
Agent Logics as Program Logics:

Grounding KARO

Koen V. Hindriks1 and John-Jules Ch. Meyer2

1 Nijmegen Institute for Cognition and Information, Radboud University Nijmegen,
The Netherlands, k.hindriks@nici.ru.nl

2 Utrecht University, Department of Information and Computing Sciences, The
Netherlands, jj@cs.uu.nl

Abstract. Several options are available to relate agent logics to com-
putational agent systems. Among others, one can try to find useful exe-
cutable fragments of an agent logic or use a model checking approach. In
this paper, an alternative approach is explored based on the view that
an agent logic is a program logic. Using the same starting point, one of
the established agent logics, we ask instead if it is possible to construct a
programming language for that agent logic. We show that the program-
ming language and the agent logic are formally related by constructing
a denotational semantics. As a result, the agent logic can be used as as
a design tool to specify and verify the corresponding agent programs.
In particular, we construct an agent programming language that is for-
mally related to the KARO agent logic. The KARO logic is an agent logic
that builds on top of dynamic logic. The approach is based on mapping
worlds in the modal semantics for KARO onto a state-based semantics.
The state-based semantics can be used to define an operational semantics
for KARO programs. In this way, we obtain a computationally grounded
semantics for a significant part of the KARO logic, including the oper-
ators for knowledge or beliefs, motivational attitudes and belief revision
actions of a rational KARO agent.

1 Introduction

Various agent logics have been proposed as models of so-called intelligent or
rational agents. Some of the more influential ones have been those of [1–3].
These agent logics have played a guiding role in the research on the so-called
strong notion of intelligent agent.

At the same time, the use of modal agent logics for engineering rational agents
has been questioned (see for an extensive discussion also [4]). Agent logics have
not been as useful as was hoped for in the specification and verification of agent
systems. Consequently, the development of agent architectures and progamming
languages has been inspired by operational systems such as the PRS system,
which motivated the definition of AgentSpeak(L) [5].

The issue concerning the relation between agent logics and systems goes both
ways: (i) can a suitable logical framework for reasoning about existing agent sys-
tems be constructed? and (ii) can a suitable operational framework for engineer-
ing agent systems be constructed that is related to an existing agent logic “in

the right way”? These questions have been referred to as the gap between theory
and practice. In this paper, we will not pursue the first question (see e.g. [6, 7])
but only consider the second. There are good reasons to continue the search for
a solution to bridge the gap. Agent systems are inherently complex due to the
many different components and mechanisms such systems consist of. To be able
to build such complex systems, at least two conditions should be met. First, it
should be unambiguously clear how these components and mechanisms operate.
One of the proven approaches to provide such an unambiguous interpretation
is to provide a mathematical semantics that specifies the operation of an agent
system. Second, tools for the design, specification and verification of agent sys-
tems should be available. This additionally requires the development of a design
method including proof techniques for agent systems. Both conditions require
that a precise relation between agent logics and systems is established.

As discussed in [4], various approaches to demonstrate the applicability of
agent logics are available. Each of these approaches proposes techniques for re-
lating agent logics to computational agent systems. For example, one method is
to apply techniques for directly executing the logic. The goal of such methods
is to find fragments that can be executed efficiently. Relevant work in this area
is, for example, that of [8, 9]. A drawback, however, is that these techniques are
applicable only to relatively small fragments of agent logics.

In this paper, an alternative approach is proposed. Using the same starting
point, one of the established agent logics, we ask instead if it is possible to
construct an agent programming framework for that agent logic. The idea is to
construct an agent programming framework for engineering agent systems that
is related to an agent logic in a way such that the logic can be used to prove
properties of the agent system. The idea promoted here is that agent logics are
program logics. Program logics are used as a design tool to specify and verify
agent programs instead as directly executable frameworks. It is shown that this
approach can be successfully applied to close the gap between theory and practice
by constructing a programming framework for the KARO logic [3].

2 Grounding Agent Logics

Agent logics typically are modal logics. Since the associated possible world se-
mantics is abstract, in [4], the issue has been framed as the question whether it is
possible to ground the semantics of agent logics. As the authors explain, “there
is usually no precise relationship between the abstract accessibility relations
that are used to characterize an agent’s state, and any concrete computational
model.” Such a precise relationship, in a mathematical sense, is exactly what
we will be looking for in this paper. To achieve this objective, we briefly clarify
what we mean by (i) an agent logic, (ii) a concrete computational system, and
(iii) the relation between the two.

What is an Agent Logic? Any logic that is explicitly constructed as a tool for
modeling rational agents and is rich enough to model agents that derive their

choice of action from their beliefs and motivations is an agent logic. In this paper,
agent logics are single agent modal logics. Some of the better known agent logics
such as [1–3] fit this definition and are reference examples. Agent logics based on
dynamic logic (e.g. [3]) can be distinguished from agent logics based on temporal
logic (e.g. [2]). Since in dynamic logic programs are explictly represented, agent
logics based on dynamic logic provide a good starting point for our purposes.

What is a Concrete Computational System? To be able to construct a concrete
computational system that relates to an agent logic in the right way, we start with
providing a rather abstract definition and then move on to provide a concrete
instance of this definition.

The main assumption that we introduce here is that computational systems
are state-based. We take this to mean that the possible behavior of such a system
can be uniquely predicted given its current state. Moreover, states are extensional
and do not have an intensional flavour. That is, computational systems behave
identically whenever they are in the same state at different times.

In fact, we will be more concrete and take a computational system to be
a system that is programmed using a particular programming language. A pro-
gramming language is a set of programming constructs to perform operations on
specific data structures. Here, we are particularly interested in the set of data
structures of agent systems, i.e. agent states, and associated agent programming
frameworks for dynamically changing such states.

Programming frameworks typically have features for inspecting states of a
computational system. For example, the language AgentSpeak(L) includes tests
on the beliefs of an agent. The power that such tests have, however, may vary
considerably. We distinguish so-called poor tests from rich tests (cf. [10]). Poor
tests only allow inspection of the current state of a system whereas rich tests
allow inspection of potential future states as well. Rich tests thus presuppose
capabilities, called look ahead facilities, to perform tests on future states. In
general, it is not clear how to provide a computational interpretation for rich
tests. The second assumption we introduce is that computational systems do not
have look ahead facilities. It will turn out, in fact, that the latter assumption will
require the most effort in constructing a suitable agent programming framework.
Computations thus are local in the sense that actions and tests are performed
on the current state and do not require additional resources. The approach to
define a state-based semantics is inspired by [11], but differs in its aim to derive a
programming language from an agent logic. Any computational framework that
introduces programming constructs to build computational systems and satisfies
the two assumptions discussed is called a programming framework. As far as
we know, all agent programming languages in the literature are programming
frameworks in this sense (e.g. [5, 12, 13]).

How are Agent Logics and Computational Systems Related? The view promoted
here is that agent logics are program logics for the specification and verification
of agent programs. Agent logics provide declarative specifications of what an
agent program should compute, whereas agent programming languages provide

operational specifications how to execute an agent program. The semantics of
the first is provided by possible worlds semantics. Structural operational seman-
tics is used here to define computation steps that provide an interpretation of
the operations of an agent program [14]. The precise relation between the two is
established by proving that both semantics are equivalent. Formally, a denota-
tional semantics for programs is derived from the logical semantics of an agent
logic and is shown to be equivalent to the operational semantics. This is a stan-
dard technique in programming theory to show that a logic can be used to verify
(partial correctness) properties of programs. The approach differs from directly
executing an agent logic since the logic itself is only used to verify properties of
an executable agent program. It differs from a model checking approach in that
the logic is not used to check whether execution traces of a program satisfy a
specification, but instead is used to axiomatically verify program properties based
on the program text.

3 Grounding KARO

To demonstrate the approach discussed in the previous section, an agent pro-
gramming language for KARO is presented. The exposition of KARO is based
on [3]. For additional explanation about the logic and some of the choices made
in modeling rational agents in KARO the reader is referred to this paper. For
an example application of KARO to specify agents see e.g. [9]. KARO is an
integrated logical framework for modeling rational agents that offers a logical
theory of how actions, information and motivation of agents are related. All of
these notions are formalised in a modal logic that is a blend of dynamic and epis-
temic logic extended with operators that model several motivational attitudes
of agents.

It is shown that a substantial fragment of KARO is the corresponding pro-
gram logic for a particular agent programming language. KARO agent programs
ground the KARO logic, and, consequently, the KARO logic can be applied as a
specification and verification tool for KARO agent systems that are built using
that programming language.

KARO is a very expressive logic in which several concepts are defined using
non-local constraints. Such constraints refer to potential future states of a sys-
tem and do not naturally fit into a state-based approach. In particular, KARO
introduces three non-local constraints:

– In the definition of the concept of ability, a constraint is included to verify the
ability of an agent in potential future states. Complex abilities of an agent are
defined in terms of a dynamic operator 〈do(π)〉 that models the opportunities
and results achieved by actions. Because of the dynamic operators in the
definition of abilities that involve tests on potential future states, the ability
operator Aπ has been excluded from the fragment that is discussed here. It is
not clear by inspection of the logical semantics how the abilities of an agent
change and a computational interpretation is not obtained by providing a
state-based semantics for KARO.

– In the definition of the concept of a goal, quantification over actions is used
to verify that a goal can be achieved via the execution of some plan by
the agent. This verification involves reference to potential future states and
some mechanism to test the possibility of performing an action in those
states. It is not clear how to implement such look ahead facilities in a state-
based approach. Instead of this non-local definition of goals in the KARO
framework, a slightly weaker notion is defined that is implied by the KARO
definition of goals, but not vice versa.

– In the definition of commitments, a test whether a plan can be executed is
included. The actions commit to to make a commitment and uncommit to
remove a commitment similarly are defined in terms of the possibility to
execute a plan. These definitions presuppose that KARO agents have look
ahead facilities which do not straightforwardly translate into a computational
semantics. Therefore, the commitment operator Comπ is excluded here.

The computational complexity of KARO has been located primarily in the non-
local constraints that are made use of in the definition of some operators. The
logical semantics does not provide a clue on how to operationalize such con-
straints. It is an interesting question whether these constraints can somehow be
operationalized in a state-based approach.

In the remainder, it is shown that the KARO fragment excluding operators
that are defined by non-local constraints can be grounded. This fragment in-
cludes the modal operators [do(π)] to represent the actions, Bk,Bo to represent
innate and observational knowledge, W to represent the wishes or desires, and
C to represent the choices or goals of an agent. It also includes the informa-
tional actions expand ϕ and contract ϕ to add or remove a proposition ϕ from
the observational knowledge base, and the action select ϕ to select ϕ as goal.
Additionally, program constructs for tests, written as confirmϕ, conditional
composition if then else and repetition while do are part of the KARO
language. Due to space restrictions, the latter is not discussed. The label KARO
will be used below to refer to this fragment.

A distinguishing feature of KARO is the distinction of various belief clusters.
Due to space restrictions, we only discuss two of the four clusters. First, built-in
knowledge represents the fixed, objective options an agent considers possible.
Second, observational knowledge is based on perceptual sources and may change
through time. The built-in knowledge is restricted to objective propositional for-
mulae. This seems reasonable since built-in knowledge is supposed to pertain to
the external world and not to states of the agent itself. Moreover, this restriction
will allow us to model the relation between built-in knowledge and observational
knowledge in the state-based semantics. In this context, we do not allow an agent
to have wishes about the fixed built-in knowledge, and allow an agent only to
have wishes to obtain knowledge through its perceptual apparatus.

Definition 1. (KARO Propositions)
Let L0 be a classical propositional language, built from an infinite set At of
propositional atoms, the connectives ¬,∧ and let Lobs be the standard extension

of L0 to an epistemic modal language with epistemic operator Bo. Let Act be a
set of atomic actions. Then:

The KARO language L is defined by:
– At ⊆ L,
– if ϕ, ψ ∈ L,χ ∈ L0, then ¬ϕ,ϕ ∧ ψ,Bkχ,Boϕ ∈ L,
– if ϕ ∈ L and π ∈ Π, then [do(π)]ϕ ∈ L,
– if ϕ ∈ Lobs, then Wϕ ∈ L, Cϕ ∈ L.

The set of KARO programs Π is defined by:
– Act ⊆ Π,
– if ϕ ∈ L0, then expand ϕ, contract ϕ ∈ Π,
– if ϕ ∈ Lobs, then select ϕ ∈ Π,
– if ϕ ∈ L, π1, π2 ∈ Π, then confirmϕ,
ifϕ thenπ1 elseπ2 , π1;π2 ∈ Π.

The semantics of KARO is defined as usual by Kripke structures.

Definition 2. (KARO Structure)
A KARO structure M is a tuple 〈W,R,Bk, Bo, D,C, V 〉 with:
– W a non-empty set of worlds, typically denoted by w,
– R a partial function such that for each a ∈ Act, Ra : W ⇀W ,
– Bk, Bo ⊆W ×W equivalence relations, such that Bo ⊆ Bk,
– D ⊆W ×W ,
– C : W → ℘(Lobs), a mapping of worlds to subsets of Lobs, and
– V a truth function such that (s.t.) V (p, w) ∈ {1, 0} for p ∈ At.

The knowledge operators are modal S5 operators as usual in agent logics.
Knowledge obtained by perception always extends the agent’s built-in knowl-
edge since Bo ⊆ Bk. Observe that wishes modeled by the relation D may be
inconsistent.

Definition 3. (KARO Semantics)
Let M = 〈W,R,Bk, Bo, D,C, V 〉, w ∈W and x ∈ {k, o}.
The truth conditions for KARO propositions are defined by:
– M,w |= p iff V (p, w) = 1,
– M,w |= ¬ϕ iff M,w 6|= ϕ,
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ,
– M,w |= Bxϕ iff M,w′ |= ϕ, ∀w′ s.t. wBxw′,
– M,w |= [do(π)]ϕ iff M,w′ |= ϕ, ∀w′ s.t. wRπw

′,
– M,w |= Wϕ iff M,w′ |= ϕ, ∀w′ s.t. wDw′,
– M,w |= Cϕ iff ϕ ∈ C(w).
The meaning of KARO programs is defined by:
Ra,
Rconfirmϕ = {(w,w) | M,w |= ϕ},
Rifϕthenπ1 elseπ2

= (Rπ1
∩ ([[ϕ]] ×W))∪

(Rπ2
∩ ([[¬ϕ]] ×W)),

Rπ1;π2
= Rπ1

◦Rπ2
.

where [[ϕ]]M = {w |M,w |= ϕ}, written [[ϕ]] when the structure M is clear from
the context, and R ◦ S = {(a, c) | ∃b(aRb ∧ bSc)}.

Note that all KARO programs are deterministic since the transition relation
R for actions is a function. In KARO, complex motivational attitudes such as
goals are defined in terms of the basic motivational operators W and C. KARO
defines goals as those wishes that are (a) selected by the agent, (b) not (yet) ful-
filled and (c) implementable. Condition (c) is defined by quantifying over actions
and involves tests on potential future states. It does not satisfy the constraints
on state-based systems. A weaker version, by dropping (c), can be defined, how-
ever. The goal operator G is then defined as: Gϕ ≡ Wϕ ∧ ¬ϕ ∧ Cϕ. Note that
tautologies cannot be goals and neither are goals closed under implication.

Changing One’s Mind One interesting feature of KARO is that it incorporates
specific instances of atomic actions to change the knowledge or motivations of
an agent. KARO thus not only formalizes the logic of propositional attitudes
but also provides a theory about how an agent can change its knowledge or
motivations by performing mental “actions”.

Since mental actions do not change the (external) world, a natural way in
modal semantics to model these actions is to change the knowledge or motiva-
tional components Bk, Bo, D,C in a KARO structure instead of a world w (see
for extensive discussion [3]). This type of action semantics extends the compo-
nent R in a structure to apply to pairs (M,w) as well as worlds w. Actions thus
are interpreted as structure transformers. Some notation is introduced to facili-
tate the semantic definition of the KARO actions. Given an equivalence relation
S, the equivalence class of w is defined as: [w]S = {w′ |wSw′}. Due to space
restrictions, the semantics of contract ϕ is not discussed.

Definition 4. (Semantics of KARO Actions)
Let M = 〈W,R,Bk, Bo, D,C, V 〉 be a structure and w ∈ W . R is extended to a
structure transforming semantics as follows:
Ra(M,w) = (M,Ra(w)),
Rexpand ϕ(M,w) =

(〈W,R,Bk, Bo′

, D,C, V 〉, w) such that:
[w′]Bo′ = [w′]Bo ∩ [[ϕ]], ∀w′ ∈ [w]Bk ∩ [[ϕ]],
[w′]Bo′ = [w′]Bo ∩ [[¬ϕ]], ∀w′ ∈ [w]Bk ∩ [[¬ϕ]], and
[w′]Bo′ = [w′]Bo , ∀w′ 6∈ [w]Bk , if M,w |= ϕ,

∅ otherwise.
Rselect ϕ(M,w) =

(〈W,R,K,D,C′, V 〉, w) such that:
C′(w) = C(w) ∪ {ϕ},
C′(w′) = C(w′), ∀w′ 6= w, if M,w |= Wϕ,

∅ otherwise.
The extension for compound constructs can be defined analogously.

The semantics for expand ϕ ensures that an agent after (successfully) per-
forming it knows ϕ, i.e. Boϕ, still knows what it knew before, and doesn’t change

anything when the agent already knew ϕ. This semantics validates the proposi-
tions ϕ → [do(expand ϕ)]Boϕ, Boψ → [do(expand ϕ)]Boψ, and Boϕ → (Boψ ↔
[do(expand ϕ)]Boψ), for ϕ, ψ ∈ L0, which are expected properties of adding true
information to ones knowledge.

A State-Based Semantics for KARO A programming language with KARO as
its associated program logic must account for each of the components in a KARO
structure. Except for the relation R all components will be represented in the
state of a KARO agent program. These states, additionally, must be extensional,
i.e. they can be uniquely identified by their syntactic content.

To avoid overly complex states, an additional axiom on top of the KARO
axioms is introduced to relate the knowledge and wishes of an agent. As for
knowledge, we assume that an agent is also able to introspect its motivational
attitudes. If an agent has a wish, consequently, it knows it has a wish. Formally,
we introduce the axioms BoWϕ ↔ Wϕ and Bo¬Wϕ ↔ ¬Wϕ. From now on, we
will assume that these axioms are part of the KARO logic.

The assignment function V and possible worlds W in the modal semantics
are replaced by so-called world states v ⊆ At representing the external world in
the state-based semantics. A corresponding world state can be defined for each
w ∈W by v = {p |V (p, w) = 1}. The informational components Bk and Bo are
replaced by knowledge bases. Corresponding knowledge and observational bases
can be defined for each w ∈ W respectively by k = {ϕ ∈ L0 |M,w |= Bkϕ}
and o = {ϕ ∈ L0 |M,w |= Boϕ}. The motivational components D and C are
replaced by a set of wishes d ⊆ Lobs closed under logical consequence and a set
of choices c ⊆ Lobs. Finally, the function R that provides the meaning of actions
is quite straightforwardly replaced by a similar function Rc defined on KARO
states instead. A KARO state can be viewed as the agent’s internal, mental
state.

Definition 5. (State-Based KARO Structure)
A state-based KARO structure M c is a tuple 〈W c, Rc〉 with:

– W c a set of states of the form (v, k, o, d, c), with v a world state, k, o knowl-
edge bases such that |=v k, |=v o and o |= k, d, c ⊆ Lobs a set of wishes
and choices respectively, and such that W c satisfies the following closure
conditions: if (v, k, o, d, c) ∈W c, then:

• (v′, k, o, d, c) ∈ W c for all v′ such that |=v′ k,
• (v′, k, o, d, c) ∈ W c for all v′ such that |=v′ o,
• (v′, k, o′, d, c) ∈W c for all v′, o′ such that |=v′,o′ d.

– Rc a partial function such that for each a ∈ Act or a ∈ {expand ϕ, select ϕ},
Rc

a : W c ⇀W c.

The definition of states clarifies the nature of the states in the state-based
semantics. States are tuples of various databases which are the data structures
that a KARO program operates on. To ensure a proper relation with the modal
semantics, these components need to be related in the right way, which explains

the various constraints on states. These constraints correspond to e.g. the rela-
tions between the accessibility relations in the modal semantics.

The truth conditions using state-based structures are defined next. The se-
mantic clauses for atomic actions, tests and compound actions are the same as
in definition 3 and are not repeated. Typically, states (v, k, o, d, c) are denoted
by s, s′ and we write s[v′/v], s[k′/k], ... to denote the state that results from
replacing v by v′, k by k′, etc. Note the subscript c to distinguish |=c from the
standard relation |=.

Definition 6. (State-Based Semantics for KARO)
Let M c = 〈W c, Rc〉 and s = (v, k, o, d, c) ∈ W c. Then:
The truth conditions for KARO propositions ϕ are defined by:
– M c, s |=c p iff p ∈ v,
– M c, s |=c ¬ϕ iff M c, s 6|=c ϕ,
– M c, s |=c ϕ ∧ ψ iff M c, s |=c ϕ and M c, s |=c ψ,
– M c, s |=c [do(π)]ϕ iff M c, s′ |=c ϕ, ∀s′ s.t. sRc

πs
′,

– M c, s |=c Bkϕ iff M c, s[v′/v] |=c ϕ, ∀v′ s.t. |=v′ k,
– M c, s |=c Boϕ iff M c, s[v′/v] |=c ϕ, ∀v′ s.t. |=v′ o,
– M c, s |=c Wϕ iff M c, s[v′/v, o′/o] |=c ϕ,

∀v′, o′ s.t. |=v′,o′ d,
– M c, s |=c Cϕ iff ϕ ∈ c.
where |=v ϕ is v |= ϕ and |=v,o ϕ is defined by the first three clauses above and
the clause for B

o.
The semantics of KARO programs π is defined by:
Rc
expand ϕ

= {(s, s[exp(o, ϕ)/o′]) |M c, s |= ϕ},

Rc
select ϕ

= {(s, s[c ∪ {ϕ}/c]) |M c, s |= Wϕ}

Rc
confirmϕ

= {(s, s) |M c, s |= ϕ}.

with exp(o, ϕ) defined as {ψ | ∀v′(|=v′ o ∧ ϕ⇒|=v′ ψ)}.

The modal and state-based semantics are equivalent, i.e. the expressive power
is not reduced by introducing a state-based semantics.

Theorem 7. (Equivalence of |= and |=c for KARO)
The standard and the state-based semantics for KARO are equivalent. That is,
assuming the set of propositional atoms At is infinite, for any ϕ ∈ L:

|= ϕ iff |=c ϕ

Proof. We give a sketch of the proof, the full proof is available in the full paper.
First, observe that the structure-transforming action semantics in the standard
modal semantics can be replaced with a standard Kripke semantics, by defining a
super structure with worlds wM for each pair (M,w). The right to left implication
then is proved by a straightforward mapping from state-based structures to stan-
dard structures. For the left to right implication, use the finite model property for
the (super structure) Kripke semantics to show the equivalence with the state-
based semantics. We need to prove that if M c, s 6|= ϕ, then also M,w 6|= ϕ. Since
the truth of ϕ can only depend on a finite number of propositional atoms, an

infinite number of atoms remains that can be used as names for possible worlds
in the standard structure to keep track of these worlds in a state-based structure.
Using this observation, then set up a correspondence between possible worlds and
states to define a state-based structure and show their equivalence. ut

Note that no restrictions are imposed on the KARO language in theorem 7.
The state-based semantics is defined for arbitrary formulae of the KARO lan-
guage. To provide an operational interpretation, as discussed, however, we need
to restrict the tests that are allowed in programs. The KARO language is a
rich test version of a dynamic agent logic. To avoid the introduction of undecid-
able look ahead facilities into the programming framework, a poor test variant
of KARO is introduced. The tests that can be allowed are those that can be
evaluated in the current state. Consequently, propositions without occurrences
of dynamic operators [do(π)], called intentional propositions (since they refer to
intentional or mental states), can be used as tests since KARO states contain the
information needed to evaluate such propositions. We use Li to denote the set
of intentional propositions; note that Lobs ⊂ Li. The fragment of KARO with
restricted tests confirmϕ such that ϕ is an intentional proposition is called poor
test KARO and denoted by Lp. Lp is strictly less expressive as L.

The computational interpretation for intentional propositions, and, conse-
quently, poor tests, is provided by the state-based semantic clauses for the non-
dynamic operators. The definition below provides a computational interpretation
since it identifies concrete data structures on which operations can be performed
by a computer. Moreover, the computational interpretation is state-based and
thus fits our definition of a computational system.

Definition 8. (Computational Interpretation of Poor Tests)
Let s = (v, k, o, d, c) be a state such that |=v k, |=v o, and o |= k. Then the truth
conditions for intentional propositions are defined by:
– |=s p iff p ∈ v,
– |=s ¬ϕ iff 6|=s ϕ,
– |=s ϕ ∧ ψ iff |=s ϕ and |=s ψ,
– |=s Bkϕ iff |=s[v′/v] ϕ, ∀v′ s.t. |=v′ k,
– |=s Boϕ iff |=s[v′/v] ϕ, ∀v′ s.t. |=v′ o,
– |=s Wϕ iff |=s[v′/v,,o′/o] ϕ, ∀v′, o′ s.t. |=v′,o′ d,
– |=s Cϕ iff ϕ ∈ c.

In case an intentional proposition is of the form Xϕ with X some non-
dynamic operator and ϕ ∈ L0 a state proposition, we have |=v,k,o,d,c ϕ iff x |= ϕ
for x = k, o, d, c respectively. For example, it is easy to show that |=v,k,o,d,c Wϕ
iff d |= ϕ.

Lemma 9. Let ϕ ∈ L0 be a state proposition. Then we have:

|=v,k,o,d,c Boϕ iff o |= ϕ,
|=v,k,o,d,c Wϕ iff d |= ϕ,
|=v,k,o,d,c Cϕ iff ϕ ∈ c.

Proof. The last item follows immediately from the semantic definition of C. The
proof of the other three statements is similar. We prove the case for Wϕ. By
definition, we have that |=v,k,o,d,c Wϕ iff for all v′, k′, o′ such that |=v′,k′,o′ d
we have |=v′,k′,o′,d,c ϕ. Since ϕ ∈ L0 is a state proposition, its truth evaluation
depends only on the world state component v′. Now suppose that d 6|= ϕ. Then
there is a model of d in which d is true, but ϕ is not true. I.e., there are v′, k′, o′

such that |=v′,k′,o′ d and 6|=v′,k′,o′ ϕ, contrary to the assumption that |=v,k,o,d,c

Wϕ. ut

In the remainder of this section, we use the computational interpretation of
intentional propositions to provide a transition semantics for KARO programs.
A transition semantics, defined in terms of a computation step relation −→,
provides a computational semantics for KARO programs.

Interestingly, in the transition semantics for KARO programs transition rules
are required for the specific actions expand ϕ and select ϕ. Agents that explic-
itly represent their knowledge and motivational attitudes in their mental states
need capabilities to modify these mental structures. In this respect, KARO con-
tributes to an understanding of such capabilities, for both informational as well
as motivational attitudes. Of course, agent logics allow for the specification of
additional actions and the fact that KARO can be used as a program logic for
KARO programs, proven below, shows that such specifications can be usefully
applied to build agent programs.

In the transition semantics a transition function T (a, s) maps actions and
a state to their successor state. This function must respect the constraints on
states from definition 5. This translates into the following condition on transition
functions T : if T (a, v, k, o, d, c) = (v′, k′, o′, d′, c′), then we have |=v′ k′, |=v′ o′

and o′ |= k′. KARO states in state-based structures are tuples (v, k, o, d, c) such
that |=v k, |=v o and o |= k to ensure that beliefs of an agent are always true in
the current world state and the belief clusters k and o are properly related. In
the transition semantics, this relation between world states and knowledge bases
also needs to be enforced.

If a KARO program starts in an initial state that satisfies this condition, then
the constraint on transition relations ensures that states during the execution
of the program invariantly satisfy this condition. Next, the transition semantics
is defined. The rules for sequential composition and the if then else are
standard and not included here (cf. [14]).

Definition 10. (Transition Semantics for KARO Programs)
Let s, s′ be states, T a transition function, ϕ ∈ Li, ψ ∈ L0 and χ ∈ Lobs. We
use the symbol E to denote successful program termination. Then the transition
semantics for KARO programs is defined by:

T (a, s) = s′

〈a, s〉 −→ 〈E, s′〉

|=s ϕ

〈confirmϕ, s〉 −→ 〈E, s〉

|=s ψ

〈expand ψ, s〉 −→ 〈E, s[exp(o, ψ)/o]〉

|=s Wχ

〈select χ, s〉 −→ 〈E, s[c ∪ {χ}/c]〉

The operational semantics for KARO programs defines the input-output
relation on KARO states for arbitrary KARO programs in terms of the transitive
closure −→∗ of the transition relation −→.

Definition 11. (Operational Semantics for KARO Programs)
The operational semantics for KARO programs is defined by:

O(π)(s) = s′ for s′ such that 〈π, s〉 −→∗ 〈E, s′〉

Note that the definition of the operational semantics is well-defined since
KARO programs are deterministic.

The denotational semantics for KARO programs is derived from the logical
semantics for KARO. In the definition of the denotational semantics the state-
based semantics for KARO is used, which is justified by theorem 7. To provide
a definition of the denotational semantics, we need to fix an interpretation of
atomic actions. It will be convenient to ensure that this interpretation is equiva-
lent to the one that is fixed in the transition semantics by the transition function
T since we need this later on to prove the equivalence of both types of semantics.

Definition 12. (T -compatible)
Let M c = 〈W c, Rc〉 be a state-based KARO structure. We say that M c and the
accessibility relation Rc are T -compatible if the following condition is satisfied:
sRc

as
′ iff T (a, s) = s′ for all KARO actions.

The denotational semantics can now be defined using the concept of a T -
compatible KARO structure; that is, a unique, well-defined and compositional
semantic function can be defined for KARO programs.

Definition 13. (Denotational Semantics for KARO Programs)
Let M c = 〈W c, Rc〉 be a state-based, T -compatible KARO structure. Then the
denotational semantics for KARO programs is defined by:

[[a]](s) =

{

s′ , if sRc
as

′,
undefined , otherwise,

[[expand ϕ]](s) =

{

s[exp(o, ϕ)/o′] , if M c, s |=c ϕ,
undefined , otherwise

[[select ϕ]](s) =

{

s[c ∪ {ϕ}/c] , if M c, s |=c Wϕ,
undefined , otherwise

[[confirmϕ]](s) =

{

s , if M c, s |=c ϕ
undefined , otherwise

[[ifϕ thenπ1 elseπ2]](s) =

{

[[π1]](s) , if M c, s |=c ϕ,
[[π2]](s) , otherwise

[[π1;π2]](s) = [[π2]]([[π1]](s)),

It is easy to show that [[]] is well-defined. The next step is to show that the
denotational and operational semantics are equivalent. This provides the precise
relationship of the computation step relation −→ and the logical semantics of
KARO that we were looking for and shows that the logic can be used as a
program logic to verify properties of KARO programs.

Theorem 14. (Denotational Equivalent to Operational Semantics)
The denotational and operational semantics of KARO programs are equivalent,
i.e. [[π]](s) = O(π)(s).

Proof. Use induction on the structure of programs. ut

The equivalence of the denotational and operational semantics shows that
KARO has an application in the verification of KARO programs, in particular,
to prove partial correctness properties of KARO programs. This fact is expressed
mathematically in the following corollary:

Corollary 15. (Proving Partial Correctness Properties)
Let π be a poor test KARO program, ϕ, ψ ∈ Li, and MT be the set of all T -
compatible KARO structures. Then we have:

∀s, s′ : if |=s ϕ and 〈π, s〉 −→∗ 〈E, s′〉 , then |=s′ ψ
iff

|=MT ϕ→ [π]ψ

Proof. Immediate from theorem 7 and 14. ut

By using the techniques explored in the previous section, we have been able to
define a state-based programming framework that corresponds to a substantial
fragment of the original KARO logic. In other words, the KARO logic is a
program logic for the KARO programming framework introduced in this section.

The KARO programming framework introduced can be compared to existing
agent programming languages in the literature. It is instructive, for example, to
compare the transition semantics of the KARO programming framework with

similar approaches. For example, this style of semantics has been proposed for the
closely related programming languages AgentSpeak(L), ConGolog, and 3APL
(cf. e.g. [15]). Even though the KARO programming framework introduced here
does not include all aspects of these languages (notably concurrency is absent),
it also includes features that are not present in one of the mentioned program-
ming languages. The most important distinguishing features are the presence of
declarative motivational attitudes and the definition of specific actions to change
the agent’s mind. For example, in AgentSpeak(L) the structures called intentions
or plans are similar to the KARO programs and do not have a declarative inter-
pretation. Instead, the motivational components in KARO program states are
declarative. Another way to illustrate the same point is the observation that the
corresponding program logic for 3APL proposed in [7] includes an operator for
beliefs but not for motivational operators as the KARO logic does.

4 Conclusion

In this paper, we have explored formal techniques for relating agent logics to
agent programming frameworks. We showed that this is a viable approach which
clarifies the use of agent logics in the practice of agent engineering as specifica-
tion and verification tools. The approach has been illustrated by constructing a
programming framework for KARO, an agent logic that extends dynamic logic.

One of the benefits of our approach is that it explores the space of pro-
gramming languages from a logical point of view. Taking an agent logic as our
starting point, we showed what a programming language related to that logic
looks like. This clarifies at least partly which agent logics are related to which
agent programming languages.

A precise relationship between agent logics and agent programming frame-
works will clarify what an agent programming language should be like from a
logical agent perspective. The precise analysis of states of agents and the associ-
ated operations, moreover, facilitates a comparison between various agent logics
as well as between various agent programming frameworks.

In the paper, it is shown that the approach based on the view that agent
logics are useful as program logics resolves at least part of the gap between the-
ory and practice. As discussed in [4], various approaches to show the usefulness
of agent logics are available. These approaches are not each as practical as the
other. Directly executing agent logics, for example, has to face the high compu-
tational complexity of agent logics. Model checking approaches suffer from other
problems, as highlighted in [4]. By taking another view and viewing agent logics
not as executable frameworks but as program logics we were able to circumvent
some of these problems.

There have been other attempts to provide a computational grounding of
KARO. In [9] a reduction approach is presented, based on translating KARO to
first order logic. Alternatively, a translation of a fragment of the KARO logic
to a combination of branching time logic CTL and a modal S5 logic, has been
proposed (cf. [9]). In this approach, the core - as it is called - of the KARO frame-

work is first translated into another logical formalism, to obtain an executable
fragment. However, the fragment that can be translated into executable form is
smaller and does not include multiple belief clusters, the wishes and choices of
an agent, nor the specific KARO actions that are included here.

References

1. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

2. Rao, A., Georgeff, M.: Decision Procedures for BDI Logics. Journal of Logic and
Computation 8(3) (1998) 293–343

3. van der Hoek, W., van Linder, B., Meyer, J.-J.Ch.: An Integrated Modal Approach
to Rational Agents. In Wooldridge, M., ed.: Foundations of Rational Agency.
Kluwer, Dordrecht (1999) 133–168

4. van der Hoek, W., Wooldridge, M.: Towards a Logic of Rational Agency. Logic
Journal of the IGPL 11(2) (2003) 133–157

5. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away. Number
1038 in LNAI, Springer (1996) 42–55

6. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.-J.Ch.: A Verification
Framework for Agent Programming with Declarative Goals. Accepted for the
Journal of Applied Logic (2006)

7. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.-J.Ch.: A Programming
Logic for part of the Agent Language 3APL. In Rash, J., ed.: Proceedings of the
First Goddard Workshop on Formal Approaches to Agent-Based Systems. Number
1871 in LNCS, Springer (2001) 78–89

8. Fisher, M.: A Survey of Concurrent MetateM. In: Proceedings of the First Inter-
national Conference on Temporal Logic (ICTL). Number 827 in LNCS, Springer
(1994) 480–505

9. Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J.-J.Ch., van der Hoek,
W.: Reasoning about Agents in the KARO Framework. In Bettini, C., Montanari,
A., eds.: Proc. of the Eighth Int. Symposium on Temporal Representation and
Reasoning. (2001) 206–213

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs.

Distributed Computing 10(4) (1997) 199–225
12. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F., eds.: Multi-Agent Pro-

gramming: Languages, Platforms and Applications. Springer (2005)
13. de Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a Concurrent Program-

ming Language Based on the Situation Calculus. Artificial Intelligence 121(1-2)
(2000) 109–169

14. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University (1981)

15. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: A Formal
Embedding of AgentSpeak(L) in 3APL. In Antoniou, G., Slaney, J., eds.: Advanced
Topics in Artificial Intelligence. Number 1502 in LNAI. Springer (1998) 155–166

