GOAL as a Planning Formalism

Koen V. Hindriks' and Tijmen Roberti!

Delft University of Technology, Delft, The Netherlands

Abstract. It has been observed that there are interesting relations be-
tween planning and agent programming. This is not surprising as agent
programming was partially motivated by the lack of planners that are
able to operate in dynamic, complex environments. Vice versa it has
also been observed, however, that agent programming languages typi-
cally lack planning capabilities. We show in this paper that the agent
programming language GOAL is not only a programming language but
can actually be used as a planning formalism as well. This opens up
many possibilities for various approaches to mix execution and plan-
ning in agent-oriented programming. Moreover, by using the recently
introduced temporal GOAL we are able to include not only the stratified
axioms and ADL that are part of PDDL but also plan constraints.

1 Introduction

It has been argued in e.g. [3,13,14] that the combination and integration of
planners into agent programming languages has many benefits. By combining
the strengths of planners with the flexibility of agent programs it may be possible
to handle dynamic domains more effectively, and, moreover, it becomes possible
to exploit the advances of automated planning in agent programming.

Existing work on formally relating programming languages and planning for-
malisms, as far as we know, has mainly focussed on the language Golog. For
example, in [13] the relative expressiveness of ADL [12] and Golog is investi-
gated and a maximal fragment of so-called basic action theories used in Golog
is identified that is expressively equivalent to ADL. We are not aware, however,
of any work that formally relates agent programming languages that are based
on BDI concepts such as beliefs and goals to planning from first principles.

The main contribution of this paper is to formally show that the agent pro-
gramming language GOAL [10] can be used as a planning formalism. GOAL agents
are BDI agents that derive their choice of action from their beliefs and goals.
More specifically, we show that a fragment of PDDL including azioms, ADL and
(temporal) plan constraints [8] can be compiled into GOAL. This result is impor-
tant because it provides a clear interface between agent programs and planners.
Such an interface can be used to call planners from agent programs and, vice
versa, import results from research on planning into agent programming lan-
guages. It also shows that GOAL agents can solve solvable PDDL problems for
a PDDL fragment including conditional effects and plan constraints. Moreover,

it clarifies the overlap and difference in concepts present in agent programming
languages and planning formalisms.

A planning formalism uses an underlying knowledge representation (e.g. first-
order logic in PDDL). We introduce the notion of a GOAL framework to separate
the underlying knowledge representation used by GOAL agents from the features
of the language GOAL itself. This allows us to clearly separate the features of
the GOAL language that have been used to obtain our results from those pro-
vided by the knowledge representation language. We believe that this approach
may also be helpful in clarifying how our results may be applied to other agent
programming languages that have declarative beliefs and goals.

The paper is organized as follows. In Section 2 we introduce the syntax and
semantics of the PDDL 3.0 Level 1 fragment (without preferences). Section 3
introduces the agent programming language GOAL. In Section 4 we show how
PDDL problems can be compiled into GOAL. Section 5 concludes the paper.

2 PDDL Fragment: Axioms + ADL + Plan Constraints

The fragment of PDDL that we consider here is PDDL 3.0 Level 1, including
axioms, ADL, and plan constraints, but excluding preferences. We will refer to
this fragment as PDDL s, cp+pc-

We assume that a first-order function-free language Ly is given that is built
from a set of predicates P, variables V, and constants C in the usual way and
includes equality =. Note that constants are allowed although Ly is otherwise
assumed to be function-free. The set of predicates is divided into two disjunct
sets of so-called basic predicates B and derived predicates D. PDDL also allows
typed variables but for reasons of space we do not discuss this feature. Formulae
¢ € Ly are also called state formulae, and we write ¢[x] to indicate that all free
variables of ¢ occur in the vector x. State formulae are used in PDDL to define
the goal state G and as precondition of action operators. It is common to also
call state formulae goal descriptions. We define PDDL axiom sets as in [15].

Definition 1. (PDDL Aziom)
A PDDL axiom is a closed formula of the form Vx.¢ — d(x), where d € D and
¢ € Lo (whose free variables are in the vector x).

PDDL axioms in this context are best thought of as definitions of derived
predicates d (cf. the completion of axioms in the sense of [1]). A closed world
semantics is used (see below) where d(x) is false whenever it cannot be derived
as true. In order to define PDDL axiom sets we use the notion of a Negation
Normal Form (NNF'). A formula ¢ € L is in negation normal form iff negation
occurs directly in front of atoms.

Definition 2. (PDDL Aziom Set)

A PDDL Axiom Set is a set of PDDL azioms that is stratified. A PDDL aziom
set A is stratified iff there exists a partition of the set of derived predicates D
into (non-empty) subsets {D;,1 <i < n} such that for every d; € D; and every
aziom Vx.¢ — d;(x) € A we have that:

1. if d; € D; occurs positively in an NNF of ¢, then j <1
2. if d; € D; occurs negated in an NNF of ¢, then j <1

The semantics of Ly is defined relative to a state and axiom set [15]. A PDDL
state S is set of ground positive literals from B. The closed world assumption
applies, so any ground positive literal not in S is assumed to be false. Axioms,
however, need to be treated separately and we first assume the consequences of
axioms A are given by a set D of atoms of the form d(x) with d € D.

Definition 3. (Semantics of L)
Let C be the constants of Ly, S be a PDDL state, D a set of atoms d(x) with
d € D, and A an axiom set. We only provide the most important clauses:

(S,D) Ep(t) iff p(t) e SUD
(S, D) |= —¢ if (S,D) ¢
(S, D) = Vax.¢lz] iff (S,D) E ¢[c] for allceC

Intuitively, we can derive d(t) using axiom a = Va.¢ — d(x) if we have
(S, D) = ¢[t], and add d(t) to D if not already present; we write [a] (S, D) =
{d(t) | (S, D) = ¢[t], t is ground} to denote these consequences. Then the set of
consequences of an axiom set A can be computed as follows, assuming that we
have a stratification {A4;,1 < < n} of A (cf. [15]): define [A],(S) = 0, and, for
1 <i < n, define

[AD;(S) = m {D | U [al (S, D) U [A];_,(S) € D}

acA;

Finally, S =4 ¢ is defined as (S, [A](S)) E ¢.
Action operators in the ADL fragment of PDDL specify the preconditions
and (conditional) effects of actions. Performing an action changes the state S.

Definition 4. (Action Operators)

A PDDL action operator « is a triple (@, 7,,€q) where x are the action’s pa-
rameters, T, € Lo defines when the action can be (successfully) executed, and
€q 18 set of conditions of the form ¢ = 0 with ¢ € Lo and § a set of literals. All
free variables in 7, and €, must also occur in x.

The effect of an action « on a state S can be derived by computing the
positive effects Eff ,; and negative effects Eff, ;. Given that pos(§) and neg()
return respectively the positive and negative literals in §, these are defined by:

Effipr, = {1l €pos(6) | S Eu ¢,¢ =6 € ea}
Effapr ={l €neg(d) | SEA ¢, ¢ =0 €ea}

If the precondition of a ground operator o with effect €, holds in the current
state, i.e. S =4 7, then the successor state (S, «) is defined by:

(S, @) = (S\ Effapr) U Effapy

A plan 7, which is a sequence of action operators (oo, ..., n—1), generates
a sequence of states: (Sp, ..., S,) = (So,7(S0,a0),7(S1,a1), .., Y(Sn—1,An-1)).
Such a sequence is also called a state trajectory.

The language Ly, axioms, and action operators are combined into a planning
domain definition A, which is formally defined by A = (Lg, A, O), where L is
a first-order function-free language based on B, D, V, and C, A is a stratified
axiom set, and O is a set of action operators.

The final part of the PDDL fragment that we consider here are plan con-
straints (we do not discuss preferences). Plan contraints are like goals but apply
to the state trajectory of a plan instead of only to the final state. A limited
number of temporal modalities to express constraints are available, and we omit
modalities that require explicit reference to time such as the within modality.

Definition 5. (Plan Constraint)

A plan constraint @ is defined as follows: # = X¢ | @ NP | Va.P[x], where X is
one of the modalities at end, always, sometime, at-most-once, sometime-after,
sometime-before and ¢ € Ly a state formula.

In contrast with standard linear temporal logic, plan constraints are evalu-
ated relative to a finite state trajectory (Sp,...,Sy) generated by a plan, and,
as before, an axiom set A.

Definition 6. (Semantics of Plan Constraints)
The semantics of temporal constraints is defined by the following clauses:

(So,...,Sn) Ea at end ¢ iff SnlEAd

(So0,...,Sn) Fa alvays ¢ f Vi:0<i<n:SiFEa¢
(So0,...,5n) F.4 sometime ¢ ff F:0<i<n:SiFEa¢
(So,...,Sn) E4 at-most-once ¢ iff J:0<i<n:SiFad=

-3, k:i<j<k<n:S;EA-90&S;EAP
(So0,...,5n) Fa sometime-after ¢p¢v iff Fi:0<i<n:SiFEa¢=
Jjii<j<n:SjEAv
(So,...,Sn) Fa sometime-before ¢ ¢ iff J:0<i<n:S;Fad=
3j:0<j<i:S Eav
We now have all the ingredients that are needed to define a PDDL problem.
A PDDL problem extends a domain with more specific information regarding
the initial state (which literals are true and false initially) and the goal the plan
should achieve. Additionally, plan constraints may be provided that must also
be satisfied by a plan.

Definition 7. (PDDL Problem)

A PDDL g, cE+pc planning problem IT is a tuple (A,C,Z,G, PC), where A is
a domain definition, C is a set of constants, I is the initial state, G € Ly is a
closed formula called the goal description, and PC is a set of plan constraints.

A plan 7 is said to be a solution for a planning problem I7 iff the plan can
be executed, the associated plan constraints are satisfied by the state trajectory
of the plan and the goal description G of the problem is satisfied by the final
state of that trajectory. Since G must be evaluated at the end of the trajectory
we also sometimes proceed as if G is of the form at end ¢.

3 The Agent Programming Language GOAL

The agent programming language GOAL is a language for programming ratio-
nal agents [10,4]. It provides constructs for specifying the beliefs and goals of
agents and for programming a strategy for action selection. GOAL agents derive
their choice of action from their beliefs and goals. GOAL defines a programming
framework rather than a concrete programming language because GOAL does
not commit to any particular knowledge representation and may be combined
with various knowledge representation languages such as Prolog, ASP, OWL,
etc. The current implementation of GOAL is based on Prolog.

3.1 GOAL Framework

We assume that some knowledge representation technology is available that
agents use to represent, reason, and update their beliefs and goals.

Definition 8. (Knowledge Representation Technology)

A knowledge representation technology (KRT) is a triple (L,|=, @) with L a
language to represent an agent’s beliefs and goals, |= C 2° x L a consequence
relation for £, and @ : 2% x £ +— 2% an update operator that defines how a set
of formulae is updated with a given formula. We assume that falsity 1 € L.

A KRT (L, =, @)is a plugin for a GOAL framework. A second plugin compo-
nent of a GOAL framework is a set of actions Act that GOAL agents may perform,
typically dependent on the environment of the agents. A GOAL framework is ab-
stractly defined first and then each component of a framework is explained.

Definition 9. (GOAL Framework)
A GoAL framework based on a KRT (L, =, ®)is a tuple (¥, Ly, =g, M)where:

— U C Lx L XL s the set of possible mental states of GOAL agents,

— Ly is a language of mental state conditions,

— By CW x Ly defines the truth conditions of mental state conditions, and
— M : ¥ x Act — ¥ is a mental state transformer.

A mental state m € ¥ is a triple m = (K, X, I') with K, ¥, I' C £ which con-
sists of a knowledge base K, belief base X', and goal base I'. The knowledge base
of a GOAL agent consists of static conceptual or domain knowledge that does
not change. This means that performing an action does not modify a knowledge
base and applying the mental state transformer M((K, X, '), «) = (K', X', I}
is constrained such that K = K’. The belief base consists of the beliefs of an
agent that may change due to actions that are performed. Assuming that ¢ rep-
resents the effects of performing action «, the belief update operator & is used
to compute the new set of beliefs and applying the mental state transformer
MUK, X, I, a) = (K', X', I"") is constrained such that X’ = X @ ¢. The goal
base consists of the goals of an agent, e.g. to have one block on top of another
(sometime in the future). Typically, additional rationality constraints are im-
posed on mental states, such as that K, X, and I" are consistent (i.e. L does not

follow from any of these sets). The language Ly of mental state conditions is
used by GOAL agents to inspect their mental state. It consists of mental atoms
B(p), to inspect an agent’s beliefs, and G(y), to inspect an agent’s goals, where
¢ € L, and combinations of such atoms by means of Boolean operators. It is
not allowed to nest the operators B and G. The semantics =y of mental state
conditions is derived from the consequence relation = provided by the KRT, and
is defined as follows (the Boolean operators are defined as usual):

(K,%,T) ¢ Bly) iff KUX E o
<K7Z’F> ':LT/G(@) iff KUF'ZQO

This definition also clarifies the distinct role of knowledge and beliefs. Conceptual
knowledge may be used in combination both with beliefs and goals, which allows
e.g. an agent to conclude that it wants to put block a above block c if it wants
block a on top of b on top of ¢ using a rule that defines the concept above.

The actions Act that GOAL agents may perform are specified as STRIPS-
style triples (a(x), ¢, ¢') where a is the name of the action - including parameters
x, ¢ € L is the action’s precondition, and ¢’ € L is the action’s postcondition.
Multiple action specifications for the same action « can be provided, allowing for
non-deterministic actions. An action is said to be enabled when its precondition
holds. Agents do not have direct access to their environment and have to inspect
their mental state (beliefs) to verify that an action is enabled. A GOAL agent
makes a choice which action it will perform from the possibly multiple actions
that are enabled by a rule-based action selection mechanism that uses so-called
action rules. Action rules are of the form if ¢ then o« and define a strategy or
policy for action selection of an agent. Here, v is a mental state condition that
specifies when action a may be selected. If 1 follows from the agent’s current
mental state, we say that « is applicable. Finally, if an action is both applicable
and enabled, it is said to be an option, one of which is non-deterministically
choosen by an agent for execution.

GOAL agents thus maintain a mental state and derive their choice of action
from their beliefs and goals. A GOAL agent consists of the initial beliefs and
goals, specifies the preconditions and effects of the actions available to the agent,
and contains a set of action rules to select actions for execution at runtime. Like
the knowledge base, the action specifications and action rules are static.

Definition 10. (GoAL Agent)
A GOAL agent is a tuple (K, X, I, R, A) where (K, X I') is a mental state, R is
a set of action rules if 1 then «, and A is a set of action specifications.

Given the definition of a GOAL agent and the semantics of mental state
conditions by =y, we can define the notion of a computation step in which a
GOAL agent performs an action.

Definition 11. (Computation Steps)
Let Agt = (K, X, I, R, A) be a GOAL agent with a mental state m = (K, X, T").

Then the set of possible computation steps that Agt can perform from (K, X, T")
is denoted by — and defined by:

if ¢y then o € R, (o, 0, ¢') € A,m =g ¥ AB(p)

m —— M(m,a)

This semantics allows for non-determinism in two ways. First, if multiple
actions are options, one of these actions is non-deterministically choosen. Second,
if one and the same action has multiple action specifications that can be executed
simultaneously, one of these specifications is choosen non-deterministically. The
latter allows for non-deterministic actions such as throwing a dice.

The action semantics of GOAL induces a set of possible computations. A
computation is defined as an infinite sequence of mental states m,; and actions oy,
such that mental state m;,1 is obtained from m; by applying the transition rule
of Definition 11 with action «;. Although computations are infinite, intuitively,
the actions of a finite prefix of a computation that achieve the agent’s goals may
be viewed as a plan that a planner may return to achieve these goals. As GOAL
agents are non-deterministic, the semantics of a GOAL agent is defined as a set
of possible computations that start in the agent’s initial mental state. A GOAL
agent thus may be viewed as defining a plan search space; below, we make this
statement precise and formally show GOAL can be used as a planning formalism.

Definition 12. (Run, Meaning of a GOAL Agent)
A run or computation r is an infinite sequence my, g, my, 1, . . . of mental states
m; and actions «; such that m; — miy1, or for all a: m; 7&» and mj; = m;
for all j >4 and o; = skip for all j > 1.

We write ri* to denote the mental state at point ¢ in r and r{ to denote the
action performed at point i in r. The meaning Ragy of a GOAL agent named
Agt with initial mental state mq is the set of all runs starting in that state.

3.2 Temporal GOAL

The instantiation of a GOAL framework with linear temporal logic as KRT is
called temporal GOAL. Temporal GOAL has been introduced in [10] but here we
use a first-order variant and show how planning problems with temporal planning
constraints can be embedded in GOAL. The KRT plugin of temporal GOAL
is (Lrrr, Errn, ®) where Lprp, is a first-order linear temporal language and
Errr is the usual consequence relation associated with L7y, [7]. The standard
language of linear temporal logic is extended with two special predicates do(«)
with o € Act and fail, where do(«) means that action « is performed and fail
indicates a failure to achieve a goal. Formally, Ly is defined as an extension
of Ly with temporal operators to facilitate the compilation of PDDL to GOAL.

Definition 13. (Linear Temporal Logic)
The language L7y, with typical element x, is defined by:

x =T | fail | (¢ € Lo) | do(a € Act) | ~x | x Ax | ¥(z € V).x | Ox | x until x

¢x and Oy are the usual abbreviations and we use x before X’ as abbre-
viation for —(—y until x’) A O0x’. Temporal GOAL uses an encoding of action
specifications or planning operators into Lrry, as in [5,10,11]. This allows us
to incorporate a declarative encoding of action preconditions and effects in the
knowledge base of a GOAL agent. Briefly, preconditions 7, are mapped onto pre-
condition axioms of the form O(do(a) —) expressing that action o may be
performed only if its precondition 7, holds. Effects are represented by a tempo-
ral encoding of successor state axioms. Successor state axioms are of the form
D(Op(z) « (Af V (p(z) A=A,))) with A and A, disjunctions of the form
do(a) V ...V do(ay,). Here, Af collects all actions that have p(x) as effect
and A, all actions that have —p(x) as effect. Intuitively, a successor state ax-
iom expresses that p(x) is the case in the next state iff an action is performed
that has p(x) as effect, or p(x) is the case and no action with —p(x) as effect is
performed. To account for conditional effects a small modification is needed: If
(—)p(x) is an effect of « conditional on ¢, then replace do(«) by do(a) A ¢ [5].

Now we are ready to define the components (¥, Ly, |Fw, M) of temporal
GOAL. Ly and =y are as defined above, given that £ = L. Ly thus allows
temporal formulae inside the scope of the B and G operators, and we can use
this to define several common sense notions of goals (see also [10]). Let goal x
be short for Gy A =By. goal x holds if y is a goal and is not believed to occur
inevitably, and corresponds more closely to the intuitive notion of a goal as
being something that requires effort. When y is of the form O’ we say x is an
achievement goal. Note that we have By — Gy due to the rationality constraint
X C I', which implies realism [6], but we do not have By — goal x.

The set of mental states ¥ is restricted such that: knowledge bases only
consist of PDDL axioms and precondition and frame axioms as defined above,
belief bases are sets of literals, and goal bases are sets of temporal logic formulae.
A rationality constraint is imposed on mental states (K, X I') such that (K U
X)) C I' (cf. [10]). There are various reasons for this constraint, both conceptually
as well as technically, but due to space restrictions we refer to [10] and only
make two brief remarks here: The constraint implies that (i) K, X and I are
mutually consistent, i.e., K UX UT F~ L1, which means that the agent cannot
have something as a goal that is never realizable according to its beliefs, and
(ii) statements believed to be currently the case are part of the goal base, which
allows us to use the standard definition of progression of £, formulae [2].

What remains is that we need to provide a definition of the mental state
transformer M((K, X, I'),) = (K', X', I""), i.e. we must specify how X’ and
I'" can be obtained when « is performed (recall that knowledge bases do not
change). We first specify how the belief base X’ is obtained. To this end, the
effects of performing o are collected in a set with positive effects Effj;; =
{p(e) | KU X U{do(a)} = Op(c)} and a set with negative effects Eff;r; =
{-p(e) | KUXU{do(o)} = O-p(c)}. Using these sets, and by slightly abusing
notiation, we define:

df
Y =X & (Efffrr N Effrr) = Effirn U Effirs

Finally, we need to specify I"’. To do so, we use the progression operator from [2]

relative to the current belief base X, but only specify some clauses of the inductive

definition due to space limitations. For the base case ¢ € Ly, Progress(¢,X) =

T if ¥ = ¢, otherwise Progress(¢,X) = L. Progress(Qwp,X) = ¢, the case

that requires the constraint 3’ C I' to be in place as it allows that a goal ¢ is

entailed by the agent’s beliefs. Progress(Vz.p,X) = A Progress(¢[c/x], X).
ceC

We assume that L V x is reduced to x, L Ax to L, TV x to T, etc. In order
to ensure progression always yields a consistent goal base I, some syntactic
restrictions are imposed on the temporal formulae allowed in goal bases: they
need to be in negation normal form (negation occurs only in front of atoms) and
may not have occurrences of disjunction V or the next operator Q).
Progression of a formula may result in L which indicates that one of the
goals has not been achieved, and, consequently, that the actions selected cannot
be viewed as a plan for achieving these goals. To record such failure the special
predicate fail has been introduced above, and is used to replace L which also
restores consistency. That is, the new goal base denoted by Progress™(I', X))

after performing an action is given by the set |J Progress(p,X) where L, if
pel’
present, has been replaced by fail. Finally, we define:

MUK, X, T),0) = (K, Progress’™!(I, X))

where X' = Eff; ., U EﬁETL and EﬁETL and Eff;; are defined as above.

4 Compiling PDDL Problems into GOAL Agents

In this Section we show that a GOAL framework is expressive enough to define
a planning problem from PDDLy, . cg+pc, given that such a framework is
instantiated with a temporal logic KRT.

To compile a PDDL planning problem into a GOAL agent we use the concept
of a compilation scheme. A compilation scheme is a mapping F from planning
problems IT to GOAL agents F(IT) such that: (i) there exists a plan for IT iff
there exists a run of F(II) that achieves all goals, (ii) the translations of the
initial and goal states of IT can be computed in polynomial time, and (iii) the
size of F(IT) is polynomial in the size of II. Compilation schemes in our sense
are similar to that used in [13] but for obvious reasons differ in that we map to a
GOAL agent instead of a planning problem in e.g. a different fragment of PDDL.

The compilation scheme f defined below maps every problem instance IT
of the PDDL fragment PDDL s, +cp+pc to a GOAL agent f(IT). The scheme
f is defined by a tuple of functions (faz, fat, fe, frs fas, i, tg, tpe) that map dif-
ferent parts of a PDDL problem (A,C,Z,G, PC) to corresponding GOAL agent
(K, X, TR, A) components.

Definition 14. (Compiling PDDL Problems to GOAL Agents)
Let I = (A,C,Z,G,PC) be a PDDL problem and A = (Lo, A, O). The scheme

f from PDDL problems to GOAL agents £(IT) = (K, X, I', R, A) is defined by:
L K = fax(A) U fat(O) V) fc(c>7

o ¥ =t(2)=1,

o I' =14(9) Utpe(PC),
b R:fr(A)>

b A:fas(A)

The scheme f maps PDDL axioms into the knowledge base K by applying
the well-known completion operator used to compute the completion of logic
programms to these axioms, i.e. f,.(A) = comp(A). Intuitively, the completion
comp(A) replaces implications with equivalences (cf. [1]). fq: maps the operators
O to an action theory in L7y, as discussed above that is also part of K. Finally,
a domain closure aziom f.(C) =Vz.(x =c1V...Vx =c¢,) is added to K, where
1,...,cn exhaust the constants in C (cf. [13]). The fact that a knowledge base
of a GOAL agent is static corresponds with the fact that a PDDL domain does
not change over time. The function ¢; maps the initial state Z to the belief base,
such that ¢;(Z) =7 = {p(c) € T} U {-p(c) | Z = p(c),p(c) € B}. t, maps the
goal G = at end(¢,) to O¢y. Assuming that G = at endg, is the main goal, tp.
maps the planning constraints PC to the goal base as follows:

oty (Vr.p) = Va.tpe(p)

o ty.(alvays ¢) = ¢ until ¢,

o tp.(sometime ¢) = ¢ before ¢,

e ty.(at-most-once ¢) = ¢ before ¢, — (¢ until (—¢ until ¢,))

o t,.(sometime-after ¢ ¢') = ¢ before ¢, — (¢ before (¢’ before ¢,))
o t,.(sometime-before ¢ ¢') = ¢ before ¢, — (¢’ before (¢ before ¢,))

This translation shows the difference between assuming a finite horizon as in
planning that is not made in GOAL and has to be enforced by it. The function
fr(A) maps each of the actions o € O to an action rule if T then « in the
program section, and f,s maps each operator definition (o, m,,€,) € A to an
action specification («, 74, T). This works since effects are encoded in the action
theories stored in the knowledge base.

Theorem 1. There exists a solution for a PDDL problem II iff there is a run
r of the GOAL agent £(IT) such that for some i with r* = (K, X, I"): ¥ = 1T.

Proof. Due to space limitations we only provide a sketch. The proof proceeds
by first showing that the translation of the PDDL axioms and domain closure
assumption is correct. Consecutively, we show that updates by performing ac-
tions in PDDL correspond with those derived from temporal action theories in
GoaL. Finally, we show that there exists a plan (solution) iff the goal base of
the compiled GOAL agent after performing the corresponding action sequence is
empty and does not contain fail.

The theorem states that a planning problem can be represented by a GOAL
agent. Another view on this result is that the meaning of the GOAL agent F(IT)
defines the plan search space. Obviously, part of this result is derived from the
expressiveness of linear temporal logic, which allows to encode the semantics

of planning operators and plan constraints. However, GOAL agents do not use
temporal logic to select actions but use action rules to do so. A plan search
space thus is defined by the GOAL framework component of temporal GOAL
(more specifically, Definition 11) and not by the temporal logic plugin.!

It is clear that each of the functions (fat, fe, fr, fas: tistg, tpe) that define f
execute in polynomial time, and, as a consequence, the size of the GOAL agent
obtained by applying f is polynomial in the size of the original PDDL problem.

Corollary 1. f defines a compilation scheme.

It is clear that GOAL agents that are obtained by mapping a PDDL problem
into GOAL can be translated back into a PDDL problem. This is not the case in
general, however. For example, it is not clear how to map multiple achievement
goals of the form Q¢ into a PDDL problem. Similarly, it is not clear how to
map non-trivial action rules that use mental atoms of the form G(y) into a
PDDL problem. The question is which restrictions need to be imposed on GOAL
agents to be able to map them into a PDDL problem. We propose the following
restrictions as a sufficient set, but it remains to establish a necessary set:

1. The knowledge base consists of a stratified axiom set, and an LTL action theory.

2. The belief base is a set of literals S where S is a PDDL state.

3. The goal base consists of a single achievement goal of the form ¢¢ with ¢ € Lo
and, possibly, additional deadline goals of the form ¢ until ¢ and ¢ before ¢.

4. The program section consists of reactive action rules only, i.e. rules that have only
occurrences of belief atoms of the form B(¢) with ¢ € Lo in their conditions.

5. Variables that occur in preconditions are parameters of the corresponding action.

6. All specified actions specified in the GOAL agent are deterministic. (PDDL does
not allow for non-deterministic actions.)

Item (3) highlights one of the differences between dynamic agents, that may
have multiple goals and dynamically adopt and/or drop goals, and static plan-
ning tasks. Alternatively, planners look for a fixed horizon determined by the
goal state which defines a temporal window to which plan constraints apply,
whereas this window needs to be made explicit in the mapping to GOAL.

5 Conclusion

We have shown that GOAL can be used as a planning formalism. To this end, the
notion of a GOAL framework has been introduced that may be instantiated with
various knowledge representation technologies. A GOAL framework defines the
structure and semantics of a GOAL agent and has been introduced to be able to
make a distinction between the expressiveness provided by GOAL itself and that
provided by a KRT plugin. Temporal GOAL, a GOAL framework with a linear
temporal logic plugin, has been used to compile planning problems with planning
constraints into GOAL agents using so-called compilation schemes in the sense

! Another indication of this fact is that we do not need compatibility axioms as in [11].

of [13]. This paves the way for integrating a planner such as TLPlan [2] into
GOAL and to combine the strenghts of planners with those of agent programming
languages. We plan to integrate a planner into GOAL in combination with the
notion of a module introduced in [9]. The idea is to introduce a variant called a
planmodule where the context condition is used to define when to call a planner.

As argued, the semantics of GOAL may be viewed as defining a plan search
space. One very interesting avenue for future research is how GOAL action rules
with non-trivial mental state conditions can be used to reduce this search space.
The idea is similar to how Golog programs [13] may reduce the search space and
how heuristic knowledge can be used in TLPlan [2] and PDK [11].

References

1. K.R. Apt and R. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19:9-71, 1994.

2. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 16:123-191, 2000.

3. J. Baier and S. Mcllraith. Planning with first-order temporally extended goals
using heuristic search. In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAIO6), pages 788-795, Boston, MA, July 2006.

4. R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Springer, 2005.

5. S. Cerrito and M.C. Mayer. Using Linear Temporal Logic to Model and Solve
Planning Problems. In F. Giunghiglia, editor, Proc. of the FEigth Int. Conference
on Artificial Intelligence (AIMSA’98), pages 141-152. Springer, 1998.

6. Philip R. Cohen and Hector J. Levesque. Intention Is Choice with Commitment.
Artificial Intelligence, 42:213-261, 1990.

7. E.A. Emerson. Temporal and Modal Mogic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. 1990.

8. A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. Technical
report, Department of Electronics for Automation, University of Brescia, 2005.

9. K.V. Hindriks. Modules as Policy-Based Intentions. In Proceedings of the 5th
International Workshop on Programming Multi-Agent Systems, 2008.

10. K.V. Hindriks, M.B. van Riemsdijk, and W. van der Hoek. Agent programming
with temporally extended goals. In Proceedings of the Fighth International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2009), 2009.

11. M.C. Mayer, C. Limongelli, A. Orlandini, and V. Poggioni. Linear temporal logic
as an executable semantics for planning languages. Journal of Logic, Language and
Information, 16, 2007.

12. E.P.D. Pednault. ADL and the State-Transition Model of Action. Journal of Logic
and Computation, 4(5):467-512, 1994.

13. G. Roger, M. Helmert, and B. Nebel. On the Relative Expressiveness of ADL
and Golog. In Proc. of the Eleventh Int. Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pages 544-550. AAAI Press, 2008.

14. S. Sardina, L.P. de Silva, and L. Padgham. Hierarchical planning in BDI agent
programming languages. In Proc. of the Fifth Int. Conference of Autonomous
Agents and Multi-Agent Systems (AAMAS 2006), pages 1001-1008, 2006.

15. Sylvie Thiébaux, Jorg Hoffmann, and Bernhard Nebel. In defense of PDDL axioms.
Artificial Intelligence, 168:38—69, 2005.

