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Abstract. A variety of agent-oriented programming languages basedigim
level concepts such as beliefs and goals has been propodeslliterature. Even
though most of these languages now come with interpretgremented in e.g.
Java and can be used to write software agents, there iswittlle reporting how
to implement such languages or to identify a core instracsiet that would fa-
cilitate such implementation. In this paper we introduceomgiler for the agent
programming languag&OAL into the framework oflazzyk Behavioural State
Machines The result is a translation of key agent concepts such asfdeind
goals into theJazzyklanguage which lacks these notions, thus providing some
evidence that it may provide a sufficient instruction setifoplementing agent
programs. Moreover, arguably, the implementation stsatesgd can be general-
ized and applied also to other agent programming languages.

1 Introduction

Relatively little has been reported in the literature on lienpenting high-level agent
programming languages [1]. An exception is the work of Demtial. [6], which aims
at providing a common basis for a variety of such languageofAet, however, there
is no equivalent of th&Varren Abstract Machingl3] available - which provides such
a basis forProlog - that would facilitate implementation of these agent laaggs. In
part this is due to the diversity of the proposed languagesying from extensions of
Java with high-level agent concepts to completely new psafsofor high-level agent-
oriented programming languages. The effort needed, hawevenplement the latter
class of agent languages from scratch is large, non-trandl error-prone. It there-
fore would be useful to have antermediate language that provides a core instruction
setof more high-level programming constructs than e.g. Javsiges, and that could
be used to compile agent programs into. As we will show, im$usut that thelazzyk
agent programming framework [8, 9] provides an interestipiion for compiling agent
programsJazzykagents ar&ehavioural State Maching¢3azzyk BSWithat exactly pro-
vide the behavioural layer on top of a knowledge represiemtal layer that is needed
to implement agent languages. The main contribution of #pepis a formal proof that
shows it is relatively easy to compil@OAL agents [5, 7] intddJazzyk BShMdemonstrat-
ing the usefulness dfazzykas a target language of an agent program compiler.
Besides showing thaazzykcan be used as a target language of a compiler for such
agents, our result provides some additional insights. @leeomore important corol-
laries of the proof given is that it shows that B®AL agent language is not committed



to any particular knowledge representation (KR) techmpl@OAL agents may use
Prolog[12], but there is nothing specific aboBOAL enforcing such a choice. One of
the motivations behind théazzyKanguage has been to allow the use and combination
of heterogeneous KR technologies in a single agent. A caresesg of our result is that
the choice of the KR technology used AL agents can be seen as a parameter to
be instantiated when these agents are written. Finallyhoweg thatGOAL agents
can be compiled intdazzyk some evidence is provided th#&zzyksupports the core
functionality needed for implementing agent-orientedgpaomnming.

As made clear above, a key ingredient of agent languagesfaB@AL andJazzyk
in particular is (are) the KR technology(ies) used. For aunppse, we need to clarify
in detail what we mean by a KR technology.

Definition 1 (KR Technology).A KR technologyis a triple (£, Q,U), where:

— L is some logical language, with a typical element L,
— Qs a set of query operatois€ Q such that=C 2¢ x L,
— U is a set of update operators € U/ of type: 2% x £ — 2%,

Our definition of a KR technology is quite abstract and onlgcfies the types of oper-
ators which are associated with a knowledge representatiguage. This makes our
result general, since it allows for a wide range of KR techgas that fit the KR schema
introduced, such aBrolog, Answer Set Programmin&QL, etc. The only assumption
made is that a special symbalis part of the KR languagg€, which is intuitively in-
terpreted afalsum when_L can be derived from a set of sentences this set is said to be
inconsistent Our definition is inspired by [4] and explained in more didtaj3]. Apart

from minor differences, it corresponds to the notion of a KBdule in [8].

2 GOAL

The agent programming langua@®AL, for Goal-Oriented Agent Language, is a lan-
guage that incorporates declarative notions of beliefsgaads, and a mechanism for
action selection based on these notions. Th& AL agents derive their choice of ac-
tion from their beliefs and goals. BOALagent consists of four sections: (1) a set of be-
liefs, collectively called théelief basetypically denoted by, (2) a set of goals, called
thegoal basetypically denoted by, (3) aprogram sectiorwhich consists of a set of
action rules typically denoted byi7, and (4) armaction specification sectiotmat con-
sists of a specification of the pre- and postconditions dbastof the agent, typically
denoted byA. A GOAL agentA thus can be represented as a tugle- (X', I'", I, A).
See Figure 1 below for a simplifigdOAL agent that manipulates blocks on a table; for
other examples and a more extensive discussi@a@AL we refer the reader to [5, 7].

Beliefs and Goals The beliefs and goals of @OAL agent are drawn from KR lan-
guagesuch asProlog[12]. As mentioned, one of the contributions will be to shdatt
GOAL agents are not married Rrolog. To this end, we abstract here from particulars
of a specific KR language (similar to the abstraction preseint e.g. [5]). Instead, we
use the abstract definition of a KR technology provided inidédin 1. For the purpose
of introducingGOAL agents below and to simplify the technical presentatiothauit



loss of generality, we introduce a slightly more specifidanse of a KR Technology
Ko = (L, {E}, {®,©}) where[= is an entailment relation ofi, @ is a revision op-
erator and> is a contraction operator. In the remainder of this paper weuse the
label Iy to refer to arbitrary KR technologies of this formsed by GOAL agent3he
notation used for the operators has been chosen to suggesiithl meaning associated
with these symbols= is used to verify that a sentence follows from a particulao$e
sentencesy is used to (consistently) add to a given set of sentences sestgnce;
ando is used to remove (contracts) a sentence from a given sehtdrsees. Bothp
ando are assumed to yield consistent sets of sentences, i.ebitnagy 7" and ¢, we
have thatl’ & ¢ = L andT © ¢ = L.

The belief base. and the goal basg' of a GOAL agent are defined as subsets of
sentences from the KR language Together the belief and the goal base make up a
mental staten of a GOAL agent, i.em = (¥, I'). Belief bases” and individual goals
~ € I' are required to be consistent, i¥.}= L and{~} ~ L. Additionally, an agent
does not believe it achieved its goals, i.e. foralt I" we haveX |~ ~.

Action Selection and SpecificationA GOAL agent chooses an action by means of a
rule-based action selection mechanism. A program seati@i@OAL agent consists
of action rulesof the formif ¢ then a. These action rules define a mapping from
states to actions, together specifying a non-determérpsticy or course of action. The
condition of an action rule, typically denoted By is called anental state conditiarit
determines the states in which the actiomay be executed. Mental state conditions are
Boolean combinations of basic formulbel(¢) or goal(¢) with ¢ € L. For example,
—bel(¢g) A goal(pp A ¢1) is @a mental state condition.

Definition 2 (Mental State Condition Semantics).The semantics of a mental state
condition, given a mental state = (X', I'), is defined by the following four clauses:

m g bel(p) it Yo,
m =4 goal(¢) iff thereisay e I'sit.{v} = ¢,
m =g iff m g P,
m =g Y1 A iff m =4 11 andm =4 o.
Actions are specified iGOALusing a STRIPS-like specification. The action specifica-
tion section in a&5OALagent consists of specifications of the form:

action { :pre{¢} :post{¢’} }

Such a specification of actiGittion consists of a preconditiopand a postcondi-
tion ¢’. An action isenabledwhenever the agent believes the precondition to be true.
Upon its execution the agent updates its beliefs (and,eetlir, possibly also its goals)
with the postconditiond’. In line with STRIPS-style action specifications we assume
that the postconditiog’ of an action consists of two partg = ¢4 A ¢, With ¢4 a
list of negative literals (negated facts) also called dleéete listand ¢, a conjunction
of positive literals (facts) also called tfaeld list® It is assumed here that each action
matches with exactly one corresponding action specificatio

% We could also have used e.g. ADL specifications [10], butéaspns of simplicity we use a
STRIPS-like specification, which also nicely matches thet&é&hnology/Co with two update
operators: the operatay to add facts, and the operatorto delete facts.



Semantics of a GOAL Agent To specify what it means to execut€&s®AL agent we
use a transition style semantics [11]. For our purposes, suificient to present the
semantics for executing a single action b®AL agent. In Section 4 we show how
this semantics can bmplementedy means of dazzyk BSM

Definition 3 (Action Semantics).Letm = (X, I") be a mental statéf ¢ then a be
an action rule, anc {:pre{¢} :post{¢, A ¢4} } be a corresponding action specifica-
tion of a GOAL agent. The following semantic rule can be ueetktive that actiora
can be executed:

mEY,YNE¢

a /
m—m

whereX’ = (X © ¢q) ® ¢ andm’ = (X', '\ {y € I'| X" = ~}).

Besides user specified actio@®)ALhas two built-in actionadopt anddrop to mod-
ify an agent’s goal base. The following axioms define the seitsof these actions:

(5, 1) 22PN 5 P U {e))

(£,1) P n P\ {ye | {7} E¢})

3 Jazzyk Behavioural State Machines

The programming languagiazzykintroduced in [8, 9] elegantly combines concepts
for programmingagent behaviouwith concepts foknowledge representatiodazzyk
agents can be seen as concrete instantiatioriSuoévich’s Abstract State Machines
(ASM) [2] , namedJazzyk Behavioural State Machines alternativelyJazzyk agents
Jazzykdefines a new and unique agent-oriented programming laegdag to the
clear distinction it makes between tkikowledge representati@ndbehaviouralayers
within an agent. It thus provides a programming framewogk thearly separates the
programming concerns d¢fow to represent an agent’s knowledaeout, for example,
its environment antiow to encode its behaviours

Mental states o8azzyk BSMagents, different from those BOAL, are collections
of one or more so-callekinowledge representation modulégically denoted byM,
each of which represents part of the agent’s knowledge Basssitions between such
states result from applying so-callatental state transformefsns), typically denoted
by 7. The various types aihstdetermine the behaviour that an agent can generate. A
Jazzyk BSM ager consists of a set of KR modulesty, ..., M, and a mental state
transformerr, i.e.3 = (M1, ..., M,,, 7); themstr is also called amgent program

A KR module of aJazzyk BSMan be seen as a database of statements drawn from
a specific KR language. KR modules may be used to represennamdain various
attitudes of an agent such as its knowledge about its enwieait, or its goals, inten-
tions, obligations, etclazzykallows agents to have any number of such KR modules
and does not enforce any particular view on these modulegeJBOAL, Jazzykab-
stracts from a particular purpose a KR module can be maderte.deormally, a KR
module(D, £, Q,U) is a KR technology L, Q,U) (cf. Definition 1) extended with a



state (knowledge basé) C £. A KR module is a self-encapsulated computational en-
tity providing two sets of interfacesjueryoperators for querying the knowledge base
andupdateoperators to modify it. In dazzyk BSMM;, ..., M,,, 7) we additionally
require that the KR languages (and consequently the setenfgund update operators)
of any two modules are disjoint, i.€, N £; = 0.

Syntax of Queries and Mental State TransformersQueries, typically denoted by,
are operators constructed from the set of available quesyabdprsQ that are available
in a KR technology. A primitive query = (= ¢) consists of a query operatprc Q
and a formulap € L of the same KR technology. Arbitrary queries can be composed
again by means of conjunctiay disjunctionv and negation.. Mental state transform-
ers enable transitions from one state to another. A primitist© ¢, typically denoted
by p and constructed from an update operator ¢/ and a formulap € £, is an update
on the state of the corresponding KR module of a mental Statreditionalmstare of
the formy — 7, wheregp is a query and- is amst Such a conditionamstallows
to make the application ahstr conditional on the evaluation of quegy Msts can be
combined by means of the choid¢eand the sequencesyntactic constructs.

Definition 4 (Jazzyk Mental State Transformer).Let M1, ..., M,, be KR modules
of the form(D;, L;, Q;,U;). The set oimental state transformeisdefined as:

1. skip is aprimitive mst,

2. ifo elU; and¢ € L;, theno¢ is aprimitive mst,

3. ifpisaquery, and is a mst, therp — 7 is aconditionalmst,

4. if r and7’ are mst's, therr|7’ is an mst ¢hoicg andr o 7’ is an mst §equencke

Figure 1 provides an example oflazzyk BSMigent. To improve readability, we use
a mix of concretelazzyksyntax and the formal syntax introduced above. For a more
extensive example of é&azzyk BSMprogram see [9].

Jazzyk BSM SemanticsThe semantics afazzyk BSNk defined using a semantic cal-
culus similar to that used fékSM[2]. This formalism provides &unctionalrather than
an operational view odazzykmental state transformers. Theelds calculus, intro-
duced below, specifies an update associated with executimyst It formally defines
the meaning of the state transformation induced by exegatimmstin a state.
Formally, a mental stateof aJazzyk BSMM,, ..., M,,, 7) consists of the corre-
sponding stateéDs, ..., D,,) of its KR modules. To specify the semantics afazzyk
BSM first we need to define how queries are evaluated and howeaistatodified by
applying updates to it. A primitive quelty ¢ in aJazzyk BSMtates = (D1,...,D,,)
evaluates the formulg € L£; using the query operatgdec Q; in the current state
D; C L; of the corresponding KR modulé;, £;, Q;,U;). Thatis,s |=; (= ¢) holds
in a mental states iff D; = ¢, otherwise we have [~; (= ¢). Given the usual
meaning of Boolean operators, it is straightforward to edtthe query evaluation to
compound query formulae. Note that a queryy does not change the mental state
The semantics of a mental state transformer is a set of (ggsEquences of)p-
dates(update set). The same notatiow is used to denote a simple update as well as



the corresponding primitivenst It should be clear from the context which of the two
is intended. Sequential application of updates is denofed be. p; e p- is an update
resulting from applyingp; first and then applyings.

Definition 5 (Applying an Update). The result of applying an updaje= ©¢ to a
states = (Di,...,D,) of a BSMB = (Mi,..., M,,7), denoted by P p, is a
new states’ = (D1,...,D},...,D,) whereD, = D;p = D; © ¢ and D;, ©, and¢
correspond to one and the samd; of 5. Applying the special update @ to a state
results in the same mental state= s P @.

We writeD; @ (p1e...epx) for (...(D; P p1) B ... B pi) where allp; correspond
to D;. The result of applying an update of the fopie p, to a states, i.e.s @ (p1 @ p2),
is the new statés @ p1) P po.

The meaning of a mental state transformer in stateormally defined by theyields
predicate below, is the update it yields in that state. Feptirpose of this paper, we in-
troduce a slightly modified, more convenient definition & fields calculus originally
published in [8, 9].

Definition 6 (Yields Calculus).A mental state transformer yields anupdatep in a
states, iff yields(r, s, p) is derivable in the following calculus:

T T -
yields(skip,s,@) yields(@d),s,@qﬁ) (yields of a primitivemsf)
yields(7,s,p), sk=;¢ yields(1,s,p), sl _
yields(qS*»‘r,s,p) yields(qS*»‘r,s,Q) (yields of a conditionainsf)
yields(T1,8,p1), yields(12,8,p2) vyields(T1,8,p1), yields(12,8,p2)
- - (yields of a choicensf)
yields(71|r2,5,01) yields(71|r2,5,p2)

yields(71,s,p1), yields (12,5 €D p1.p2)
yields(T107T2,8,p10p2)

(yields of a sequentiahsf)

The mstskip yields the update @. Similarly, a primitive updatest yields the cor-
responding update. In case the condition of a conditiomgtlp — 7 is satisfied in
the current mental state, the calculus yields one of the tegdaorresponding to the
right hand sidenstr, otherwise the @ update is yielded. A non-deterministici@o
mstyields an update corresponding to either of its members aathfia sequentiahst
yields a sequence of updates corresponding to thenfissdf the sequence and an up-
date yielded by the second member of the sequence in a staténg from application
of the first update to the current mental state.

4 Compiling a GOAL Agent into a Jazzyk BSM

In this Section we show th&@OAL agents can be implemented as, or compiled into,
Jazzyk BSMThe compiler is abstractly represented here by a fundfidhat trans-
lates (compilesfzOAL agents intaJazzyk Behavioural State Machind$e main re-
sult is a proof that for everGOAL agentA = (X, I, II, A) there is aJazzyk BSM
C(A) = (My,..., M,, 1) that implements thaBOAL agent. In fact, we will show
that aJazzyk BSM(A) = (M =, M, 7) with precisely two KR modules is sufficient,



where moduleM 5, corresponds to the belief bad&and moduleM i corresponds to
the goal basé’. We proceed as follows. First, we define the KR modl¢s and M
of the Jazzyk BSMusing the KR technology employed IBOAL agents as a starting
point. Second, we show how to obtaidazzyk BSMgent programr that implements
the action rules in the program sectiéh and action specificationd of the GOAL
agent. Finally, the equivalence of ti&OAL agent with itsJazzyk BSMcounterpart
¢(A) is proven by showing that both are able to generate the sam&ahstates.

Translation It is important to repeat that throughout this paper we hageiimed that
aGOALagent uses a KR technology of the foktg = (£, {E}, {®,©}) (see Section
2). Given this, it is straightforward to map@OAL belief base onto dazzyk BSMKR
module that is able to implement (i) the evaluation of a miestete conditiorbel(¢)
on a belief base as well as (ii) the execution of updates &gsoowith performing an
action. We simply map th&OAL belief base)’ onto theJazzyk BSMnodule

Mz = be(Z) = <E,£, {':}7 {®7@}> (1)

Whereas the underlying KR technology is implicitly assuntee GOAL agent, this
assumption is made explicit in the correspondiagzyk BSMKR module.

The translation of the goal base oG®DAL agent into alazzyk BSMnodule is less
straightforward. AJazzyk BSMnodule that implements the goal base needs to be able
to implement (i) the evaluation of a mental state condigoal(¢) on a goal base as
well as (ii) the execution of updates on a goal base as a respkrformingadopt
or drop actions and the removal of goals that have been achieveduBecthegoal
operator has a somewhat non-standard semantics (see iDefRt)it we need to define
a non-standard KR technology associated withJaezyk BSMnodule implementing
the goal base. Mapping a goal bdsento the moduleV - provides what we need:

MF = Q:gb (F) = <Fa {':goal}; {®adopt7 @drop7 @achieved}> (2)
where:

— I' =goal ¢ iff thereis ay € I' such that{y} = ¢.
- Dadopt ¢ =1I"'u {(b}

— I'Sarop ¢ = '\ {7y € I' [ {7} = ¢}

- I Oachieved ¢ =T \ {¢}

Fgoal IS Used to implemergoal(¢), Gadopt IMplementsadopt, Sdrop is Used to
implementdrop, and finally©achievea iMmplements the goal update mechanism to re-
move achieved goals. Note that the goal update mechanisr@Af Gcf. Definition 2)
requires a simple set operator to remove a formula from tlaglggse such aSachieved
and we cannot useqrop for this purpose.

Using the translations defined above it is now possible tosteie mental state
conditionsy used iNGOAL action rules of the formif i) then a. As noted above,
¢(bel(¢)) can be mapped onto thlazzyk BSMyjuery = ¢; similarly, we can define
¢(goal(¢)) = (Fgoal ¢). Boolean combinations of mental state conditions are trans
lated into Boolean combinations dhzzyk BSMjueries.



The translation of an actioa, the second part of an action rule ofz@DAL agent,
into Jazzyk BSM mstis straightforward whea is eitheradopt or drop action. Since
both adopt(¢) anddrop(¢) are always enabled, we can map these actions simply
onto their corresponding primitive update operators:

¢(adopt(¢)) = Dadopt® Q)
¢(drop(¢)) = Odrop® (4)

The compilation of user defined actions, i.e. actions spgetifi the action specifica-
tion sectionA, into Jazzyk BSMiepends on the action specificatidrof the compiled
GOAL agent. Such actions are mapped onto conditiomstt of the formy — 7.
The preconditions of an action are mapped onto the querypairthe mst the effects
of that action, expressed by a postconditiofGOAL, are translated into a sequential
mst7. Assuming that is a GOAL action with the corresponding action specification
a {:pre{¢} :post{pq A ¢}, we define:

€a) = (F¢— O¢40Dpa) (5)

Note that thelJazzyk BSMperators=, &, ands are associated with the KR mod-
ule My that implements the belief base of AL agent, which ensures that the
preconditiony is evaluated on the belief base of the agent and in line witimidien 3,
the postconditio, A ¢, is used to update that belief base.

Combining the translations of mental state conditions atidas yields a transla-
tion of action rules in the program section of3DAL agent. It is also convenient to
introduce a translation of a complete program sectionaiset/I of such rules. Note
that the order of translation is unimportant.

C(if ¢ then a) = €(¢)) — €(a) (6)
¢(0) = skip (7)
) =¢&(r)|CII\{r}) ,ifrell (8)

The definitions above already allow us to define a compilaifaGOALagent into
a Jazzyk BSMbut it is convenient to first introduce the notion opassibly adopted
goal A goal ¢ is said to be gossibly adopted goakhenever it is possible that the
agent may come to adoptas a goal, i.e. whenever it is already present in the goal
base or there is an action rule of the foifny) then adopt(¢) in I1. The set of
possibly adopted goafB 4 of aGOALagentA = (X, I', I1, A) thus can be defined by
Pa=1U{¢|if v then adopt(¢) € II}. The notion introduced is useful since in
the Jazzyk BSMtranslation we need to also implement the blind commitmeategy
of GOAL i.e. the removal of goals whenever these are completelgaath. AJazzyk
BSM mstthat consists of a sequence of conditionads is introduced to implement
the goal update mechanism GIOAL Each of these corresponds to a single possibly
adopted goal. The corresponding query evaluates whetle 4 is (believed to be)
achieved, whereupaonis removed from the goal base:

Ches(l)) = skip 9)
chs (PA) = (': (b — @achieved¢) © chs (PA \ {¢}) ’ if (b € PA (10)



:main: blocksWorld

[ls+x Initializations omitted s/
beliefs{.. .}
:goals{. ..}

;program{
if bel(on_table([B|S]), clear(B),
block(C), clear(C)) ,
goal(on_table([C,B|S]))
then move(C,B).
if goal(on(B,A)),
bel(on_table([C|S]),
clear(C), member(B,S))

5%+ Modules initialization omitted s/
{ ] seoksonsiorsior € (IT) sk
when |= [{on_table([B|S]), clear(B), block(C), clear(C)}]
and |=goa [{on_table([C,BIS])}]
then {
when |= [{clear(C), clear(B), on(C,Z), not(on(C,B))}]
then & [{not(on(C,Z)), on(C,B)}]

I
when =goa1 [{on(B,A)}] and
|= [{on_table([C|S]), clear(C), member(B,S)}]
then {
when |= [{clear(C), clear(table),
on(C,Z), not(on(C,table))}]

then @ [{not(on(C,2)), on(C,table)}]
then move(C,table). }

} )
{11 stk Carop (GL(A)) skoksksionson
:actionspec{ when |= [{on(b,a), on(a,table)}]
move(X,Y) { then ©goar [{on(b,a), on(a, table)}] ,
:pref clear(X), clear(Y), on(X,Z), not(on(X,Y)) } when |= [{on_table([a,b])}]
post{ not(on(X,Z)), on(X,Y) } then Sgoar [{on_table([a,b])}] ,
when = [{on_table([b])}]
} then Sgoa [{on_table([b]}]
} }

Fig. 1. Example of a translation of a simpOAL agent moving blocks on a table infazzyk
BSMpseudocodewhen ... then ... encodes a conditionahst ; and, stand for] ando respectively.

The compilation of &5OALagent(X, I', IT, A) into aJazzyk BSMs defined as:

€(<27F7 H7A>) = (MZHMF7€(H)O€bcs(,PA)) (11)

Correctness of the Translation Function€ The main effortin proving that the compi-
lation of aGOALagentd = (X, I', II, A) into aJazzyk BSM(A) = (M s, M, €(IT)o
Ches(P4)) is correct consists of showing that the action ruleof the GOAL agent
generate the same mental states as the mental state traesfdii7) o Cpes(Pa). IN
order to prove this we first prove some useful propertie&if (P 4) that implements
the goal update mechanism@ODAL (Lemma 1), the relation d6OAL mental states re-
sulting from action execution to the application of update¥azzyk BSMnental states
(Lemma 2), and the evaluation of mental state conditiol3QAL to the evaluation of
their translations ilazzyk(Lemma 3). Due to space limitations we omit the detailed
proofs for these lemmas.

Lemma 1 proves that dazzyk BSMtate, which has the same structure &AL
state but does not need to be such a state, beco@@\h mental state after removing
goals that are believed to be achieved, and that the&ms{P_4) implements this goal
update mechanism.

Lemmal. Letm = (X, I') be aJazzyk BSMstate such that’ |~ L andI” C P4,
andp be an updat®achievedY1 ® - - - ® SachievedYn- 1henyields(Cyes(Pa), m, p) iff

() (X, I p) is aGOAL mental state, and
(i) thereisnol™: ' p C I" C I' such that{ X, I'’) is aGOAL mental state.



Lemma 2 proves that tHeOAL states resulting from executing an action can also be
obtained by applying updates of a particular structurectvig useful to relat€&OAL
actions toJazzyk BSMupdates. The fact that thlazzyk BSMnst 7 that is theJazzyk
BSMtranslation of &GOAL agent also yields updates with the same structure is useful
to relateJazzyk BSMipdates t@sOAL actions again.

Lemma 2. Let A = (X, I, 11, A) be aGOAL agent and®(A) = (Mx, Mp, 1) its
Jazzyk BSMcompilation. Also let be a user defined action &OAL agentA, with
action specificatiora {:pre{¢} :post{¢, A ¢4}}. Then

(I) m N m! iff In > 0:m' = m@(@¢d'@¢a'@achieved'ﬂ o.. -.@achievedf)/n)-
(i) m 2PN it i = 1 @B (Odropd)-

(i) m 22PN it i = 1 @(Badoptd)-
(iv) If yields(T,m, p), thenpis of the formS g e Do, @ Sachieved 1 ®- - - Sachieved Tn
for somen > 0, or of the formearop® OF Sadopt @-

Lemma 3 relates the evaluation GOAL mental state conditions to the evaluation
of their Jazzyk BSMranslation in the same state.

Lemma 3. Lety be a mental state condition. It holds that

m b b iffm b, €(0)

Finally, Theorem 1 shows that the updates generated byetiwykranslation of a
GOAL agent produce the same mental states as the executionaisbii thalGOAL
agent, which shows that tllazzyk BSNimplements th&sOAL agent.

Theorem 1 (Correctness of GOAL-2-BSM Compilation).Let A = (X, I, IT, A) be
a GOAL agent with mental states = (X', I') and €(A) = (M s, M, 1) its corre-
spondinglazzyk BSMtranslation. Then for alp:

Ja:m m@p iff yields(t,m,p).

Proof. Informally, to show the left to right directiof—>), we have to show that if
a GOAL actiona is enabled in a mental staie, there exists an updagesuch that
(a) the state resulting from performirgis m & p and (b)p is yielded by in this
state. From Lemma 2 we know that such axists and is of the form (i) = ©¢, e
©da ® Cachieved1 @ - - - ® OachievedYn fOr user specified actions (i) p = Sarop®
if a = drop(¢) and (iii) p = Padopt® If a = adopt ().

So suppose that — m @ p anda is a user defined action (the other cases dealing
with a = drop(¢) anda = adopt(¢) are similar). This means there is an action rule
if ¢ then a, and preconditio and postconditio, A ¢, associated with actioa
such thatn =, ¢ andX = ¢. It remains to show that updageis also yielded byr.

By construction, we must have that

7= ([(€¥) — (F ¢ — S¢a © &¢a))|.-.) © Ches(Pa)

Since we haven =, v andX = ¢, using Lemma 3 it is immediate that we have
yields(€(y) — (E ¢ — 640 Bdy ), m, Sdq @ Do, ). Finally, from Lemma 1, we



have thayields(ebcs(lpfl)v m @(@(bd L ®¢a)v {@achieved71 e...0 @achieved’)/n) and
by applying sequential composition on the resulting upslate are done.

(«<=) In the other direction, we have to prove that the updateopadd by¢(A)
correspond to enabled actions of BOAL agentA. So suppose thatields(r, m, p),
andp is of the formSg¢, ® Doy ® OachievedY1 ® - - - ® OachievedVrn (USINg Lemma
2(iv); the other cases with = Odrop® aNdp = Dadopt® are again similar). From
the construction of it follows that we must haveiclds(€(y) — (F ¢ —
O 0 Ddy) © Ches(Pa), m, p). From the rule for conditionahstin the yields cal-
culus (Definition 6) follows thain |=; () andm |=; (= ¢). By Lemma 3 we
then havem =, ¢ and X = ¢. We must also have an action rtie ) then a
with action specificatiora {:pre{¢} :post{¢, A ¢q} such thatn — m P(O¢, e
Dby ® Cachieved V| ® - - - ® Sachieved V) (Cf. Lemma 2(i)). It remains to be shown that
OachievedY1 @ - - - ® OachievedVn is equal t()@a.chievedﬁ)/i ®...0 @achievedﬁ)/;n; this
follows immediately from Lemma 1.

5 Discussion & Conclusion

We showed that ansOAL agent can be compiled into Jazzyk Behavioural State
Machine More precisely, it was shown that every possible companiattep of sE5OAL
agent can be emulated by tlazzyk BSMhat is the result of compiling th&OAL
agent intoJazzyk BSMThe compilation procedure mompositionalin the sense that
any modifications or extensions of the belief base, goal baggogram and action
specification sections of tteOAL agent onlylocally affect, respectively, the compiled
belief base module, the compiled goal base module, or theatsate transformer that
is the result of compiling the program and action specificasiections.

The compilation function introduced provides a means todiete GOAL agents
into Jazzyk BSIybut not vice versa. Abstracting from a number of detailazzyk BSM
could be viewed as &O0AL agent that does not use its goal base and associated goal
update mechanism. As mentioned ab@dazzykdoes not commit to any particular view
on the KR modules of dazzyk BSMThis flexibility allowed us to implement the goal
base of &5OAL agent by means of explicit emulation of the goal update masha

As already noted in the introduction, there is not much eelatork aimed at pro-
viding an effective strategy or tools for implementing aiegr of rule-based agent
programming languages such as those described in [1]. Thesteof our knowledge,
only [6] has presented a framework to this end. The resuftimgework, however, is
based on the idea to incorporate each and every semanticdesdta variety of avail-
able high-level agent languages in order to be able to coxzyeype of agent. It thus
does not provide an implementation strategy as the one pgeshamd illustrated in this
paper, which is based on the idea to provide a concise sanpishigh-level concepts
(a common core) facilitating compilation of a variety of agprograms into this core
instruction set. This strategy is explicitly aimedratiucinga set of high-level agent
programming concepts tosimpler, more basic set of concepts.

The implementation strategy used to identify specific seméatures of th& OAL
language and to emulate these explicithJarzylkalso raises the question whether fea-
tures of other agent programming languages can be compitesimilar way. Although



we do not have room to extensively argue for this, we belieat & similar approach
can also be applied to other rule-based agent programmitgyéages. In particular,
the following implementation strategy could be appliedampile agent programs into
Jazzyk BSM(i) compile the underlying knowledge base(s) into equnalazzyk BSM
KR module(s), (ii) compile the (action, planning, ...) rellef the agent program into
Jazzyk BSMnental state transformers using the operators of the KR ta()uand
finally (iii) implement any specific semantic features of theguage by dazzyk BSM
mstand “append” it to the one constructed in the previous stepelver, sincdazzyk
BSMalso features a much simpler conceptual scheme than higredielgent languages,
we believe that it provides a promissing basis for an inteliate language into which
agent programs can be compiled and interpreted.

Our result shows thaOALdoes not commit to any particular KR technology such
as Prolog. Another issue that remains is whether it woulddssiple to allownGOAL
agents to use multiple KR technologies. The compilation if#zzyk BShprovides
some evidence that this is possible sidagzyk BSMenables the use of many different
KR technologies. However, the use of multiple KR technasguithin a single agent
will add expressive power only when certain key issuesedlad the “interoperability”
of different KRs have been solved (for a discussion see 830 [
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