
Compiling GOAL Agent Programs into
Jazzyk Behavioural State Machines

Koen Hindriks1 and Peter Novák2

1 EEMCS, Delft University of Technology, The Netherlands
k.v.hindriks@tudelft.nl

2 Department of Informatics, Clausthal University of Technology, Germany
peter.novak@tu-clausthal.de

Abstract. A variety of agent-oriented programming languages based onhigh-
level concepts such as beliefs and goals has been proposed inthe literature. Even
though most of these languages now come with interpreters implemented in e.g.
Java and can be used to write software agents, there is littlework reporting how
to implement such languages or to identify a core instruction set that would fa-
cilitate such implementation. In this paper we introduce a compiler for the agent
programming languageGOAL into the framework ofJazzyk Behavioural State
Machines. The result is a translation of key agent concepts such as beliefs and
goals into theJazzyklanguage which lacks these notions, thus providing some
evidence that it may provide a sufficient instruction set forimplementing agent
programs. Moreover, arguably, the implementation strategy used can be general-
ized and applied also to other agent programming languages.

1 Introduction

Relatively little has been reported in the literature on implementing high-level agent
programming languages [1]. An exception is the work of Dennis et al. [6], which aims
at providing a common basis for a variety of such languages. As of yet, however, there
is no equivalent of theWarren Abstract Machine[13] available - which provides such
a basis forProlog - that would facilitate implementation of these agent languages. In
part this is due to the diversity of the proposed languages, ranging from extensions of
Java with high-level agent concepts to completely new proposals for high-level agent-
oriented programming languages. The effort needed, however, to implement the latter
class of agent languages from scratch is large, non-trivialand error-prone. It there-
fore would be useful to have anintermediate language that provides a core instruction
setof more high-level programming constructs than e.g. Java provides, and that could
be used to compile agent programs into. As we will show, it turns out that theJazzyk
agent programming framework [8, 9] provides an interestingoption for compiling agent
programs.Jazzykagents areBehavioural State Machines(Jazzyk BSM) that exactly pro-
vide the behavioural layer on top of a knowledge representational layer that is needed
to implement agent languages. The main contribution of the paper is a formal proof that
shows it is relatively easy to compileGOALagents [5, 7] intoJazzyk BSM, demonstrat-
ing the usefulness ofJazzykas a target language of an agent program compiler.

Besides showing thatJazzykcan be used as a target language of a compiler for such
agents, our result provides some additional insights. One of the more important corol-
laries of the proof given is that it shows that theGOALagent language is not committed

to any particular knowledge representation (KR) technology. GOAL agents may use
Prolog [12], but there is nothing specific aboutGOALenforcing such a choice. One of
the motivations behind theJazzyklanguage has been to allow the use and combination
of heterogeneous KR technologies in a single agent. A consequence of our result is that
the choice of the KR technology used byGOAL agents can be seen as a parameter to
be instantiated when these agents are written. Finally, by showing thatGOAL agents
can be compiled intoJazzyk, some evidence is provided thatJazzyksupports the core
functionality needed for implementing agent-oriented programming.

As made clear above, a key ingredient of agent languages and of GOALandJazzyk
in particular is (are) the KR technology(ies) used. For our purpose, we need to clarify
in detail what we mean by a KR technology.

Definition 1 (KR Technology).A KR technologyis a triple 〈L,Q,U〉, where:

– L is some logical language, with a typical elementφ ∈ L,
– Q is a set of query operators|=∈ Q such that|=⊆ 2L × L,
– U is a set of update operators� ∈ U of type: 2L × L → 2L.

Our definition of a KR technology is quite abstract and only specifies the types of oper-
ators which are associated with a knowledge representationlanguage. This makes our
result general, since it allows for a wide range of KR technologies that fit the KR schema
introduced, such asProlog, Answer Set Programming, SQL, etc. The only assumption
made is that a special symbol⊥ is part of the KR languageL, which is intuitively in-
terpreted asfalsum; when⊥ can be derived from a set of sentences this set is said to be
inconsistent. Our definition is inspired by [4] and explained in more detail in [3]. Apart
from minor differences, it corresponds to the notion of a KR module in [8].

2 GOAL

The agent programming languageGOAL, for Goal-Oriented Agent Language, is a lan-
guage that incorporates declarative notions of beliefs andgoals, and a mechanism for
action selection based on these notions. That is,GOALagents derive their choice of ac-
tion from their beliefs and goals. AGOALagent consists of four sections: (1) a set of be-
liefs, collectively called thebelief base, typically denoted byΣ, (2) a set of goals, called
thegoal base, typically denoted byΓ , (3) aprogram sectionwhich consists of a set of
action rules, typically denoted byΠ , and (4) anaction specification sectionthat con-
sists of a specification of the pre- and postconditions of actions of the agent, typically
denoted byA. A GOALagentA thus can be represented as a tupleA = 〈Σ,Γ,Π,A〉.
See Figure 1 below for a simplifiedGOALagent that manipulates blocks on a table; for
other examples and a more extensive discussion ofGOALwe refer the reader to [5, 7].

Beliefs and Goals The beliefs and goals of aGOALagent are drawn from aKR lan-
guagesuch asProlog [12]. As mentioned, one of the contributions will be to show that
GOALagents are not married toProlog. To this end, we abstract here from particulars
of a specific KR language (similar to the abstraction presented in e.g. [5]). Instead, we
use the abstract definition of a KR technology provided in Definition 1. For the purpose
of introducingGOALagents below and to simplify the technical presentation, without

loss of generality, we introduce a slightly more specific instance of a KR Technology
K0 = 〈L, {|=}, {⊕,	}〉 where|= is an entailment relation onL, ⊕ is a revision op-
erator and	 is a contraction operator. In the remainder of this paper we will use the
labelK0 to refer to arbitrary KR technologies of this formused by GOAL agents. The
notation used for the operators has been chosen to suggest the usual meaning associated
with these symbols:|= is used to verify that a sentence follows from a particular set of
sentences;⊕ is used to (consistently) add to a given set of sentences a newsentence;
and	 is used to remove (contracts) a sentence from a given set of sentences. Both⊕
and	 are assumed to yield consistent sets of sentences, i.e. for arbitraryT andφ, we
have thatT ⊕ φ 6|= ⊥ andT 	 φ 6|= ⊥.

The belief baseΣ and the goal baseΓ of a GOALagent are defined as subsets of
sentences from the KR languageL. Together the belief and the goal base make up a
mental statem of a GOAL agent, i.e.m = 〈Σ,Γ 〉. Belief basesΣ and individual goals
γ ∈ Γ are required to be consistent, i.e.Σ 6|= ⊥ and{γ} 6|= ⊥. Additionally, an agent
does not believe it achieved its goals, i.e. for allγ ∈ Γ we haveΣ 6|= γ.

Action Selection and SpecificationA GOALagent chooses an action by means of a
rule-based action selection mechanism. A program section in a GOAL agent consists
of action rulesof the form if ψ then a. These action rules define a mapping from
states to actions, together specifying a non-deterministic policy or course of action. The
condition of an action rule, typically denoted byψ, is called amental state condition. It
determines the states in which the actiona may be executed. Mental state conditions are
Boolean combinations of basic formulaebel(φ) or goal(φ) with φ ∈ L. For example,
¬bel(φ0) ∧ goal(φ0 ∧ φ1) is a mental state condition.

Definition 2 (Mental State Condition Semantics).The semantics of a mental state
condition, given a mental statem = 〈Σ,Γ 〉, is defined by the following four clauses:

m |=g bel(φ) iff Σ |= φ,
m |=g goal(φ) iff there is aγ ∈ Γ s.t.{γ} |= φ,
m |=g ¬ψ iff m 6|=g ψ,
m |=g ψ1 ∧ ψ2 iff m |=g ψ1 andm |=g ψ2.

Actions are specified inGOALusing a STRIPS-like specification. The action specifica-
tion section in aGOALagent consists of specifications of the form:

action { :pre{φ} :post{φ′} }

Such a specification of actionaction consists of a preconditionφ and a postcondi-
tion φ′. An action isenabledwhenever the agent believes the precondition to be true.
Upon its execution the agent updates its beliefs (and, indirectly, possibly also its goals)
with the postconditionφ′. In line with STRIPS-style action specifications we assume
that the postconditionφ′ of an action consists of two partsφ′ = φd ∧ φa with φd a
list of negative literals (negated facts) also called thedelete listandφa a conjunction
of positive literals (facts) also called theadd list.3 It is assumed here that each action
matches with exactly one corresponding action specification.

3 We could also have used e.g. ADL specifications [10], but for reasons of simplicity we use a
STRIPS-like specification, which also nicely matches the KRtechnologyK0 with two update
operators: the operator⊕ to add facts, and the operator	 to delete facts.

Semantics of a GOAL Agent To specify what it means to execute aGOALagent we
use a transition style semantics [11]. For our purposes, it is sufficient to present the
semantics for executing a single action by aGOAL agent. In Section 4 we show how
this semantics can beimplementedby means of aJazzyk BSM.

Definition 3 (Action Semantics).Letm = 〈Σ,Γ 〉 be a mental state,if ψ then a be
an action rule, anda {:pre{φ} :post{φa ∧ φd} } be a corresponding action specifica-
tion of a GOAL agent. The following semantic rule can be used to derive that actiona
can be executed:

m |= ψ,Σ |= φ

m
a

−→ m′

whereΣ′ = (Σ 	 φd) ⊕ φa andm′ = 〈Σ′, Γ \ {γ ∈ Γ |Σ′ |= γ}〉.

Besides user specified actions,GOALhas two built-in actionsadopt anddrop to mod-
ify an agent’s goal base. The following axioms define the semantics of these actions:

〈Σ,Γ 〉
adopt(φ)
−−−−−−→ 〈Σ,Γ ∪ {φ}〉

〈Σ,Γ 〉
drop(φ)
−−−−−→ 〈Σ,Γ \ {γ ∈ Γ | {γ} |= φ}〉

3 Jazzyk Behavioural State Machines

The programming languageJazzykintroduced in [8, 9] elegantly combines concepts
for programmingagent behaviourwith concepts forknowledge representation. Jazzyk
agents can be seen as concrete instantiations ofGurevich’s Abstract State Machines
(ASM) [2] , namedJazzyk Behavioural State Machines, or alternativelyJazzyk agents.
Jazzykdefines a new and unique agent-oriented programming language due to the
clear distinction it makes between theknowledge representationandbehaviourallayers
within an agent. It thus provides a programming framework that clearly separates the
programming concerns ofhow to represent an agent’s knowledgeabout, for example,
its environment andhow to encode its behaviours.

Mental states ofJazzyk BSMagents, different from those inGOAL, are collections
of one or more so-calledknowledge representation modules, typically denoted byM,
each of which represents part of the agent’s knowledge base.Transitions between such
states result from applying so-calledmental state transformers(mst), typically denoted
by τ . The various types ofmstdetermine the behaviour that an agent can generate. A
Jazzyk BSM agentB consists of a set of KR modulesM1, . . . ,Mn and a mental state
transformerτ , i.e.B = (M1, . . . ,Mn, τ); themstτ is also called anagent program.

A KR module of aJazzyk BSMcan be seen as a database of statements drawn from
a specific KR language. KR modules may be used to represent andmaintain various
attitudes of an agent such as its knowledge about its environment, or its goals, inten-
tions, obligations, etc.Jazzykallows agents to have any number of such KR modules
and does not enforce any particular view on these modules. Unlike GOAL, Jazzykab-
stracts from a particular purpose a KR module can be made to serve. Formally, a KR
module〈D,L,Q,U〉 is a KR technology〈L,Q,U〉 (cf. Definition 1) extended with a

state (knowledge base)D ⊆ L. A KR module is a self-encapsulated computational en-
tity providing two sets of interfaces:queryoperators for querying the knowledge base
andupdateoperators to modify it. In aJazzyk BSM(M1, . . . ,Mn, τ) we additionally
require that the KR languages (and consequently the set of query and update operators)
of any two modules are disjoint, i.e.Li ∩ Lj = ∅.

Syntax of Queries and Mental State TransformersQueries, typically denoted byϕ,
are operators constructed from the set of available query operatorsQ that are available
in a KR technology. A primitive queryϕ = (|= φ) consists of a query operator|=∈ Q
and a formulaφ ∈ L of the same KR technology. Arbitrary queries can be composed
again by means of conjunction∧, disjunction∨ and negation¬. Mental state transform-
ers enable transitions from one state to another. A primitivemst�φ, typically denoted
by ρ and constructed from an update operator� ∈ U and a formulaφ ∈ L, is an update
on the state of the corresponding KR module of a mental state.Conditionalmstare of
the formϕ −→ τ , whereϕ is a query andτ is a mst. Such a conditionalmstallows
to make the application ofmstτ conditional on the evaluation of queryϕ. Msts can be
combined by means of the choice| and the sequence◦ syntactic constructs.

Definition 4 (Jazzyk Mental State Transformer).LetM1, . . . ,Mn be KR modules
of the form〈Di,Li,Qi,Ui〉. The set ofmental state transformersis defined as:

1. skip is aprimitive mst,
2. if � ∈ Ui andφ ∈ Li, then�φ is aprimitive mst,
3. if ϕ is a query, andτ is a mst, thenϕ −→ τ is aconditionalmst,
4. if τ andτ ′ are mst’s, thenτ |τ ′ is an mst (choice) andτ ◦ τ ′ is an mst (sequence).

Figure 1 provides an example of aJazzyk BSMagent. To improve readability, we use
a mix of concreteJazzyksyntax and the formal syntax introduced above. For a more
extensive example of aJazzyk BSMprogram see [9].

Jazzyk BSM SemanticsThe semantics ofJazzyk BSMis defined using a semantic cal-
culus similar to that used forASM[2]. This formalism provides afunctionalrather than
an operational view onJazzykmental state transformers. Theyields calculus, intro-
duced below, specifies an update associated with executing an mst. It formally defines
the meaning of the state transformation induced by executing anmstin a state.

Formally, a mental states of aJazzyk BSM(M1, . . . ,Mn, τ) consists of the corre-
sponding states〈D1, . . . , Dn〉 of its KR modules. To specify the semantics of aJazzyk
BSM, first we need to define how queries are evaluated and how a state is modified by
applying updates to it. A primitive query|= φ in aJazzyk BSMstates = 〈D1, . . . , Dn〉
evaluates the formulaφ ∈ Li using the query operator|=∈ Qi in the current state
Di ⊆ Li of the corresponding KR module〈Di,Li,Qi,Ui〉. That is,s |=j (|= φ) holds
in a mental states iff Di |= φ, otherwise we haves 6|=j (|= φ). Given the usual
meaning of Boolean operators, it is straightforward to extend the query evaluation to
compound query formulae. Note that a query|= φ does not change the mental states.

The semantics of a mental state transformer is a set of (possibly sequences of)up-
dates(update set). The same notation�φ is used to denote a simple update as well as

the corresponding primitivemst. It should be clear from the context which of the two
is intended. Sequential application of updates is denoted by •, i.e.ρ1 • ρ2 is an update
resulting from applyingρ1 first and then applyingρ2.

Definition 5 (Applying an Update). The result of applying an updateρ = �φ to a
states = 〈D1, . . . , Dn〉 of a BSMB = (M1, . . . ,Mn, τ), denoted bys

⊕
ρ, is a

new states′ = 〈D1, . . . , D
′
i, . . . , Dn〉 whereD′

i = Diρ = Di � φ andDi, �, andφ
correspond to one and the sameMi of B. Applying the special update Ø to a states
results in the same mental states = s

⊕
Ø.

We writeDi

⊕
(ρ1•. . .•ρk) for (...(Di

⊕
ρ1)

⊕
...

⊕
ρk) where allρi correspond

toDi. The result of applying an update of the formρ1 •ρ2 to a states, i.e.s
⊕

(ρ1 •ρ2),
is the new state(s

⊕
ρ1)

⊕
ρ2.

The meaning of a mental state transformer in states, formally defined by theyields
predicate below, is the update it yields in that state. For the purpose of this paper, we in-
troduce a slightly modified, more convenient definition of theyields calculus originally
published in [8, 9].

Definition 6 (Yields Calculus).A mental state transformerτ yields anupdateρ in a
states, iff yields(τ, s, ρ) is derivable in the following calculus:

>
yields(skip,s,Ø)

>
yields(�φ,s,�φ) (yields of a primitivemst)

yields(τ,s,ρ), s|=jφ

yields(φ−→τ,s,ρ)
yields(τ,s,ρ), s6|=jφ

yields(φ−→τ,s,Ø) (yields of a conditionalmst)

yields(τ1,s,ρ1), yields(τ2,s,ρ2)
yields(τ1|τ2,s,ρ1)

yields(τ1,s,ρ1), yields(τ2,s,ρ2)
yields(τ1|τ2,s,ρ2) (yields of a choicemst)

yields(τ1,s,ρ1), yields(τ2,s
L

ρ1,ρ2)
yields(τ1◦τ2,s,ρ1•ρ2) (yields of a sequentialmst)

The mst skip yields the update Ø. Similarly, a primitive updatemst yields the cor-
responding update. In case the condition of a conditionalmstϕ −→ τ is satisfied in
the current mental state, the calculus yields one of the updates corresponding to the
right hand sidemstτ , otherwise the Ø update is yielded. A non-deterministic choice
mstyields an update corresponding to either of its members and finally a sequentialmst
yields a sequence of updates corresponding to the firstmstof the sequence and an up-
date yielded by the second member of the sequence in a state resulting from application
of the first update to the current mental state.

4 Compiling a GOAL Agent into a Jazzyk BSM

In this Section we show thatGOAL agents can be implemented as, or compiled into,
Jazzyk BSM. The compiler is abstractly represented here by a functionC that trans-
lates (compiles)GOAL agents intoJazzyk Behavioural State Machines. The main re-
sult is a proof that for everyGOAL agentA = 〈Σ,Γ,Π,A〉 there is aJazzyk BSM
C(A) = (M1, . . . ,Mn, τ) that implements thatGOAL agent. In fact, we will show
that aJazzyk BSMC(A) = (MΣ ,MΓ , τ) with precisely two KR modules is sufficient,

where moduleMΣ corresponds to the belief baseΣ and moduleMΓ corresponds to
the goal baseΓ . We proceed as follows. First, we define the KR modulesMΣ andMΓ

of theJazzyk BSM, using the KR technology employed byGOAL agents as a starting
point. Second, we show how to obtain aJazzyk BSMagent programτ that implements
the action rules in the program sectionΠ and action specificationsA of the GOAL
agent. Finally, the equivalence of theGOAL agent with itsJazzyk BSMcounterpart
C(A) is proven by showing that both are able to generate the same mental states.

Translation It is important to repeat that throughout this paper we have assumed that
a GOALagent uses a KR technology of the formK0 = 〈L, {|=}, {⊕,	}〉 (see Section
2). Given this, it is straightforward to map aGOALbelief base onto aJazzyk BSMKR
module that is able to implement (i) the evaluation of a mental state conditionbel(φ)
on a belief base as well as (ii) the execution of updates associated with performing an
action. We simply map theGOALbelief baseΣ onto theJazzyk BSMmodule

MΣ = Cbb(Σ) = 〈Σ,L, {|=}, {⊕,	}〉 (1)

Whereas the underlying KR technology is implicitly assumedin a GOAL agent, this
assumption is made explicit in the correspondingJazzyk BSMKR module.

The translation of the goal base of aGOALagent into aJazzyk BSMmodule is less
straightforward. AJazzyk BSMmodule that implements the goal base needs to be able
to implement (i) the evaluation of a mental state conditiongoal(φ) on a goal base as
well as (ii) the execution of updates on a goal base as a resultof performingadopt

or drop actions and the removal of goals that have been achieved. Because thegoal

operator has a somewhat non-standard semantics (see Definition 2), we need to define
a non-standard KR technology associated with theJazzyk BSMmodule implementing
the goal base. Mapping a goal baseΓ onto the moduleMΓ provides what we need:

MΓ = Cgb(Γ) = 〈Γ, {|=goal}, {⊕adopt,	drop,	achieved}〉 (2)

where:

– Γ |=goal φ iff there is aγ ∈ Γ such that{γ} |= φ.
– Γ ⊕adopt φ = Γ ∪ {φ}.
– Γ 	drop φ = Γ \ {γ ∈ Γ | {γ} |= φ}.
– Γ 	achieved φ = Γ \ {φ}.

|=goal is used to implementgoal(φ), ⊕adopt implementsadopt, 	drop is used to
implementdrop, and finally	achieved implements the goal update mechanism to re-
move achieved goals. Note that the goal update mechanism of GOAL (cf. Definition 2)
requires a simple set operator to remove a formula from the goal base such as	achieved

and we cannot use	drop for this purpose.
Using the translations defined above it is now possible to translate mental state

conditionsψ used inGOAL action rules of the formif ψ then a. As noted above,
C(bel(φ)) can be mapped onto theJazzyk BSMquery|= φ; similarly, we can define
C(goal(φ)) = (|=goal φ). Boolean combinations of mental state conditions are trans-
lated into Boolean combinations ofJazzyk BSMqueries.

The translation of an actiona, the second part of an action rule of aGOALagent,
into Jazzyk BSM msts is straightforward whena is eitheradopt or drop action. Since
both adopt(φ) anddrop(φ) are always enabled, we can map these actions simply
onto their corresponding primitive update operators:

C(adopt(φ)) = ⊕adoptφ (3)

C(drop(φ)) = 	dropφ (4)

The compilation of user defined actions, i.e. actions specified in the action specifica-
tion sectionA, into Jazzyk BSMdepends on the action specificationA of the compiled
GOAL agent. Such actions are mapped onto conditionalmsts of the formϕ −→ τ .
The preconditions of an action are mapped onto the query partϕ of themst; the effects
of that action, expressed by a postcondition inGOAL, are translated into a sequential
mstτ . Assuming thata is a GOAL action with the corresponding action specification
a {:pre{φ} :post{φd ∧ φa}, we define:

C(a) = (|= φ −→ 	φd ◦ ⊕φa) (5)

Note that theJazzyk BSMoperators|=, ⊕, and	 are associated with the KR mod-
ule MΣ that implements the belief base of theGOAL agent, which ensures that the
preconditionφ is evaluated on the belief base of the agent and in line with Definition 3,
the postconditionφd ∧ φa is used to update that belief base.

Combining the translations of mental state conditions and actions yields a transla-
tion of action rules in the program section of aGOAL agent. It is also convenient to
introduce a translation of a complete program section, i.e.a setΠ of such rules. Note
that the order of translation is unimportant.

C(if ψ then a) = C(ψ) −→ C(a) (6)

C(∅) = skip (7)

C(Π) = C(r) |C(Π \ {r}) , if r ∈ Π (8)

The definitions above already allow us to define a compilationof aGOALagent into
a Jazzyk BSM, but it is convenient to first introduce the notion of apossibly adopted
goal. A goal φ is said to be apossibly adopted goalwhenever it is possible that the
agent may come to adoptφ as a goal, i.e. whenever it is already present in the goal
base or there is an action rule of the formif ψ then adopt(φ) in Π . The set of
possibly adopted goalsPA of a GOALagentA = 〈Σ,Γ,Π,A〉 thus can be defined by
PA = Γ ∪ {φ | if ψ then adopt(φ) ∈ Π}. The notion introduced is useful since in
theJazzyk BSMtranslation we need to also implement the blind commitment strategy
of GOAL, i.e. the removal of goals whenever these are completely achieved. AJazzyk
BSM mstthat consists of a sequence of conditionalmsts is introduced to implement
the goal update mechanism ofGOAL. Each of these corresponds to a single possibly
adopted goal. The corresponding query evaluates whetherφ ∈ PA is (believed to be)
achieved, whereuponφ is removed from the goal base:

Cbcs(∅) = skip (9)

Cbcs(PA) = (|= φ −→ 	achievedφ) ◦ Cbcs(PA \ {φ}) , if φ ∈ PA (10)

:main: blocksWorld
{

//∗∗∗ Initializations omitted ∗∗∗/
:beliefs{. . .}
:goals{. . .}

:program{
if bel(on_table([B|S]), clear(B),

block(C), clear(C)) ,
goal(on_table([C,B|S]))

then move(C,B).
if goal(on(B,A)),

bel(on_table([C|S]),
clear(C), member(B,S))

then move(C,table).
}

:actionspec{
move(X,Y) {

:pre{ clear(X), clear(Y), on(X,Z), not(on(X,Y)) }
:post{ not(on(X,Z)), on(X,Y) }

}
}

}

/∗∗∗ Modules initialization omitted ∗∗∗/
{ // ∗∗∗∗∗∗∗∗ C(Π) ∗∗∗∗∗∗∗∗

when |= [{on_table([B|S]), clear(B), block(C), clear(C)}]
and |=goal [{on_table([C,B|S])}]

then {
when |= [{clear(C), clear(B), on(C,Z), not(on(C,B))}]
then ⊕ [{not(on(C,Z)), on(C,B)}]

} ;
when |=goal [{on(B,A)}] and

|= [{on_table([C|S]), clear(C), member(B,S)}]
then {
when |= [{clear(C), clear(table),

on(C,Z), not(on(C,table))}]
then ⊕ [{not(on(C,Z)), on(C,table)}]
}

} ,
{ // ∗∗∗∗∗∗∗∗ Cdrop(Gl(A)) ∗∗∗∗∗∗∗∗

when |= [{on(b,a), on(a,table)}]
then 	goal [{on(b,a), on(a, table)}] ,

when |= [{on_table([a,b])}]
then 	goal [{on_table([a,b])}] ,

when |= [{on_table([b])}]
then 	goal [{on_table([b])}]

}

Fig. 1. Example of a translation of a simpleGOAL agent moving blocks on a table intoJazzyk
BSMpseudocode.when ... then ... encodes a conditionalmst, ; and, stand for| and◦ respectively.

The compilation of aGOALagent〈Σ,Γ,Π,A〉 into aJazzyk BSMis defined as:

C(〈Σ,Γ,Π,A〉) = (MΣ ,MΓ ,C(Π) ◦ Cbcs(PA)) (11)

Correctness of the Translation FunctionC The main effort in proving that the compi-
lation of aGOALagentA = 〈Σ,Γ,Π,A〉 into aJazzyk BSMC(A) = (MΣ ,MΓ ,C(Π)◦
Cbcs(PA)) is correct consists of showing that the action rulesΠ of the GOAL agent
generate the same mental states as the mental state transformerC(Π) ◦ Cbcs(PA). In
order to prove this we first prove some useful properties ofCbcs(PA) that implements
the goal update mechanism ofGOAL(Lemma 1), the relation ofGOALmental states re-
sulting from action execution to the application of updatesto Jazzyk BSMmental states
(Lemma 2), and the evaluation of mental state conditions inGOAL to the evaluation of
their translations inJazzyk(Lemma 3). Due to space limitations we omit the detailed
proofs for these lemmas.

Lemma 1 proves that aJazzyk BSMstate, which has the same structure as aGOAL
state but does not need to be such a state, becomes aGOALmental state after removing
goals that are believed to be achieved, and that the mstCbcs(PA) implements this goal
update mechanism.

Lemma 1. Letm = 〈Σ,Γ 〉 be aJazzyk BSMstate such thatΣ 6|= ⊥ andΓ ⊆ PA,
andρ be an update	achievedγ1 • . . . •	achievedγn. Thenyields(Cbcs(PA),m, ρ) iff

(i) 〈Σ,Γ
⊕
ρ〉 is aGOAL mental state, and

(ii) there is noΓ ′: Γ
⊕
ρ ⊂ Γ ′ ⊆ Γ such that〈Σ,Γ ′〉 is aGOAL mental state.

Lemma 2 proves that theGOALstates resulting from executing an action can also be
obtained by applying updates of a particular structure, which is useful to relateGOAL
actions toJazzyk BSMupdates. The fact that theJazzyk BSMmst τ that is theJazzyk
BSMtranslation of aGOALagent also yields updates with the same structure is useful
to relateJazzyk BSMupdates toGOALactions again.

Lemma 2. Let A = 〈Σ,Γ,Π,A〉 be aGOAL agent andC(A) = (MΣ,MΓ , τ) its
Jazzyk BSMcompilation. Also leta be a user defined action ofGOAL agentA, with
action specificationa {:pre{φ} :post{φa ∧ φd}}. Then

(i) m
a

−→ m′ iff ∃n ≥ 0 : m′ = m
⊕

(φd•⊕φa•	achievedγ1• . . .•	achievedγn).

(ii) m
drop(φ)
−−−−−→ m′ iff m′ = m

⊕
(dropφ).

(iii) m
adopt(φ)
−−−−−−→ m′ iff m′ = m

⊕
(⊕adoptφ).

(iv) If yields(τ,m, ρ), thenρ is of the form	φd•⊕φa•	achievedγ1•. . .•	achievedγn

for somen ≥ 0, or of the form	dropφ or 	adoptφ.

Lemma 3 relates the evaluation ofGOALmental state conditions to the evaluation
of theirJazzyk BSMtranslation in the same state.

Lemma 3. Letψ be a mental state condition. It holds that

m |=g ψ iff m |=j C(ψ)

Finally, Theorem 1 shows that the updates generated by theJazzyktranslation of a
GOALagent produce the same mental states as the execution of actions by thatGOAL
agent, which shows that theJazzyk BSMimplements theGOALagent.

Theorem 1 (Correctness of GOAL-2-BSM Compilation).LetA = 〈Σ,Γ,Π,A〉 be
a GOAL agent with mental statem = 〈Σ,Γ 〉 andC(A) = (MΣ ,MΓ , τ) its corre-
spondingJazzyk BSMtranslation. Then for allρ:

∃a : m
a

−→ m
⊕
ρ iff yields(τ,m, ρ).

Proof. Informally, to show the left to right direction(=⇒), we have to show that if
a GOAL actiona is enabled in a mental statem, there exists an updateρ such that
(a) the state resulting from performinga is m

⊕
ρ and (b)ρ is yielded byτ in this

state. From Lemma 2 we know that such aρ exists and is of the form (i)ρ = 	φd •
⊕φa • 	achievedγ1 • . . . • 	achievedγn for user specified actionsa, (ii) ρ = 	dropφ

if a = drop(φ) and (iii) ρ = ⊕adoptφ if a = adopt(φ).
So suppose thatm

a

−→ m
⊕
ρ anda is a user defined action (the other cases dealing

with a = drop(φ) anda = adopt(φ) are similar). This means there is an action rule
if ψ then a, and preconditionφ and postconditionφd ∧ φa associated with actiona
such thatm |=g ψ andΣ |= φ. It remains to show that updateρ is also yielded byτ .
By construction, we must have that

τ = (...|(C(ψ) −→ (|= φ −→ 	φd ◦ ⊕φa))|...) ◦ Cbcs(PA)

Since we havem |=g ψ andΣ |= φ, using Lemma 3 it is immediate that we have
yields(C(ψ) −→ (|= φ −→ 	φd ◦⊕φa),m,	φd • ⊕φa). Finally, from Lemma 1, we

have thatyields(Cbcs(PA),m
⊕

(φd •⊕φa), {	achievedγ1 • . . .•	achievedγn) and
by applying sequential composition on the resulting updates we are done.

(⇐=) In the other direction, we have to prove that the updates performed byC(A)
correspond to enabled actions of theGOALagentA. So suppose thatyields(τ,m, ρ),
andρ is of the form	φd • ⊕φa • 	achievedγ1 • . . . • 	achievedγn (using Lemma
2(iv); the other cases withρ = 	dropφ andρ = ⊕adoptφ are again similar). From
the construction ofC it follows that we must haveyields(C(ψ) −→ (|= φ −→
	φd ◦ ⊕φa) ◦ Cbcs(PA),m, ρ). From the rule for conditionalmst in the yields cal-
culus (Definition 6) follows thatm |=j C(ψ) andm |=j (|= φ). By Lemma 3 we
then havem |=g ψ andΣ |= φ. We must also have an action ruleif ψ then a

with action specificationa {:pre{φ} :post{φa ∧ φd} such thatm
a

−→ m
⊕

(φd •
⊕φa •	achievedγ

′
1 • . . . •	achievedγ

′
m) (cf. Lemma 2(i)). It remains to be shown that

	achievedγ1 • . . . • 	achievedγn is equal to	achievedγ
′
1 • . . . • 	achievedγ

′
m; this

follows immediately from Lemma 1.

5 Discussion & Conclusion

We showed that anyGOAL agent can be compiled into aJazzyk Behavioural State
Machine. More precisely, it was shown that every possible computation step of aGOAL
agent can be emulated by theJazzyk BSMthat is the result of compiling theGOAL
agent intoJazzyk BSM. The compilation procedure iscompositionalin the sense that
any modifications or extensions of the belief base, goal baseor program and action
specification sections of theGOALagent onlylocally affect, respectively, the compiled
belief base module, the compiled goal base module, or the mental state transformer that
is the result of compiling the program and action specification sections.

The compilation function introduced provides a means to translateGOAL agents
into Jazzyk BSM, but not vice versa. Abstracting from a number of details aJazzyk BSM
could be viewed as aGOAL agent that does not use its goal base and associated goal
update mechanism. As mentioned above,Jazzykdoes not commit to any particular view
on the KR modules of aJazzyk BSM. This flexibility allowed us to implement the goal
base of aGOALagent by means of explicit emulation of the goal update mechanism.

As already noted in the introduction, there is not much related work aimed at pro-
viding an effective strategy or tools for implementing a variety of rule-based agent
programming languages such as those described in [1]. To thebest of our knowledge,
only [6] has presented a framework to this end. The resultingframework, however, is
based on the idea to incorporate each and every semantic feature of a variety of avail-
able high-level agent languages in order to be able to cover every type of agent. It thus
does not provide an implementation strategy as the one promoted and illustrated in this
paper, which is based on the idea to provide a concise set of simple high-level concepts
(a common core) facilitating compilation of a variety of agent programs into this core
instruction set. This strategy is explicitly aimed atreducinga set of high-level agent
programming concepts to asimpler, more basic set of concepts.

The implementation strategy used to identify specific semantic features of theGOAL
language and to emulate these explicitly inJazzykalso raises the question whether fea-
tures of other agent programming languages can be compiled in a similar way. Although

we do not have room to extensively argue for this, we believe that a similar approach
can also be applied to other rule-based agent programming languages. In particular,
the following implementation strategy could be applied to compile agent programs into
Jazzyk BSM: (i) compile the underlying knowledge base(s) into equivalentJazzyk BSM
KR module(s), (ii) compile the (action, planning, ...) rules of the agent program into
Jazzyk BSMmental state transformers using the operators of the KR module(s), and
finally (iii) implement any specific semantic features of thelanguage by aJazzyk BSM
mstand “append” it to the one constructed in the previous step. Moreover, sinceJazzyk
BSMalso features a much simpler conceptual scheme than higher level agent languages,
we believe that it provides a promissing basis for an intermediate language into which
agent programs can be compiled and interpreted.

Our result shows thatGOALdoes not commit to any particular KR technology such
as Prolog. Another issue that remains is whether it would be possible to allowGOAL
agents to use multiple KR technologies. The compilation into Jazzyk BSMprovides
some evidence that this is possible sinceJazzyk BSMenables the use of many different
KR technologies. However, the use of multiple KR technologies within a single agent
will add expressive power only when certain key issues related to the “interoperability”
of different KRs have been solved (for a discussion see also [3]).

References

1. R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent Programming
Languages, Platforms and Applications. Kluwer, 2005.

2. E. Börger and R.F. Stärk.Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer, 2003.

3. M. Dastani, K. Hindriks, P. Novák, and N.A.M. Tinnemeier.Combining multiple knowledge
representation technologies into agent programming languages. InProc. of the Int. Workshop
on Declarative Agent Languages and Theories (DALT’08), 2008. To appear.

4. R. Davis, H.E. Shrobe, and P. Szolovits. What Is a Knowledge Representation?AI, 14(1):17–
33, 1993.

5. F. de Boer, K. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. A Verification Framework for
Agent Programming with Declarative Goals.Journal of Applied Logic, 5(2):277–302, 2007.

6. L.A. Dennis, R.H. Bordini, B. Farwer, M. Fisher, and M. Wooldridge. A common semantic
basis for BDI languages. InProceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS’07), LNAI 4908. Springer, 2008.

7. K. Hindriks. Modules as Policy-Based Intentions. InProceedings of the International Work-
shop on Programming Multi-Agent Systems (ProMAS’07), LNAI 4908. Springer, 2008.

8. P. Novák. Behavioural State Machines: programming modular agents. InAAAI 2008 Spring
Symposium: Architectures for Intelligent Theory-Based Agents (AITA’08), 2008.

9. P. Novák. Jazzyk: A programming language for hybrid agents with heterogeneous knowledge
representations. InProceedings of the International Workshop on Programming Multi-Agent
Systems (ProMAS’08), 2008. To appear.

10. E. Pednault. ADL: exploring the middle ground between STRIPS and the situation calculus.
In Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning, 1989.

11. Gordon D. Plotkin. A Structural Approach to OperationalSemantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

12. Leon Sterling and Ehud Shapiro.The Art of Prolog. MIT press, 1986.
13. David H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, AI Center,

SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, 1983.

