
Modules as Policy-Based Intentions:

Modular Agent Programming in GOAL

Koen Hindriks

EEMCS, Delft University of Technology, Delft, The Netherlands
k.v.hindriks@tudelft.nl

Abstract. Modular programming has the usual benefits associated with
structured programming, information hiding and reusability, but also has
additional benefits to offer when applied in agent programming. We argue
that modules can be viewed as structures similar to that of policy-based
intentions [2]. Modules perceived in this way are components within an
agent that are triggered in a particular situation and combine the knowl-
edge and skills to adequately pursue the goals of the agent in that sit-
uation. The context that triggers the activation of a module defines the
interface of the module, which can be specified declaratively, in contrast
to the usual functional interpretations of such interfaces. A feature that
differentiates our notion of a module from plans is that modules provide
an agent with a means to focus its attention on the relevant resources it
needs to handle a situation. As a result, modules can be used to control
or reduce the underspecification and inherent non-determinism that is
typical of agent programs. In the paper, the proposed module concept is
incorporated into the agent language GOAL and illustrated by means of
a simple example.

1 Introduction

It has been argued by several authors that besides being able to decompose a
complex system into multiple agents it is also important to be able to decompose
single agents into structured units in agent programming languages. For vari-
ous reasons, it is not always appropriate to provide this additional structure by
decomposing a single agent into a group of yet smaller agents. An agent-based
decomposition introduces additional communication overhead and requires du-
plication of knowledge and goals in those agents. This has motivated the in-
troduction of modularization as a decomposition technique into various agent
programming frameworks (cf. [3, 4, 16]).

Apart from the traditional motivations for modularization, we argue that
there are also reasons more specifically related to rational agents for incorporat-
ing modules into agents. As in other programming paradigms, modularization
provides the usual benefits associated with structured programming, information
hiding, and reusuability.

In agent programming, modules support the encapsulation of domain knowl-
edge, basic actions and plans that are logically related and relevant for handling

2

particular situations. From a software engineering point of view, modules allow
a programmer to focus on those skills that are required to handle a situation.
As components of an agent program, modules can be viewed as specialized, ded-
icated units of control to realize particular goals of the agent. Modules in agent
programming are also called capabilities sometimes in the literature (cf. [3, 4]).

As will be discussed below in more detail, modular agent programming also
provides additional benefits which are not traditionally recognized or simply do
not apply to other programming paradigms. One of the most important of these
is the fact that modules provide additional structure to control the inherent non-
determinism of agent programs. Agent programs typically do not specify for each
situation that the agent may encounter a unique course of action that the agent
should execute. In particular, often actions in parallel plans are interleaved non-
deterministically, and various goal adoption rules and plan selection rules may
be selected for execution at any time. As a result, agent programs in general
underspecify the course of action that an agent takes.

This underspecification present in agent programs may result in suboptimal
or even irrational behavior of an agent. Since an agent is supposed to “do the
right thing”, various proposals have been made to provide an agent with addi-
tional means to control the choices left open by the agent program. One partic-
ular strand of research has focused on defining control structures to achieve this
objective. In the context of agent programming these are also called deliberation
cycles (cf. [5, 14]). Another interesting proposal has been to use decision-theoretic
techniques (e.g. [1]). The proposal discussed in this paper is to use modules to
provide focus in the selection of actions of an agent. It is argued that the concept
of a module provides for a particularly flexible programming technique to reduce
the underspecification typically present in agent programs.

A further advantage of introducing modules in agent programming is that the
interface of a module can be provided with a natural and moreover completely
declarative definition. This is a distinguishing feature of the module concept
presented in this paper. Typically, the interface of a module that implements the
information hiding is based on an explicit importing and exporting mechanism
which is not declarative. As a result, such module interfaces do not provide a
declarative specification of what they can be used for but instead only specify
an accessibility mechanism that determines what is “visible” to the environment
of the module. A declarative concept of module interfaces as proposed here,
however, allows a programmer to read of the module’s intended use from its
interface without any additional inspection of the implementation details inside
a module. The idea is that a declarative interface specifies in what circumstances
a module can usefully be activated.

The declarative nature of module interfaces differentiates our proposal from
those that are inspired by Prolog and Object Oriented concepts of modules such
as [3, 4] and is closer in spirit to the logic-based approach in [12]. In line with
our conception of a module being specialized in handling specific situations it is
natural to define a module interface as a condition that identifies that situation.
The declarative interface of an agent module specifies which situations a module

3

can handle well because it is designed to do just that. The internal structure of
a module specifies how the situation specified by the interface is to be handled:
it encapsulates the basic actions, knowledge, and plans that the agent needs to
handle the situation, given its current goals.

This view of modules in agent programming provides for a natural and intu-
itive separation of concerns. On the one hand, the encapsulation of basic actions,
domain knowledge and plans in a module facilitates the programmer in combin-
ing all relevant knowledge and skills that are needed to handle a particular
situation. On the other hand, the declarative specification of a module interface
entails that it can be defined more or less independently from other parts of the
program: A module only has to provide a kind of plan to handle the situation
as specified by the interface.

This concept of a module that focuses the attention of an agent in order to
handle the situation at hand is incorporated in this paper in the agent program-
ming language GOAL. Due to the additional structure that modules provide,
the incorporation of modules into GOAL can also be viewed as an extension
that makes available a structure similar to a policy or plan in GOAL. The paper
is organized as follows. First, a brief overview of the GOAL programming lan-
guage is presented. In section 3 GOAL is extended with modules. The semantics
of modules is informally motivated and formally specified by providing an op-
erational semantics. Section 4 compares with related work and concludes the
paper.

2 The GOAL Language

GOAL, for Goal-Oriented Agent Language, is an agent programming language
that incorporates declarative notions of beliefs and goals, and a mechanism for
action selection based on these notions. That is, GOAL agents derive their choice
of action from their beliefs and goals. For a detailed overview and discussion of
the language see [7, 10]. An example of an (incomplete) GOAL agent program
that will be used throughout the paper for illustrative purposes is provided in
Figure 1. This agent provides a specification for a delivery agent that delivers
parcels to various clients. A GOAL agent program consists of four sections: (1)
a set of initial beliefs, collectively called the (initial) belief base of the agent,
(2) a set of initial goals, called the (initial) goal base, (3) a program section
which consists of a set of conditional actions, and (4) an action specification
that consists of a specification of the pre- and post-conditions of basic actions
of the agent. To avoid confusion of the program section with the agent program
itself, from now on, the agent program will simply be called agent. The term
agent will be used both to refer to the program text itself as well as to the
execution of such a program. It should be clear from the context which of the
two senses is intended.

The program and action specification components of a GOAL agent are static
and do not change at runtime. The agent’s belief and goal bases are dynamic
and may vary over time. They change because of actions that are performed

4

:main:deliveryAgent

{
:beliefs{ home(a).

loc(p1,a). loc(p2,a). loc(p3,a). loc(p4,a). loc(truck,a).

loc(c1,b). loc(c2,c). order(c1,[p1,p2]). order(c2,[p3,p4]).

ordered(C,P) :- order(C,Y), member(P,Y).

loaded order(C) :- order(C,O), loaded(O).

delivered order(C) :- order(C,O), loc(C,X), loc(O,X), loc(truck,a).

packed :- setOf(P,in(P,truck),L), size(L,2).

empty :- setOf(P,in(P,truck),[]).

}
:goals{ delivered order(c1). delivered order(c2). ... }
:program{

if goal(delivered order(C)), bel(ordered(C,P)),∼bel(in(P,truck))

then load(P).

if goal(delivered order(C)),

bel(loc(truck,X), loaded order(C), loc(C,Y)) then goto(Y).

if goal(delivered order(C)), bel(loc(truck,X), loc(C,X),

in(P,truck), ordered(C,P)) then unload(P).

if bel(loc(C, X), empty, home(Y)) then goto(Y).

if bel(ordered(C,P), empty),∼bel(in(P,a)) then adopt(in(P,a)).

...

}
:action-spec{
load(P){

:pre{∼packed, loc(truck,X), loc(P,X)}
:post{in(P,truck), ∼loc(P,X)} }

goto(Y){
:pre{loc(truck,X), X6=Y}
:post{loc(truck,Y), ∼loc(truck,X)} }

...

}
}

Fig. 1. Example of a GOAL agent program

by the agent, which, apart from changing the agent’s environment, also update
and modify the beliefs and, indirectly, the agent’s goals. Belief bases are typically
denoted by Σ and goal bases by Γ . Together, the belief and goal base pair 〈Σ,Γ 〉
are called the mental state of the agent, typically denoted by s. The language
GOAL does not fix the representation of beliefs nor goals, but here we assume
they are sentences from a first-order language, which in practice are suitably
restricted to allow for an efficient implementation. Mental states are required to
satisfy the following rationality constraints (|= denotes first-order entailment):

(i) Belief bases are consistent: Σ 6|= false,
(ii) Individual goals are consistent: ∀γ ∈ Γ : 6|= ¬γ,
(iii) Goals are not believed to be achieved: ∀γ ∈ Γ : Σ 6|= γ.

5

The beliefs of the agent in Figure 1 consist of facts about the current sit-
uation, in this case about parcel locations and clients and their orders, and a
number of rules that represent the logical relations between these facts. For ex-
ample, the rule for delivered_order(C) states that an order is delivered if all
ordered parcels have been delivered at the client’s site location and the truck is
(back) at its home base a. (Due to space limitations, definitions of the loc and
loaded predicates for lists and the unload action specification are not included,
but the intended meaning should be clear. setOf is a standard Prolog predi-
cate that returns a list of items satisfying the condition of its second argument.)
Note that the example agent does not believe that it delivered an order and thus
initially satisfies the constraint that goals are not believed by the agent.

The conditional actions in the program section of a GOAL agent define a
mapping from states to actions, together specifying a non-deterministic policy
or course of action. The condition of a conditional action is called a mental
state condition. It determines the states in which the conditional action may be
executed. Mental state conditions are boolean combinations of basic formulas
bel(φ) or goal(φ) with φ a first-order formula. A prolog-like notation is used in
examples, as in Figure 1: Literals in a conjunction are separated by means of a
comma, and negation is written as ∼. (In the main text, however, we also use ¬
and ∧ to denote negation and conjunction.) These conditions allow an agent to
inspect its beliefs and goals. For example, in the program section of the agent in
Figure 1, the first conjunct of the first condition, goal(delivered_order(C)),
inspects the goal base and verifies whether the agent has a goal to deliver for
some client C, and the second conjunct bel(ordered(C,P)) inspects the belief
base and verifies whether client C ordered a parcel P. Free variables in mental
state conditions are instantiated when the condition is evaluated at runtime.

Since mental state conditions need not be exclusive, multiple conditional
actions may be simultaneously enabled. GOAL agents thus may underspecify the
behavior of the agent resulting in a non-deterministic choice of action. In Figure
1, initially the first conditional action is enabled for each of the four parcels
listed and the agent may load any of these parcels into the truck by executing
a corresponding instantiation of the action load(P). In such a case, the agent
may non-deterministically choose any one of these actions for execution.

The fact that agents may be underspecified may provide benefits at design
time, but it may also pose problems at runtime. In the example, the agent is
supposed to deliver orders to various clients. In order to do so, the agent first
needs to load the truck with the ordered items. However, since the agent has
multiple orders to deal with and no priority on handling these orders has been
specified, the agent may end up loading parcels into the truck that do not belong
together. Since the load the truck can carry is also very limited, as a result, the
agent may end up delivering no orders at all and end up in a deadlock situation.
(Of course, a slightly smarter agent would start unloading parcels again, but
this would not guarantee resolution of the problem. Other ways to resolve the
problem in a principled way seem to require significant modification of the agent.)
Note that in case the agent would have had only a single delivery goal to deal

6

with, there would have been no problem, indicating that the example delivery
agent is not an incorrect implementation per se. With the appropriate focus, the
agent would have been able to deliver successfully. To provide agents with such
focus is one of our motivations for introducing modules. Modules are introduced
to provide a means to control the non-determinism inherent in agents and to
provide agents with a focus of attention on some of their goals among the many
others that they may have.

3 Modules As Policy-Based Intentions

In this section the use of modules conceived as policy-based intentions is illus-
trated using the example introduced in the previous section and the informal
discussion of modules is complemented with a precise definition of the opera-
tional semantics of modules by means of a transition system (cf. [13]).

The concept of a module that is introduced here is inspired by the the concept
of a policy-based intention in [2] and motivated by the fact that modules so viewed
can be identified with plans or policies that guide the agent’s action. Policy-based
intentions are general policies and concern potentially recurring circumstances
in the agent’s life. Such policies shape an agent’s plans in ways that may help
achieve a range of different and potentially conflicting goals. They do so by
providing a partial solution to the problems posed by the limited resources for
deliberation by making a previously successfully tested strategy readily available
to the agent. Policy-based intentions may be particular to an agent, coding the
specific ways in which that agent typically handles a recurring circumstance.

Our notion of module incorporates the main ideas of such policy-based in-
tentions. In particular, it incorporates the notion of a circumstance-triggered
intention and a notion of commitment to executing the intention. A module
viewed as a policy-based intention specifies these circumstances as a condition
for activating the module. A module, additionally, can be used to structure and
combine the relevant knowledge and skills needed to handle such circumstances
in ways that help achieve the agent’s goals. Modules do not only describe the
capabilities that an agent has, but specify a policy or plan that an agent applies
in particular situations to handle that situation.

The GOAL language allows for an elegant definition of modules that are
circumstance-triggered, general policies for acting. Syntactically, GOAL modules
are just GOAL agents with an additional context section. A module also has a
name, which serves as a bookkeeping device and facilitates easy reference. An
example GOAL agent with two modules named deliverOrder and stockMngt

is provided in Figure 2. The example is a modified version of the agent in Figure
1 in which most of the program text has been placed inside the modules except
for the facts in the belief base and the initial goals in the goal base (the ... refer
to missing parts, which can be filled in partially by copying text from Figure 1).
The context and program section of a module must be non-empty, but the belief
and goal sections may be empty. Empty module sections can simply be left out,
e.g. in our example the goals section of the first module might have been left out.

7

For ease of reference, below we write m.section to refer to each of the different
sections of a module named m. For example, deliverOrder.context refers to
the context section of module deliverOrder.

Module Activation: Intuitively, a module is specialized in handling the situations
that are specified by the context section. The context section of a module, which
may be any mental state condition, determines its activation condition: A module
may be activated when its context section is true. For example, the context
section in Figure 2 of the module deliverOrder specifies that the module is
specialized in achieving an instance of the goal deliver_order(C). Context
sections may also include conditions on the beliefs of an agent, to indicate in
which circumstances a module may be used to achieve a goal, for example, a
precondition for activating the deliverOrder module is that the ordered items
are in stock. Note that context sections thus allow to define preconditions for
executing composed activities, i.e. plans or polices, that are specified in the
program section of a module. A module with a context section that consists of
belief conditions only such as the stockMngt module is called a reactive module.

In order to present the formal operational semantics below a precise definition
of the semantics of mental state conditions is required. A mental state condition
is evaluated in a mental state 〈Σ,Γ 〉. We overload the first-order entailment |=
and also use it to denote the truth conditions of mental state conditions.

Definition 1. (Mental State Condition Semantics)
The truth conditions for (closed) mental state formula, relative to a mental state
s = 〈Σ,Γ 〉, are defined by the following four clauses:

s |= bel(φ) iff Σ |= φ,
s |= goal(φ) iff there is a γ ∈ Γ s.t. γ |= φ and Σ 6|= φ,
s |= ¬ϕ iff s 6|= ϕ,
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.

Like any mental state condition, a context ϕ may have free variables, denoted
by free(ϕ). Any free variables that occur in other sections of a module, with the
exception of the program section, should also occur in the context section. (In
the example agents, rules are assumed to be implicitly universally quantified.)
Variables are instantiated at runtime when a module is activated. A module
is instantiated when all its free variables have been instantiated. Formally, an
instantiation of a module with free variables var in its context section is a sub-
stitution ρ such that dom(ρ) = var and the range of ρ is a set of constants or
closed terms. The application of a substitution ρ to a formula ϕ is written as
usual as ϕρ. The composition of two substitutions ρ1 and ρ2 is written as ρ1 ◦ρ2.

The activation of a module requires that various items are recorded to facil-
itate a proper definition of the operational semantics, e.g. that module m has
been activated, with what values ρ the free variables in the context of module
m have been instantiated, and which goals are actively pursued. To this end,
the notion of a configuration which extends a mental state with these items is
introduced. Note that the static parts of a module, i.e. the domain knowledge,

8

:main:deliveryAgent

{
:beliefs{ home(a).

loc(p1,a). loc(p2,a). loc(p3,a). loc(p4,a). loc(truck,a).

loc(c1,b). loc(c2,c). order(c1,[p1,p2]). order(c2,[p3,p4]).

}
:goals{ delivered order(c1). delivered order(c2). ... }
:program{ ... }
:action-spec{ ... }
:module:deliverOrder{
:context{ bel(order(C,O), in(O,a)), goal(delivered order(C)) }
:beliefs{
ordered(C,P) :- order(C,Y), member(P,Y).

...

}
:goals{ }
:program{

if bel(ordered(C, P)), ∼bel(in(P, truck)) then load(P).

if bel(loc(truck, X), loaded order(C), loc(C, Y)) then goto(Y).

if bel(loc(truck,X), loc(C,X), in(P,truck), ordered(C,P))

then unload(P).

if bel(loc(C, X), empty, home(Y)) then goto(Y).

}
:action-spec{ ... }

}
:module:stockMngt{
:context{ bel(ordered(C,P), empty), ∼bel(in(P,a)) }
:goals{ in(P,a) }
:program{ ... }
:action-spec{ ... }

}
...

}

Fig. 2. Example of GOAL Agent with Modules

conditional actions in the program section, and the action specification need not
be explicitly represented in a configuration. They can be retrieved when needed
from the module and instantiated appropriately by applying the substitution
which is recorded in a configuration. We write 〈m, ρ, Γm, 〈Σ,Γ 〉〉 to represent a
configuration in which a module m has been activated in a mental state 〈Σ,Γ 〉.

A module may be activated while another module has been activated. A con-
figuration thus may consist of a stack of modules and in that case a more recently
activated module is executed within the context of a previously activated mod-
ule. For example, it may be that the former is activated because of additional
subgoals or domain knowledge introduced by the latter module. This need not
be the case, however, since e.g. the stockMngt module may be activated because
of changes of the beliefs in the agent’s belief base. To allow for activation of other
modules in the case that other modules have been activated and not yet termi-

9

nated, we also write 〈m1, ρm1
, Γm1

, . . . , 〈mn, ρmn
, Γmn

, 〈Σ,Γ 〉〉 . . .〉 to indicate
that module m1 has been activated after modules mn to m2 (in that order) have
been activated. We say that a ρ-instantiation of module m has been activated if
the module name together with the substitution ρ occurs in the configuration
〈m1, ρm1

, Γm1
, . . . , 〈mn, ρmn

, Γmn
, 〈Σ,Γ 〉〉 . . .〉. Moreover, only the most recently

activated module is called active.

The belief section of a module can be used to specify relevant domain knowl-
edge for handling a situation. There is no restriction on the formulas allowed in
the belief section of a module; it may contain both facts as well as rules, just like
the belief base of the agent. When more than one module has been activated,
we need to ensure that the domain knowledge of each activated module can be
accessed by the agent. Each module is activated within a particular context and
the information about this context, represented by the domain knowledge of pre-
viously activated modules, should still be available to the agent. To this end, we
define the notion of accessible beliefs in configuration v as the set Σaccessible of
the beliefs Σ combined with the domain knowledge (mi.beliefs)ρi of each acti-
vated modulemi, where any free variables have been instantiated by applying the
substitution ρi. The accessible domain knowledge of all activated, properly in-
stantiated modules is also denoted by Σdomain. Note that Σdomain ⊆ Σaccessible.

In the goal section of a module additional subgoals may be introduced for
structuring the problem that needs to be dealt with, as is done e.g. in the
stockMngt module. These goals are goals local to the module and are only
pursued while the module is activated. Subgoals introduced by a module may
trigger other modules again to achieve these subgoals.

Modules provide more focus by restricting the set of goals that the agent
actively pursues. The notion of active goals in configuration v is defined as the
set of goals associated with the most recently activated module, i.e. Γactive = Γm1

where m1 denotes that module. (Note that in this case no substitutions need to
be applied since the goals in Γm1

have already been instantiated.) All other
goals are called passive and the set of these goals can be defined as Γpassive =
Γ ∪Γm2

∪ . . .∪Γmn
where Γ denotes the top-level goals of the agent and the Γmi

denote the goals introduced and processed by previously activated modules mi.
Finally, Γall = Γactive ∪Γpassive, i.e. Γall is the set of all goals currently adopted
by the agent.

When a module is activated, a filter is applied to the then active set of goals
to select only those that triggered the activation. As a result, the agent will focus
on those goals that entail the context of the module given the currently accessible
beliefs. Informally, only those goals that the agent has adopted and make the
context condition of the module true are considered after activation of that
module in combination with those introduced by the module’s goal section. The
set of active goals is computed from the context section and the goal section.
A context condition ϕ can be converted into disjunctive normal form, taking
formulas of the form bel(φ) and goal(φ) as atoms. An occurrence of an atom of
the form bel(φ) or goal(φ) is called a positive literal if it occurs unnegated in the
normal form, otherwise it is called a negative literal. Assuming that a context

10

condition ϕ is in disjunctive normal form, the function filter(ϕ) extracts all
positive literals of the form goal(φ) from ϕ and removes the goal operator goal.
For example, if ϕ = [bel(p) ∧ goal(q)] ∨ [goal(r) ∧ ¬goal(p)], then filter(ϕ) =
{q, r}. The focus of attention then is defined as those filtered atoms that are
also currently active goals of the agent by the function focus(ϕ, s) = {φ ∈
filter(ϕ) | s |= goal(φ)}, where s is a state defined by the accessible beliefs and
active goals.

Definition 2. (Module Activation Rule)
Let v = 〈m1, ρm1

, Γm1
, . . . 〈Σ,Γ 〉 . . .〉 be a configuration (possibly without module

instantiations, i.e. v = 〈Σ,Γ 〉), m be a module, and ρ be a substitution such that
dom(ρ) = free(m.context). Then the activation of module m is defined by:

〈Σaccessible, Γactive〉 |= (m.context)ρ
no ρ-instantiation of module m has been activated yet

v −→ 〈m, ρ, focus((m.context)ρ, 〈Σaccessible, Γactive〉) ∪ (m.goals)ρ, v〉

The second condition in the rule avoids that the same instantiation of a
module is activated twice. The activation of a module does not change the beliefs
or goals in the mental state of the initial configuration v. Implicitly, however,
the set of accessible beliefs Σaccessible is extended with the instantiated domain
knowledge in the belief section (if any) of the module. Module activation also
changes the set of active goals Γactive to the set of goals that result from filtering
the context of the module and computing the corresponding focus of attention
combined with goals that result from instantiating the goal section of the module.
As a consequence, other modules are only activated when they are relevant for
achieving an active goal (with the exception possibly of reactive modules).

In our simple example agent, the module deliverOrder serves to provide a
focus of attention on one of the delivery goals of the agent and to temporarily
disregard any other goals that the agent may have. Upon activation of that
module, the context is instantiated with either client c1 or client c2. Assuming
that c1 is used, the set of active goals is restricted to the goal of delivering an
order for c1 and the goal of delivering for c2 becomes passive. This provides
the agent with the relevant focus to complete a delivery for a single client.
The actions in the program section of the module thus will only be directed at
achieving that goal and potential conflicts due to other goals are avoided.

Action Execution: Once a module is activated execution is restricted to actions
from the module’s program section. This is a second way to structure and focus
the behavior of an agent. For example, by excluding the first conditional action
for adopting a goal to replenish stock from the module in Figure 2, any potential
interference of actions to achieve this goal with the actions for delivering the
ordered parcels is prevented. All actions that are relevant for delivering an order
are combined in the module which in this way facilitates the specification of a
general policy for achieving this goal. In the deliverOrder module the program
section specifies that the context of the module is handled by loading the truck

11

with the items the client ordered, going to the client site, unloading the ordered
items, and returning to home base.

In order to define the semantics of action execution, a transition function
T is assumed to be given that captures the semantics of basic actions a and
is consistent with all the action specification sections (including those within
modules). Action specifications, moreover, are required to be consistent with
the domain knowledge stored in a module. That is, since it is assumed that
such knowledge does not change during the lifetime of an agent, an action is
not allowed to update this knowledge to avoid inconsistencies when a module
is activated. While in principle such beliefs can be added to the belief base,
encapsulating such knowledge in a module facilitates information hiding and
efficient execution. In the example agent of Figure 2 the rule for the predicate
ordered is used to represent fixed domain knowledge about the relation between
individual ordered items and the order of a client. Formally, this means that the
transition function should be defined in such a way that actions never update
knowledge stored in a module.

Constraint 1. (Domain Knowledge Not Updated)
If a belief section in a module consists of a set of formulas D, then for any belief
base Σ and action a (including skip, i.e. the action without any effects) it must
be the case that T (a, Σ ∪D) = Σ′ ∪D, such that Σ′ ∪D is consistent.

Since the skip action does not change the configuration of an agent, it follows
that T (skip, Σ∪D) = Σ∪D must be consistent, which implies in particular that
the domain knowledge present in the various modules of an agent also should be
consistent with the initial beliefs of an agent.

An important aspect of modules concerns the encapsulation of the effects of
belief updates and goal updates. It is argued here that the beliefs in the mental
state of an agent (in contrast with the domain knowledge stored in modules),
and any updates on these beliefs, should not be encapsulated in a module. This
would make these beliefs “invisible” to other modules. The effects on the agent’s
environment caused by executing a module, should be available for later reference
and therefore incorporated into the agent’s belief base. For example, the updated
locations of parcels need to be stored in the belief base of the example agent.

It has already been argued that goals of an agent should be local to a module
in order to provide an agent with a focus on the goals relevant in a particular
situation. But even though the agent’s focus is on achieving the active goals by
selecting appropriate actions, whenever either an active or passive goal has been
achieved such a goal is updated and removed from the set of all adopted goals.
It is considered irrational for an agent to invest any more time and resources in
a goal that has already been achieved.

The previous discussion is formally captured in the action execution rule for
modules. The rule restricts the choice of action to those that are available within
the program section of the most recently activated module. Modules thus may
create focus and prevent unexpected or undesirable interference effects of other
actions.

12

Definition 3. (Action Execution Rule: Modules)
Let v = 〈m1, ρm1

, Γm1
, . . . 〈Σ,Γ 〉 . . .〉 be a configuration, c be a conditional action

of the form if ϕ then a(t) in the program section of module m1, ρ a substitu-
tion with dom(ρ) = free(ϕρm1

), and σ = ρm1
◦ ρ. Then the execution of the

conditional action c is defined by:

〈Σaccessible, Γactive〉 |= ϕσ and Γactive 6= ∅

v −→ 〈m1, ρm1
, Γ ′

m1
, . . . 〈Σ′, Γ ′〉 . . .〉

where:

– Σ′ = T (a(t)σ,Σaccessible) \Σdomain,
– Γ ′

(i) = Γ(i) \ {ψ ∈ Γ(i) | T (a(t)σ,Σaccessible) |= ψ}, where Γ(i) denotes any
of the sets Γi or the top-level goal base Γ .

Note that only the top-level beliefs in the belief base Σ of the agent are
updated when an action is performed. The accessible domain knowledge stored in
modules is not updated (and excluded from the result of applying the transition
function to the set of all accessible beliefs). The definition of the updated beliefs
Σ′ based on the transition function T is correct provided that the constraint on
updating knowledge stored in modules holds (cf. constraint 1).

Execution at the top-level (i.e. when no modules have been activated) is
defined exactly the same as that for GOAL without modules (cf. [7]). In fact, it
is a special case of the action execution rule for modules below since a GOAL
agent can be viewed as a module without a context section.

Goal Update Actions: The action execution rule is not applicable to the goal
update actions but only to basic actions a(t). Different rules are needed for the
goal update actions drop and adopt. Only the rule for adopt(φ) is provided
here. The rule for drop can be derived from the rule provided in [7] and the
action execution rule above. A drop(φ) action does not have any effect on the
beliefs of an agent and simply removes all goals from the total set of goals which
imply that φ is a (sub)goal of the agent, i.e. all active as well as passive goals
that imply that φ is a (sub)goal of the agent are removed from the goal sets Γm

in a configuration v, and from the top-level goal base Γ .
The rule for executing an adopt(φ) action requires the agent to check whether

it is reasonable to add the goal φ, properly instantiated, to the set of adopted
goals within the current context. A weak condition is used to verify whether
adopting φ is reasonable: φ may be adopted if it is consistent and is not cur-
rently implied by any of the accessible beliefs of the agent. It is not required that
φ is consistent with the domain knowledge of the agent, in order to avoid unnec-
essary complications. It is left to the programmer to verify that such consistency
will always be maintained. The goal φ that is adopted is added to the set of
active goals associated with the most recently activated module. The motivation
for this is that newly adopted goals are only valid within the context of that
module.

13

Definition 4. (Execution Rule for adopt: Modules)
Let v = 〈m, ρm, Γm, . . . 〈Σ,Γ 〉 . . .〉 be a configuration, c be a conditional action
of the form if ϕ then adopt(ψ), ρ be a substitution with dom(ρ) = free(ϕρm),
and σ = ρm ◦ ρ. Then the adoption of a goal φ is defined by:

〈Σaccessible, Γactive〉 |= ϕσ and Γactive 6= ∅,
Σaccessible 6|= ψσ, 6|= ¬ψσ

v −→ 〈m, ρm, Γm ∪ {ψσ}, . . . 〈Σ,Γ 〉 . . .〉

Module Termination: Intuitively, a module is terminated when its associated
active goals are achieved. Upon module termination the module’s name is re-
moved from the stack along with the associated substitution and the (in this case
empty) set of active goals related to the module. A module thus implements a
commitment to the goals introduced by the module which can only be overrid-
den by dropping goals using a drop action that is available within the module’s
program section.

Incidentally, this commitment of a module to achieving the associated goals
also explains why the goal condition goal(delivered_order(C)) in the mental
state conditions of the conditional actions that were present in Figure 1 can
be removed when they are placed inside the module: It may be assumed that
this condition holds when the module is active, since the module itself does
not introduce any new goals and because the appropriate instantiations for the
variable C are used while the module is being executed (cf. also Definition 2
which introduces a substitution ρ to record variable instantiations).

The module deliverOrder of the example agent of Figure 2 is terminated
after loading the truck with ordered items for a specific client, going to the client’s
site, unloading the ordered items at that location, and returning to home base.
This achieves the goal condition of the context goal(delivered_order(C))

since in that case the agent will believe that it delivered the order and a goal
that is believed to be achieved is removed from the agent’s goal base (cf. also
Definition 2). At that moment, the context condition of the module no longer
holds and the module is automatically terminated.

Definition 5. (Module Termination Rule)
Let v = 〈m, ρm, Γm, 〈m1, ρm1

, Γm1
, . . . 〈Σ,Γ 〉 . . .〉〉 be a configuration (which con-

tains at least one module instantiation). Then the rule for termination of the
most recently activated module m is defined by:

Γactive = ∅

v −→ 〈m1, ρm1
, Γm1

, . . . 〈Σ,Γ 〉 . . .〉

After terminating the deliverOrder module, our example agent will resume
execution at the top-level and may reenter the module to process another delivery
order.

14

4 Conclusion

There are similarities between GOAL modules and plans in other agent pro-
gramming languages (e.g. [6, 8, 15]). The plans referred to are typically part of
a plan library that an agent is provided with during design. Both modules as
well as such plans specify a condition called the context of the module or plan.
Such context conditions specify the situation in which the module or plan can
be put to good use. This context may in both cases also be used to bind vari-
ables through a substitution mechanism that instantiates variables in a module
or plan body.

However, a 3APL [6] or AgentSpeak agent [15] that would implement our
example agent, it seems, would have to face the same problem of dealing with
the multiple goals for delivering orders. Typically, such agent programs trigger
plans for achieving declarative goals and in the example discussed multiple plans
would be introduced into the agent’s plan base. As a result, similar interference
effects are to be expected. The difference between GOAL modules and plans
resides in the execution of a module and of a plan taken from a plan library.
Once activated, a module becomes the focus of execution whereas a plan instead
is added to the plan base of an agent and just is one of the current, “active”
plans that an agent tries to complete.

The approach to incorporate modularization presented in [16] introduces an
operator m(φ) that is applied to goals φ that is also motivated to control non-
determinism. This operator may also be used to resolve the problem of our exam-
ple agent. In contrast with the context sections of GOAL modules, however, this
operator introduces a non-declarative mechanism for activating modules. Also,
whereas the termination condition of GOAL modules is based on a commitment
strategy that pursues goals until achieved, the termination of the modules in [16]
is based on a strategy to try various plans once and in case of failure to quit.
Moreover, in order to activate more than one module, calls to such modules need
to be explicitly incorporated as steps in a plan.

In this paper, several benefits of using modules in agent programming have
been identified. In particular it has been argued that modules provide an elegant
solution to focus the execution of an agent. Modules restrict both the goals that
an agent takes into consideration in a given context as well as the conditional
actions that the agent needs to choose from. Modules therefore can be used
to reduce the inherent non-determinism present in agent programs. They also
provide a tool to structure the flow of control in an agent.

Our module concept is related in various ways to other concepts presented in
e.g. [3, 4, 11, 12, 16]. It shares with [12] the idea of relating modules to particular
contexts. The idea of a “capability filter” in [11] to constrain adoption of goals
is somewhat similar to our notion of a module acting as a context that filters
out the active goals. Finally, it shares with [3, 4, 16] the idea of combining the
relevant knowledge and skills (actions, plans) to achieve the agent’s goals into
a module. One of the differences, however, is that modules are not called by
other modules nor by the agent’s plans during run-time, but are circumstance-
triggered and focus the attention of the agent on the situation for which the

15

module provides a policy. In this sense, our notion of a module is similar to the
notion of a policy-based intention in [2].

An interesting idea is to investigate how decision-theoretic notions can be
combined with the module concept introduced here. Although GOAL modules
provide a tool to qualitatively focus attention on a goal, they do not allow for the
consideration of quantitative utilities that indicate preference over such goals.
Adding utilities would not provide an agent with a focus on its goals per se,
but adding utility-based preferences to GOAL modules may be useful in order
to allow preference-based activation of modules as well as to allow an agent to
compute optimal ways to execute the plan or policy coded in a module (cf. [1]).

There are several other ideas for future research related to the proposal to
view modules as policy-based intentions. In particular, one of the characteristics
of such intentions is their defeasibility (cf. also [9]). In certain circumstances,
the formation of such intentions (in the terminology introduced here, an active
module) derived from generic policies (coded as modules here) are blocked. An-
other interesting aspect of policy-based intentions is time-related. The modules
proposed and incorporated into GOAL do not allow to distinguish between the
time of adoption of such an intention and the time of execution nor for a notion
of deadline. It remains for future work to investigate how such extensions can
be integrated into GOAL.

References

1. Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun. Decision-
Theoretic, High-level Agent Programming in the Situation Calculus. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000),
pages 355–362, 2000.

2. Michael E. Bratman. Intentions, Plans, and Practical Reasoning. Harvard Univer-
sity Press, 1987.

3. Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Extending the Ca-
pability Concept for Flexible BDI Agent Modularization. In The 3rd International
Workshop on Programming Multiagent Systems (PROMAS-2005), pages 139–155,
2005.

4. P. Busetta, N. Howden, R. Ronnquist, and A. Hodgson. Structuring BDI Agents in
Functional Clusters. In N. Jennings and Y. Lesperance, editors, Intelligent Agents
VI: Theories, Architectures and Languages, pages 277–289, 2000.

5. Mehdi Dastani, Frank de Boer, Frank Dignum, and John-Jules Ch. Meyer. Pro-
gramming Agent Deliberation: An Approach Illustrated Using the 3APL Language.
In Proceedings of The Second Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’03), pages 97–104, 2003.

6. M.M. Dastani, M.B. van Riemsdijk, F.P.M. Dignum, and J-J.Ch. Meyer. A Pro-
gramming Language for Cognitive Agents: Goal-Directed 3APL. In M. Dastani,
J. Dix, and A. El Fallah-Seghrouchni, editors, Programming Multi-Agent Systems
(Proc. ProMAS 2003), pages 111–130, 2004.

7. F.S. de Boer, K.V. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. A Verification
Framework for Agent Programming with Declarative Goals. Journal of Applied
Logic, 2006. In Press.

16

8. M. P. Georgeff and A.L. Lansky. Reactive Reasoning and Planning. In Proceedings
of the Sixth National Conference on Artificial Intelligence, pages 677–682. MIT
Press, 1987.

9. Guido Governatori and Vineet Padmanabhan. A defeasible logic of policy-based
intention. In Proc. of the 16th Australian Conference on Artificial Intelligence,
LNCS 2903, pages 414–425, 2003.

10. Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. Agent Programming with Declarative Goals. In Proceedings of ATAL00,
volume 1986 of LNCS, pages 228–243, 2000.

11. Lin Padgham and Patrick Lambrix. Formalisations of Capabilities for BDI-Agents.
Autonomous Agents and Multi-Agent Systems, 10:249–271, 2005.

12. Simon Parsons, Nicholas R. Jennings, Jordi Sabater, and Carles Sierra. Agent
Specification Using Multi-Context Systems. In Foundation and Applications of
Multi-Agent Systems, pages 205–226. Springer-Verlag, 2002.

13. G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

14. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. A Goal Deliberation
Strategy for BDI Agent Systems. In T. Eymann et all, editor, Third German
Conference on Multi-Agent Technologies and Systems (MATES 2005). Springer,
2005.

15. Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In W. van der Velde and J.W. Perram, editors, Agents Breaking Away,
pages 42–55. Springer-Verlag, 1996.

16. M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and Frank S.
de Boer. Goal-Oriented Modularity in Agent Programming. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’06), pages 1271–1278, 2006.

