted the shortcomings of Bayesian networkse th
has been a surge in research on generalizations of Bayediaarks
inrecent years [13, 7, 9, 14]. These formalisms differ iratioh and
in representational power, but central to all of these agqies is the
ability to represent probability distributions over réteus or predi-
cates rather than over atomic propositions. In this papelti¥ntity
Bayesian Network (MEBN) Theory is used [14]. MEBNasknowl-
edge representation formalism that combines the expegsiwer
of first-order logic with a sound and logically consistergdtment of
uncertainty

An MEBN Theory consists of several MEBN fragments that to
gether define a joint probability distribution over a set o$tfior-
der logic predicates. Figure 2 shows two MEBN fragmentsheag

a proper probability distribution, a node can be defined imgls
fragment only, in which it is said to beesident The node labeled
Exists(a,tq) is resident in the left fragment in Figure 2.

As usual, the links between nodes represent dependencies; E
resident node has a conditional probability table attachatigives
a probability for every state of the node given the statessgiarent
nodes. Prior distributions are attached to resident nodtbeut par-
ents. Essentially, every fragment defines a parameterizgedan
network that can be instantiated for all combinations of/#sables
that satisfy the constraints imposed by its context nodes.

In order to be able to compute a feeling of doing, the priobpro
bility distributions are assumed to be given in this papbae gompu-
tational model presented does not explain how explanatgpgthe-
ses about perceived events are generated, nor does iténatuec-
count of the perception of these events. Even though the Inasede
sumes this information somehow has already been made laeqila
is setup in such a way that it already anticipates an accoumoim-
puting at least part of this information. In particular, thechanism
approach of [1] to explain causal attribution has playedidigg role
in defining the model. The basic idea of this approach is¢hasal
attribution involves searching for underlying mechanisfiormation
(i.e. the processes underlying the relationship betweertduse and
the effect)given evidence made available through perception and in-
trospection. Assuming that each mechanism defines a particor
variation (or joint probability distribution) of the cotibuting factors
with the resulting outcome, the introduction of separatbpbility
distributions for each particular event that is to be expdican be
avoided. As a result, the number of priority and causaliggfnents
needed is a function linear in the number of mechanismsadsyé
the number of events.

Priority matching fragment

IsA(Intention,c) IsA(Timelnterval t;)
IsA(Timelnterval,t.)

Priority matching fragment

IsA(Timelnterval t;)
IsA(Timelnterval,t,)

depicted as a rounded rectangle, that model the prioritycjplie.
A fragment contains a number of nodes that represent ran@oim v
ables. In accordance with the mathematical definition, semdari-
ables are seen as functions (predicates) of (ordinaryavies.

The gray nodes in the top section of a fragment are caltedext
nodesthey function as éilter that constrains the values that the vari-
ables in the fragment can take. In contrast to the nodes ibdtiem
section of a fragment, context nodes do not have an assogietb-
ability distribution but are simply evaluated as true osé&alAnother
perspective on these nodes is that they define what the retsor
about. The context nodes labeled with el (¢, v) predicate define
the typet of each of the variables used. In our model, we distin-
guish intentions, events, opportunities, and time interia which
the former may occur. Intentions aneental statesvhich are to be
distinguished from events, which are temporally extendedi may
change the state of the world. Opportunities are stateshndmable
the performance of an action. In the model, the probalsliéissoci-
ated with each of the nodes should be interpreted as théhiice
that the agent attaches to the occurrence of a particular, steent or
other property (e.g. causal relationship) given the aliglavidence.

Dark nodes in the bottom section of a fragment are cadlpdt

Priority(c,t;,a,ta)

Priority(c tc,a,ta)

Figure2. Priority Fragments

3.1 Priority Fragments

The priority principle is implemented by the Priority fragnts in
Figure 2. Though these fragments are structurally sintitew, frag-
ments are introduced in line with the idea that differentsedmecha-
nisms may associate different time frames with a cause aedféct.
For reasons of space and simplicity, Figure 2 only depictsfrag-
ments, one associated with intentional mechanisms leadiagtion
and a second one for other causal events. The exact timeetliffes
depend on the mechanism involved. For example, when mohimag t
steering wheel of a car one expects the car to respond imtebgdia

nodesand are references to nodes that are defined in one of thiut a ship will react to steering with some delay.

other fragments. In Figure 2, the node in the right fragmeheled

TheEXxistsrandom variables model that an agent may be uncertain

Exists(a,tq) is an input node. To ensure that the model defineswhether a particular state or event has actually taken @heepar-



ticular time (also called thexistence conditiom [12]). If there is
no uncertainty these nodes will have value true with prditgliine.
The probability associated with thriority random variable is non-
zero if the potential cause occurs more or less in the righe frame
before the event that is explained by it and the associatetbpil-
ity that the relevant events actually occurred is non-zierbne with
[21], the probability associated with the intentional magism in-
creases as the time difference decreases to about one sésonme
typically needs some time to perform an action, the probigistarts
to decrease again for time intervals less than one secoct.dtghe
fragments may be instantiated multiple times, illustrate&ection
4, depending on the number of generated explanatory hygpesghe

3.2 Causality Fragments

Figure 3 depicts two fragments corresponding respectiwdly the
intentional mechanism (left) and another type of mechargisgit)
that may explain an event. In this case, the fragments aretstally
different in two ways. First, even though both fragmentsunegthat

causec and effecta are consistent with the mechanism associated

with the fragment, the consistency nodes are different. tJpe of
consistency associated with the intentional fragmentedahten-
tional consistencyis fundamentally different in nature from that
associated with other mechanisms as it is based on the defjree
semanticrelatedness of the content of intentiorand the event
(represented as a probability associated with the nodéy.réfiects
the fact that one of Wegner’s principles, the consistenayciple, is
particular to intentional explanations. Second, an aolditi context
node representing an opportunityo act on the intention is included
in the fragment corresponding with the intentional mecéianiAn
intention by itself does not result in action if no opportyrtio act
is perceived. In line with common sense and philosophicebt
[5], the intentional mechanism leads to action given amitive and
the right opportunity as input. The model entails that trespnce of
multiple opportunities increases the probability thatlevant inten-
tion is the cause of an event. Additional detail is requirednbdel
this relation precisely, but for reasons of space we refgt@pfor a
formal model.

Causality fragment Causality fragment

IsA(Timelnterval t.)

IsA(Timelnterval t.)

IsA(Intention,c) IsA(Timelnterval,t.)

IsA(Timelntervalt,)

IsA(Opportunity,0)

© (Priority(c.t at)

==y
/ Consistency(c,a) / | % ori
) \ Priority(ct..ata)

Figure3. Causality Fragments

Intentional
Consistency(c.a)

The node labeled’ause(c, tc, a, tq) in the intentional fragment
models thdeeling of doing The associated probability of this node
represents the probability that the intentioaf an agent has caused
eventa. In other words, it represents the level of self-attribotaf

agency for that agent. The probability associated with thdende-
pends on the priority and consistency as well as on the pregée.
existence) of botle anda. Obviously, if eitherc or a is not present,
Cause(c, tc, a,tq) Will be false with probability 1. Additionally, in
the intentional fragment an opportunigymust exist.

3.3 Exclusivity fragment

In order to model the exclusivity principle, an exclusivitpgment
is introduced as depicted in Figure 4. In general, if theeeranltiple
plausible causes for an event, exclusivity will be low. Tachlly,

this is modeled as an exclusive-or relation between the etimp
causes. The value of the random variabBleclusivity is set to true
to enforce exclusivity. As a result, given two causes of Wwhoaly

one is very likely, the posterior probability of the unligetause is
reduced. This effect is known as tldescounting effectalso called
explaining away[17], and has been studied extensively (e.g. [1]).

Exclusivity fragment

IsA(Intention,c) v IsA(Event, c)

IsA(Timelntervalt;)

IsA(Timelnterval t.)

Cause(c t;,a,t,)

Figure4. Exclusivity Fragment

Given an event to be explained and a number of generated ex-
planatory hypotheses (including all contributing factassociated
with a particular mechanism), each of the fragments digzlisin-
stantiated accordingly, taking into account the contextdaions.

To obtain a single, connected Bayesian network, all of tiselte
ing fragments are connected by merging the reference nodks w
their resident counterparts. Using this network, fibeling of doing
can be computed by performing probabilistic inference aretyjng
theCause(c, tc, a,tq) variable in the intentional fragment given the
values of the other nodes in the network. By querying otfiet.se
variables we can find by means of comparison which of the poten
tial causes is the most plausible one. As a result, only wheméde
representing the feeling of doing has a high associatecdhpility an
agent would explain the occurrence of an event as causedddf it

4 SIMULATION OF THE | SPY EXPERIMENT

In this section, an instantiation of the model that corresisowith an
experiment performed by Wegner is presented. In [21] theltsesf

the | Spy experiment are presented that tested whether participants
report an experience of agency for something that is moshylithe
result of someone else’s action. In the experiment two gipgits

are seated on opposite sides of a table. On the table a scpene b
that is attached to a computer mouse is located and botltipariis



Intentional
Consistency(l,,S)

Intentional
Consistency(l:,S)

Figure5. An instance of the model for tHeSpyexperiment

are asked to put their fingertips on the board and to move theseno
by means of the board in slow sweeping circles. By doing sarsoc

ular picture is only explainable by the movements made byptre
ticipant and the confederate. The stop does not need todrpiated

is moved over a computer screen showing a photo from the book as anintentionalaction, however. This will depend on the likelihood

Spy[15], hence the name of the experiment, picturing about 5dlism

assigned by the participant that a relevant intention isighoto be

objects. The subjects had to move the mouse for about 30 deconpresent by either the participant itself or the confedelatthel Spy

after which they would hear a 10 second clip of music througgdh

experiment it is reasonable to assume that the explanaymytime-

phones and within this period they had to stop moving the mous ses generated by the participant consist only of intentiossop the
and then rate on a continuous scale whether they allowedtdipe s cursor on a particular picture. Given the additional faet tine con-

to happen or intended the stop to happen. In addition to th&anu
subjects would occasionally hear words over the headphdtars
ticipants were told that they would hear different bits ofsicuand
different words. One of the participants however did notrtrea-
sic at all, but was a confederate who received instructioms the
experimenter to stop on a particular picture or to let theeothar-
ticipant determine the stop. The forced stops were timeat¢oioat
specific intervals from when the participant heard a cowadmg
word that was intended to prime a thought about items on tteeac
By varying timing, priority was manipulated. For unforcedyss the
words heard by the participant corresponded about halfetithe
to an object on the screen.

It turned out that in initial experiments in which the cordeate
did not force stops the mean distance between stops andctiveqs
that were primed by words was not significantly differentnfirthe
mean distance in trials in which the prime word did not redear ob-
ject on the screen. These initial experiments were perfdrnoeon-
firm that participants would not stop the cursor on an objsuply
because of hearing the word. In consecutive experimentge\Ver,
where the stops were forced by the confederator, partitsgended
to perceive the stops as more or less intended, dependeme time
interval between the hearing of the prime word and the actagl.
In particular, if the word occurred between 5 and 1 seconéisrée
the stop, a significant increase in self-attribution waseolsed.

41

Based on the description of th&pyexperiment and the results pre-
sented in [21], an instantiation of the computational mddel been
derived.

Given the description of the experiment, a stop on or neart&cpa

Instantiating the M odel

federate forces a stop on a picture that corresponds witprihee
word, it is, moreover, reasonable to assume that to exgi&revent
only an intention to stop on the picture described by the envord
and an opportunity to do so are generated. If the prime worbis
example swan the participant thus is assumed to only generate the
hypotheses that the participant intends to stop on the svcnre
and the confederate intends to stop on the swan picture eTihes
tentions are supposed to be generated in conjunction wétbppor-
tunity to do so by means of moving the mouse. Finally, appater
time intervals need to be associated with the intentionsadlsas the
events. In thd Spyexperiment, what matters is the actual time dif-
ference between these, so any choice of interval with thd time
difference can be used.

Figure 5 shows the Bayesian network that is obtained by mergi
several instantiations of the model fragments as explaabede and
by instantiating the variables with these values. Intetstiare respec-
tively labeledI, and s and the opportunity is labeled The event
of stopping on the swan picture is denoted $yThe priority and
causality fragments associated with the intentional meisha are
instantiated twice, once for the relevant participantteiion and
once for the confederate’s intention. As a result, two pgmsgauses
are identified which is reflected by the twtnuse random variables
in the network. Each of the resident nodes are merged withitinp
nodes to obtain a single connected network.

4.2 Estimating Probability Distributions

Given that the structure of the network adequately modelpéntic-
ipant’s causal inferences, the remaining challenge isgo@ate the
appropriate (conditional) probability distributions tvithe nodes in
the network.



In the experiment it is tested whether primed words influghee
attribution of agency, or a feeling of doing. In the modektts re-
flected by the fact that the participant believes at leash wime
probability that s/he formed an intention to stop on theupiet It is
not quite clear how probable the participant will think sheel the
relevant intention based on the description in [21]. It idlskaown
that priming may have various measurable effects but agtexpmn
[21] the behavior of the participant is not significantly ighced. It
may be that the participant constructs an intention afterfalst and
that this intention reconstruction is influenced by the jmignIn any
case, it seems that the probability should not be set too fimimcor-
porate a possible effect of priming it should be slightlyHgg than
uncertainty (a probability of 50%). Similar reasoning wabiridicate
that the participant’s belief that the confederate had éhevant in-
tention to stop on the swan picture would be less than 50%glgim
because there is no reason at all to suggest that the coafedeuld
have such an intention. Maybe the fact that during the inttos
the participant is informed that the confederate hearsrotloeds
may also be of influence on the relative certainty associatédthe
belief that the confederate does not have the relevanttioten

The prior probability associated with the opportunity topsbn
a particular picture, we estimate, will be quite low. Thealggion
in [21] does not make this completely clear. The setup sugdkat
mouse movement will be less precise in comparison with teristg
of a mouse in more normal conditions. In line with this, thela-
bility associated with the opportunity node is set to abd3to
reflect that it will be quite hard to steer the mouse to a target

We assume that the participant has virtually no uncertaibtyut
the event to be explained, i.e. the stop on the swan pictun&hw
seems reasonable given the setup of the experiment whichgriak
easy to observe where the cursor is located on the screen.

Finally, the prior probability of the intentional consisty nodes
has to be established. Since the prime word that the patitipears
refers to the object on which the cursor stopped on the sdqaen
though the precision is not indicated in [21]), we have skt phob-
ability quite high for both participant and confederate boat 80%
(both participant and confederate’s intention have theeseomtent,
which semantically represents the stop event).

The remaining nodes for which we need to define conditional

probability distributions are the nodes labeled wittriority,
Cause and Exclusivity random variables. These conditional prob-
ability distributions are not given through perception tray infor-
mation about a particular event that is to be explained. &lpesb-
ability distributions are not situation-dependent in cast with the
prior probabilities discussed above. They define the loftb@cor-
responding fragments.

The quantitative data presented in [21] about the influerfickeo
time interval between the primed word and the (forced) stophe
reported perceived intention can be used to assign a piipatis-
tribution to the priority node. As mentioned above, the gtyofrag-
ment associates the probability that cause and effect atedeto
each other in the right time frame depending on the mechariibia
should be highest according to the findings presented inf(@tjme
differences of 5 or 1 second, and very low for time intervdlS@
second and -1 second (i.e. the prime word is provided aféestibp).

The conditional probability distribution associated withe

Cause random variable is defined as follows: It yields a high prob-

ability when all of its inputs are true; in case one of theists
nodes is believed to be very likely to be false, #ieuse node has a
very low associated probability; the probabilities asated with the
Priority and Intentional Consistency input nodes give rise to a

more gradual effect on the probability associated with ¢thasse
node.

Finally, the Exclusivity variable is defined as an exclusive-or
with some noise to indicate that exclusivity is the preféretate,
but such that the possibility of two causes that explain &meis not
completely excluded.

4.3 Evaluating the Results

The resulting model including the associated probabilistribu-
tions gives the same results as those reported in [21]: lathgori
probability associated with thBriority variables is higher (corre-
sponding to the time interval between 5 to 1 seconds), thdg-a s
nificantly higher feeling of doing is produced than otheevihe
second column of Table 1 shows the posterior probabilityhef t
Cause(Ip,tp, S, ts) Nnode that models the feeling of doing for sev-
eral a priori probabilities of thé&riority variable. For a probability
of 0.85 for priority the probability ofCause corresponds to the feel-
ing of doing for a time difference of about 1 second as desdrih
[21]. Similarily, the values obtained with a probabilityrfpriority

of 0.8 and0.35 correspond to the feeling of doing reported in [21]
for respectivelys seconds and0 seconds time diffence between the
prime word and the stop of the cursor.

In [21], also the variance in feeling of doing observed in éxe
periment is reported. One would expect that a person’s pelitp
influences his feeling of doing. Various people, for exampigght
be more or less sensitive to priming or might have a strongeakw
tendency to claim agency in a setup such as in Bgyexperiment.
We tested the model with different values of priority with ader-
ated a priori probability for the existence of intention®#5 and
with a high a priori probability 0f0.65 for the existence of an in-
tention. The corresponding posterior probabilities of these node
are shown in Table 1. These probabilities adequately quoreswith
the variance reported by Wegner, which gives some addItsna
port for the proposed computational model.

P(Exists(Ip,tp))

P(Priority) | 0.55 [ 0.45] 0.65
03| 041 036 0.45

0.35| 0.44 | 0.39 | 0.48

0.5| 0.51| 0.46 | 0.56

0.8 | 0.62 | 0.56 | 0.66

0.85| 0.63 | 0.58 | 0.67

Table1l. Posterior probability oCause(Ip,tp, S, ts) for different a
priori probabilities ofPriority(Ip, tp, S, ts) andExists(Ip, tp).

5 CONCLUSION AND FUTURE WORK

In this paper, a first step towards a computational model @&#if-

attribution of agency is presented, based on Wegner’s yhafoap-

parent mental causation [19]. A model to compufeeling of doing
based on first-order Bayesian network theory is introdulatiihcor-

porates the main contributing factors (according to Wegrtkeeory)

to the formation of such a feeling. The main contributionta$ tpa-

per is the presentation of a formal and precise model thatigee

detailed predictions with respect to the self-attributddagency and
that can be used to further test such predictions against qgtan-
titative experimental data. An additional benefit of the eldd that
given empirical, quantatitive data the parameters of theork can

be learned, using an algorithm as described in [14].



A number of choices had to be made in order to obtain a comf22]

putational model of Wegner’s theory of apparent mental atois.
Not all of these choices are explicitly supported by Wegntreory.
In particular, it has been hard to obtain quantitative valizedefine
the probability distributions in our model. The report oethSpy
experiment in [21] does detailed information, but did nobvide
sufficient information to construct the probability dibutions we
need. Certain values had to be guessed in order to obtainroat
corresponding with the results in [21]. The only validatimithese
guesses we could perform was to verify whether variatioroofesof
the input values of our model could be said to reasonablyespond
with the reported variations in the experiment in [21]. Itiear that

more work needs to be done to validate the model. In future&kwor

we want to design and conduct actual experiments to valatadéor
refine the model of self-attribution.

To conclude, we want to remark that there are interestiragiogis
here with other work. As is argued in [18], Bayesian netwaaks
not sufficient as cognitive models of how humans infer cauBesse
networks are very efficient for computing causes, but anntietves
instantiations from more general, higher-level theorlesa sense,
this is also the case in our model since both the consistaacy f
ment as well as the causality fragment in our first-order Beaye
theory of apparent mental causation need to be instantigtether
domain-specific theories in order to derive the right seinaneta-
tions between thoughts and actions, and to identify pateother
causes of events. Additional work has to be done to fill inehgeaps
in the model, starting from e.g. ideas presented in [1, 18].
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