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Abstract. Various methodologies for structuring the process of domain 
modeling have been proposed, but there are few software tools that provide 
automatic support for the process of constructing a domain model. The problem 
is that it is hard to extract the relevant concepts from natural language texts 
since these typically include many irrelevant details that are hard to discern 
from relevant concepts. In this paper, we propose an alternative approach to 
extract domain models from natural language input. The idea is that more 
effective, automatic extraction is possible from a natural language text that is 
produced in a focused dialogue game. We present an application of this idea in 
the area of pre-negotiation, in combination with sophisticated parsing and 
transduction techniques for natural language and fairly simple pattern matching 
rules. Furthermore, a prototype is presented of a conversation-oriented 
experimentation environment for cooperative conceptualization. Several 
experiments have been performed to evaluate the approach and environment, 
and a technique for measuring the quality of extraction has been defined. The 
experiments indicate that even with a simple implementation of the proposed 
approach reasonably acceptable results can be obtained.  

Keywords: natural language processing, domain modeling, grammar parsing. 

1 Introduction 

Domain models (including domain ontologies) are now a common asset created and 
used in many contexts, perhaps most prominently in Knowledge Engineering and 
Information System Development (two increasingly related disciplines). The groups 
involved in the research reported in this paper are concerned with domain modeling 
from different perspectives ranging from supporting system development to 
supporting negotiators. For the moment, the chief context to which we apply our ideas 
and setup is that of conceptual modeling in small, communication-oriented, volatile 

domains. The main characteristic of modeling in such domains is that it cannot be 
solidly based on existing data (corpus, documents, reference models) since the 
concepts involved reflect knowledge of only a small number of individuals, which in 
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addition may crystallize only in the course of the interaction between those involved 
(consensus-based modeling). A typical example of such a context would be 
prenegotiation, a process that among others involves establishing a conceptual 
common ground on the basis of which negotiations can take place, and specification 
of information system requirements and models in fast evolving environments 
(Krogstie, 2003). 

Only limited research has yet been done concerning the process of domain 
modeling (for example [1], [2], [6], [13]), and only some of it has an experimental 
character. In order to study and, in the longer run, support and improve domain 
modeling in general, we believe it is important to create controlled environments that 
enable an experimental approach to modeling processes and strategies. We believe 
that such environments can evolve into actual modeling environments that take 
modeling beyond mere “ad hoc model creation” (graphical or otherwise). Such 
environments will take the shape of cooperative software tools that actively support 
the participants in the domain description process and allow them to discuss the target 
domain in a focused and structured manner, and, consecutively, can present them with 
a clear domain model they can then validate and refine. 

The research presented here concerns the design, deployment, and evaluation of a 
prototype of a conversation-oriented experimentation environment for cooperative 
conceptualization. Our focus is on the detailed succession of expressive actions taken 
by people involved in a conversation for domain description/modeling, and (crucially) 
on the patterns, rationale, and strategies underlying such actions ([6]). 

Our approach involves two key steps: focused elicitation of a domain description in 
the form of a structured, natural language dialogue (captured in written textual form), 
and automated extraction of the core domain concepts from that dialogue. In our 
approach, we assume that a predefined meta-model is available and the aim of 
extraction is to populate this predefined meta-model. The meta-model for the 
experiment was designed by us and is presented in this paper. 

We also present data and results from an experiment that has been carried out in 
order to evaluate the combined focused elicitation and automated extraction approach. 
As part of this evaluation, we use a manually constructed domain model as a 
benchmark (see section 5) and apply a metric to calculate the success rate of the 
automatic model extractor.  

We believe our approach is promising for a number of reasons. If one takes a 
complex text or document, not specifically created to render core concepts, as a basis 
for automated domain analysis, then there are two main problems: 

• The Natural Language Processing (NLP) involved (parsing, semantic analysis) is 
highly complex, very likely beyond the point of realistic application; 

• Text analysis usually renders a large number of concepts with strongly varying 
degrees of relevance. Separating relevant from irrelevant concepts is a daunting 
task that cannot be automated (without substantial material to “learn about the 
domain from”, that is). 
So, if we cannot rely on high quality bulk input that can be effectively analyzed 

(indeed we assume we cannot), then instead we prefer to start with the creation of a 
simple text that is purpose created to contain core domain concepts and show that 
such texts can be analyzed using simple, robust NLP techniques. In order to obtain 
such natural language input, we decided to use focused dialogue games. Such 
dialogue games have a clear goal shared by the participants in the dialogue. As a 
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consequence, it is reasonable to expect that the task of “filtering out” relevant 
concepts happens as the text is created, based on human intelligence in 
description/production rather than reading/interpretation afterwards. This “filtering” 
effect may be enhanced by structured/guided elicitation, i.e. by introducing additional 
rules in the dialogue setting that should be adhered to by the participants. This 
approach thus is based on an alternative method for domain modeling: a guided 
elicitation process, which aims at the production of focused texts including primarily 
relevant, core domain concepts in a structured environment, to which the automated, 
and therefore repeatable, extraction procedure is then applied. 

An additional advantage of our approach lies in our use of a basic meta-model that 
requires minimal categorization effort on behalf of the extractor. This reduces the 
sensitivity to errors in the extraction process. The structure we use matches the basic 
structures in many comparable but more elaborate meta-models (ontological meta-
models), suggesting that, for example, extending this approach to more negotiation-
specific and complex meta-models (such as negotiation description language [3], or to 
more generic wide-use ontology specification languages such as OWL [17], should 
not be too challenging. Later refinement of the domain model is possible if required 
(both of the meta-model and of the elicitation procedure). 

We propose a method to automatically extract a (partial) domain model from a 
focused dialogue of natural language. The effectiveness of the extraction method has 
been empirically validated by means of a series of experiments. The results of the 
experiments were validated against manually built models using a validation metric. 
The metric calculates the distance between the “ideal” model extracted manually by a 
human domain modeling expert and the atomically extracted model. 

In the next section, we present our domain extraction model. Section 3 briefly 
introduces the NLP techniques used in the extraction tool. The extraction approach 
itself is introduced in Section 4. The results of the experiments with human dialogues 
are used to validate the extraction approach in Section 5.  Our conclusions are 
presented in Section 6. 

2 The Domain Extraction Approach 

The extraction approach proposed here consists of into two phases: 

• Focused Elicitation  

• Automated Extraction 
The goal of the first phase is to organize collaboration of the domain experts on 

model elicitation with a specific focus on the domain: the natural language input for 
the domain extraction system should have a reasonable fit with the meta-model that is 
used. To ensure such a fit we propose to use variants of a dialogue game. The main 
advantage of dialogue games is that the users can be manipulated to keep their 
sentences simple. 

The second phase automatically extracts a model from the elicited domain 
description in terms of a given domain meta-model. The method that is proposed here 
for extracting a domain model instance from natural language is a combination of 
robust, wide coverage parsing techniques and what we call concept extraction rules, 
which are used by a pattern matching algorithm to process the parser results. In two 
steps, the automatic domain extraction system transforms the natural language input 
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into a domain model, an instance of the given meta-model. The effectiveness of this 
method relies on the assumption that the natural language utterances have a 
reasonable “fit” with a predefined, given meta-model. Effective concept extraction 
rules can then be derived from this meta-model and the output format of the parser. 

 

 

Fig. 1. Method for Automatic Model Extraction 

The method for automatic domain model extraction is shown in Figure 1. A 
transcript of a dialogue is provided as input to the system. A robust dependency 

parser is used to transform the utterances into so-called dependency trees (see below 
for an explanation). The dependency trees are input to a pattern matching module 
which is able to take the context of a tree (representing one or more factoids) into 
account, e.g. for resolving pronoun references. Finally, so-called concept extraction 

rules are used to extract a concrete instance of a domain model. These rules are fairly 
simple pattern matching rules derived from the generated parser output and the meta-
model. 

In the next sections we first present the concept of dependency trees and the EP4IR 
dependency parser. Then we introduce the concept extraction rules and the approach 
for extracting a domain model from a given set of dependency trees. 

3 Dependency Trees and Dependency Triplets 

All utterances are parsed using the EP4IR grammar of English [7], [8], normalized, 
transduced to dependency trees, and unnested to dependency triplets. By a 
dependency tree (DTree) we mean a graph (a tree with possibly some confluent arcs) 
whose nodes are marked with words and whose arcs are marked with certain syntactic 
relations. A dependency tree obtained from an utterance represents the most important 
syntactic relation in the utterance:  SVOC (Subject/Verb/Object/Complement) trees 
and NP (Noun Phrase) trees. The SVOC trees correspond to the factoids (who is said 
to do what to whom under what circumstances) expressed by the utterance. The 
following dependency tree shows the typical structure of the attributed noun and of 
the SVOC-sentence. 



Automatic Issue Extraction from a Focused Dialogue      5 

 

 

Fig. 2. Example of a dependency tree 

By a dependency triple (DT) we mean a triple (word, relation, word), which forms 
part of a dependency tree, from which it can be obtained by unnesting the tree. DT's 
are the building-stones that constitute factoids. There is a long history of the use of 
DT’s and the related head/modifier pairs [9] in Information Retrieval.   

A dependency tree gives an abstract view of the structure of a sentence in terms of 
well defined syntactic word relations from which semantic relations can be derived 
relatively easily. A dependency tree is much more compact and abstract than a 
constituent tree (parse tree). 

The parsing process takes into account the subcategorization frames of verbs, 
nouns and adjectives, as well as the verb valences. The words occurring in the DTs 
are lemmatized. The following table shows the most important dependency relations, 
together with their concrete notation as a DT and an example: 

Table 1. Dependency relations 

subject relation  [noun,SUBJ verb]   [picture,SUBJ show]  
object relation  [verb,OBJ noun]   [show,OBJ view]  
attrib relation  [noun,ATTR noun]   [theatre,ATTR movie]  
attrib relation  [noun,ATTR adje]   [monument,ATTR large]  
predicative relation  [noun,PRED noun]   [Louvre,PRED museum]  
prepos relation  [noun,PREP noun]   [sword,IN hand]  
prepos relation  [verb,PREP noun]   [sit,ON chair]  
prepos relation  [adje,PREP noun]   [full,OF arrows]  
modification  [adje,MOD advb]   [green,MOD intensely]  
modification  [verb,MOD advb]   [cause,MOD not]  
quantification  [noun,QUANT number]   [horse man,QUANT three]  
determination  [noun,DET determiner]   [scene,DET whole] 
 

As an example, the sentence 'the picture shows a view of Ravenna from the air' 
corresponds to the following dependency tree: 

 

 

Fig. 3. Dependency tree for 'the picture shows a view of Ravenna from the air'. 
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The example 'the picture shows a view of Ravenna taken from the air' is transduced 
to two (connected) Dependency Trees [10]: 

 

 

Fig. 4.  Dependency tree for 'the picture shows a view of Ravenna taken from the air'. 

The subject 'it' in the second DTree is just a handle for anaphora resolution. During 
the transduction, extensive normalizations are performed in order to map equivalent 
phrases onto a common representative: variations in word order, time and modality 
are eliminated, questions and passive sentences are translated to active form (see [9], 
[10]). Finally, the words in the DT’s are lemmatized. The EP4IR parser/transducer 
was developed for application in Information Retrieval [11]. Our paper shows that it 
can also be used successfully for Domain Modeling. 

4 Extracting a Domain Model 

In general, it will not be possible to match the dependency tree output of the parser 
one-on-one with a given meta-model. The natural language parser, however, does 
provide a well-structured and well-defined output that can be used in a final domain 
extraction phase. The key idea of this final phase is to match parts of a dependency 
tree with parts of the desired domain model. 

The meta-model determines the structure of the desired domain model as well as 
that of the extraction rules that are used in the extraction phase. The meta-model 
consists of the key concepts that need to be extracted from the natural language text. 
Of course, the meta-model should have a reasonable fit with the natural language text. 
As discussed above, we believe that a reasonable fit can be obtained by using 
structured dialogue games to produce the text. 

In the prenegotiation domain, which provides the running example of this paper, a 
meta-model of the domain of negotiation needs to be instantiated in order to fix the 
negotiation issues. As Raiffa discusses in [15], parties are advised to prepare a 
negotiation template in this prenegotiation phase. Such a template has a simple 
structure. It consists of a list of issues that need to be resolved, and, for each issue, an 
agreed-upon set of possible resolutions.  

In a negotiation about multiple issues, the result of the domain extraction method 
should be an instance of the meta-model depicted in Fig. 5. Basically, objects and 
their properties need to be extracted from the dependency trees. 

The rules for extracting domain elements have to capture those patterns present in 
a dependency tree that with a high probability indicate that the text is about an object 
or a property (or both). By inspection of the relations listed in Table 1, and 
dependency trees (cf. Fig. 3 and Fig. 4) that result from typical dialogue games, 
various patterns are readily suggested. 
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Fig. 5. Structure of the Negotiation Meta-Model 
 
In the dialogue games that we have used in our experiments, typical patterns are, 

for example: 
1. [pro: I, SUBJ, verb: have, OBJ, noun: x], 
2. [noun: x, SUBJ, verb: have, OBJ, noun: y], 
3. [noun: x, ATTR, adje: y]. 

An instance of the first pattern is, for example, a sentence such as I have a daisy. It 
is clear that such a pattern requires the addition of the object named daisy to the 
domain model. The first pattern is also a sub-pattern of the slightly more complicated 
sentence I probably have a daisy, which is an instance of the pattern: [pro: I, SUBJ, 
verb: have, OBJ, noun: daisy, MOD, advb: probably]. Even though this sentence 
indicates that there is a chance the object is not a daisy, the pattern is processed by  

 

Fig. 6. Domain Extraction Rules 

Model 

Property 

Object 
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adding the object named daisy to the domain model.1 An instance of the second 
pattern is e.g. The cup has a handle. Finally, an instance of the third pattern is The cup 

is blue. In the latter case, a property of being blue needs to be added to the model. 
The conception extraction rules should map such patterns onto domain elements, 

where the domain structure is given by the meta-model. The basic structure of a 
conception extraction rule therefore is defined as: 

<subpattern of dependency tree> � <update instruction(s) for domain model>. 
The rules code instructions for extracting domain elements from a dependency tree in 
case the left-hand side of a rule matches with a sub pattern of the tree. 

The process of domain extraction can be summarized as follows (cf. also Fig. 5, 
and 6). The pattern matching module of the domain extraction system tries to match 
the left-hand side of each concept extraction rule. For each match, the resulting 
bindings of the matching process are retrieved and the instructions (properly 
instantiated) on the right-hand side of the rule are executed. These instructions consist 
of adding a new node to the domain model, adding a property together with the 

related object to the domain model, and merging the extracted information with the 

domain model (in case a property of an object needs to be added but the object is 

already present in the model)2.  The domain extraction module thus also performs 
merging of overlapping models that are extracted from different sentences of a single 
dialogue. 

 

P:I
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V:have

OBJ 
N:daisy
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X:probably

OBJ 
N:flower

ATTR 
A:pink

flower pinkdaisy
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Fig. 7. Example of Domain Extraction with the Rules 

                                                           
1 Depending on the application area such rules can be changed to not allow this. 
2 The primitive operations that are performed on a domain model are basically add_node and 

add_edge operations. 
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5 Experimental Validation 

The proposed domain extraction method has been designed in order to facilitate 
humans in the construction of a domain model. For the running example, a specific 
meta-model was used to illustrate the extraction method. In order to validate the 
method proposed in the previous section, a series of experiments with human subjects 
was performed to measure the effectiveness of the method. For negotiation and its 
corresponding meta-model, a dialogue game is needed that results in a descriptive 
natural language text that is focused on the naming of objects and the identification of 
properties of these objects. Formal dialogue games are interactions between two or 
more players, where each player acts by making utterances, according to a set of rules 
(cf. [13]). Such a game can be viewed as a model of a domain modeling task in which 
a knowledge engineer and a domain expert are trying to construct a domain model. 

In line with a general view on domain modeling as expressed in [5], the experiment 
was organized as a dialogue game (taking the form of a chatbox) played by two 
participants seated in different rooms, who were each presented with a set of pictures 
on a screen (some identical, some different). 
Figure 8 presents a screenshot of the chatbox software used to organize the 
experiment. The participants were asked to discuss the objects displayed in the 
pictures (each participant could only see his/her own set of pictures). The participants 
were given the task to find out which of the 
 

 

Fig. 8. Screenshot of the Chatbox Software used in the Experiment 

objects are present on both sets of pictures (i.e., they had to identify the objects that 
are common, meaning that both participants see exactly the same pictures of those 
objects on their screens). This setup causes the participants to go through an 
elicitation phase as defined earlier. For the purpose of validation, the resulting 
dialogues were processed in two ways: by the automatic domain extraction tool and 
independently, by a knowledge engineer who manually created a domain model. Fig. 
8 contains a detailed example. 

For manual domain modeling, the knowledge engineer was given a particular 
dialogue as a domain description, but the engineer had no access to the pictures that 
were presented to the participants in the dialogue. In this way, the engineer was 
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limited to basing the domain model on the content of the dialogue. As a result, he 
added an object or its property to the model only if it was explicitly mentioned in the 
dialogue. For example, if a dialogue included a statement such as “Participant A: I 
have a pink flower” the knowledge engineer would add an object “flower” to the 
domain model and a property “pink” linked to the object “flower”. The domain model 
obtained in this way has been used as the standard (or “ideal”) domain model against 
which the results from automatic extraction were then compared. 

To compare the ideal domain model and the automatically extracted model, the A* 
Algorithm for Error-Correcting Subgraph Isomorphism Detection [14] was used. 
Observe that domain models are graphs and thus can be provided as input to the 
algorithm. The algorithm calculates the similarity distance between two graphs and is 
based on the idea of compensating the distortions in one graph by means of edit 
operations that are applied to the second graph. 

The edit operations include vertex deletion and insertion, edge deletion and 

insertion, and attributes and labels substitution. All edit operations have equal cost. 
The total cost of the transformation of the graph is the sum of the costs of each 
individual edit operation. The A* algorithm looks for a sequence of edit operations 
that would have the minimal total costs of the transformation.  

The following formula determines the correctness of the extracted model: 
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) is the distance between the domain model extracted by expert 
and the domain model automatically extracted by the tool, and 

 d(g
expert 

,∅) is the distance between the domain model extracted by the expert 
and the empty graph. 

Table 2 presents the results of the validation of the series of experiment. Each of the 
eight pairs of the participants performed eight trials. Each trial has a set of six 
pictures. Two pictures out of six are common for the participants. We varied the sets 
of the pictures among the trials through the pairs of the participants to avoid any 
possible side-ways effects of the trials sequence. 

Table 2. Experimental results – correctnes of the automaticaly extracted domain models 

Sets of pictures Experiment  

1 2 3 4 5 6 7 

Pair 1 40%  46% 45% 51% 68%  

Pair 2 50% 63% 58% 65%  68% 67% 

Pair 3     52%   

Pair 4        

 
The average percentage of the correctness of the extracted models is 49%.  
The experimental results show that the precision of the model extraction still needs 

significant improvement. However, note that the models were extracted without any 
use of semantics.  One way of improving the accuracy of the models is to use domain 
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Fig. 9. Screenshot of the automatic domain extraction tool (from left to right: source dialogue, 

manually extracted reference model, automatically extracted model). 

knowledge available, e.g., WordNet [4],CYC [12]). Another way is to make the 
modeling process interactive by presenting the updated instance of the domain model 
while the user continues his/her descriptions in natural language. Since the user 
immediately sees the interpretation of his words s/he can re-formulate his/her 
sentence if necessary.  

6 Conclusions 

This article presents an automatic domain model extraction method based on a 

predefined meta-model. Our method involves two basic steps: focused elicitation 

where domain experts describe the domain in a natural language dialogue and 
automated extraction based on an existing NLP parser and a set of pattern-matching 
rules to extract the basic concepts of the domain. The output of the proposed method 
has been validated against ideal models build manually by a domain expert using the 
dialogues received from the experimental setup. 

Validation results show a big deviation in the accuracy of the domain model 
extraction. The accuracy metric varies from 45% to 68% throughout the experiments, 
generally in correspondence to the “neatness” (complexity) of the sentences produced 
by the participants.  The accuracy of the approach will be improved in future work: by 
involving the domain experts in a more direct way and by presenting them 
continuously with the models extracted. This allows the human to directly correct the 
system if necessary. Furthermore, the humans will be asked to reformulate if the 
parser has difficulties with the sentences produced. Finally, advanced pattern 
matching rules will be used, that are based on semantic knowledge obtained from the 
Internet, a specialized database of existing ontologies. 
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