
Towards an Environment Interface
Standard for Agent-Oriented
Programming

Tristan M. Behrens, Jürgen Dix, Koen V. Hindriks

IfI Technical Report Series IfI-09-09

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix

Technical editor: Michael Köster

Contact: michael.koester@tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelli-
gence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Hardware and Robotics)

Towards an Environment Interface Standard for

Agent-Oriented Programming

Tristan M. Behrens, Jürgen Dix, Koen V. Hindriks

Contents

1 Introduction 3

2 The Meta-Model 4
2.1 Summaries . 4

2.1.1 2APL Environments . 4
2.1.2 GOAL Environments . 5
2.1.3 Jadex Environments . 6
2.1.4 Jason Environments . 7
2.1.5 Comparison . 9

2.2 Meta Model . 12
2.3 Principles . 16

3 The Proposed Standard: EIS 18
3.1 Interface Immediate Language 18

3.1.1 Parameters . 19
3.1.2 Data Containers . 19

3.2 Environment Interface Standard 20
3.2.1 Attaching, Detaching, and Notifying Listeners 22
3.2.2 Registering and Unregistering Agents 24
3.2.3 Adding and Removing entities 24
3.2.4 Managing the Agents-Entities-Relation 25
3.2.5 Performing Actions and Retrieving Percepts 25
3.2.6 Managing the Environment 27
3.2.7 Loading environment-interfaces from jar-�les 27
3.2.8 Miscellanea . 27

4 How to Connect to the EIS 28
4.1 The Platform Example . 28

4.1.1 Mechanism for Loading Environment Interfaces 29
4.1.2 Preparing for Callbacks . 29

1

Contents

4.1.3 Agent Registering . 29
4.1.4 Agent Associating . 29

4.2 The Carriage Example . 30
4.3 The MASSim-Connector . 33

5 Conclusion 34

A Interface Immediate Language Examples 37

DEPARTMENT OF INFORMATICS 2

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Abstract

Our aim is to design and develop a generic environment interface standard
(EIS) that facilitates connecting agents programmed in various agent pro-
gramming languages (APL) to environments. We aim at a de facto standard
that eventually transforms into a real standard in the near future.

1 Introduction

Our objective is to design and develop a generic environment interface standard
(EIS) that facilitates connecting agents programmed in various agent program-
ming languages (APL) to environments. We aim at a de facto standard that,
hopefully, becomes a real standard in the near future. Our motivation is based
on the following considerations:

• implementing an EIS makes already working environments widely avail-
able (short-term goal),

• an EIS allows for the easy distribution of future environments (Multi-
Agent Contest, Unreal, ORTS,...),

• an EIS allows the direct comparison of APL platforms, and

• an EIS enables the development of a truly heterogeneousMAS, consisting
of agents from APL platforms that adhere to the standard of the EIS (long-
term goal).

Our approach takes the following goals into account: to design an interface
that is as generic as possible, and to reuse as much as possible from existing
interfaces. Obviously, there is a trade-off between these two goals. Our basic
strategy for designing a generic environment interface is (1) to start with what
is currently �out there� in existing platforms, and (2) to try to merge this into
a generic interface which is suf�ciently close to these existing approaches.

Initially, in the �rst interface standard proposal, we will not introduce new
features that go beyond existing functionality for relating APLs to environ-
ments. However, there is one exception: a feature that allows the connection
between agents and environment to be a very dynamic one. We discuss this
feature in more detail below. We leave the discussion of other features (that
may be useful and related to connecting to environments) to future extensions
of this paper.

But even for such an incremental approach, it is important that everyone
needs to adapt to the new standard. Our strategy is to minimize the required
effort for adapting to the new standard.

The paper is organised as follows. In Section 2 we introduce a meta model
that describes the basic components, their interrelations and functionalities be-
tween them. This model is used in Section 3 to de�ne our environment interface

3 Technical Report IfI-09-09

The Meta-Model

standard (EIS), the main result of this paper. Finally, in Section 4, we show with
several examples how to connect particular environments to environment in-
terfaces.

2 The Meta-Model

In this section, we compare different APL platforms with respect to how they
facilitate accessing different environments. We also propose a meta-model that
provides the starting point for de�ning a generic interface. Finally, we suggest
a set of six principles that will guide the development of the EIS in Section 3.

2.1 Summaries

We give an overview of the APL platforms 2APL, GOAL, JADEX, and JASON. We
will concentrate on the following questions:

1. How can agents be connected to environments?

2. How can agents act and perceive in an environment?

3. What other useful functions are available?

The answers to these questions will be used to de�ne a meta-model and to
derive principles for de�ning an environment interface standard.

2.1.1 2APL Environments

Creating new environments in 2APL means to implement a class Env [3], that
extends apapl.Environment (see below). The package name de�nes the
environment name. Environments are distributes as jar-�les. Agents can be as-
sociated with several environments, jars have to be in the user-directory. From
an implementation point of view, there is a class APAPLBuilder that is used
to parse MAS-�les, in order to load and run agents and environments. Further-
more there is a derivate of the class apapl.Executor that executes agents.

Here is the abstract environment-class:

public abstract class Environment {

private HashMap<String,APLAgent> agents = new HashMap<String,APLAgent>();
public final void addAgent(APLAgent agent) { ... }
public final void removeAgent(APLAgent agent) { ... }
protected abstract void addAgent(String name);
protected abstract void removeAgent(String name);
protected final void throwEvent(APLFunction e, String... receivers) { ... }
public final String getName() { ... }
public void takeDown() { ... }

}

DEPARTMENT OF INFORMATICS 4

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

• addAgent(APLAgent agent) adds an agent to the environment and
stores its name and object in the hash-map. It is called by the class
APAPLBuilder. Cannot be overridden.

• removeAgent(APLAgent agent) removes an agent from the environ-
ment. It is called by the class APAPLBuilder. Cannot be overridden.

• addAgent(String name) should be overwritten while inheriting from
the environment. It is called by the environment itself.

• removeAgent should be overwritten while inheriting from the environ-
ment. It is called by the environment itself.

• throwEvent sends an event to a set of agents. Cannot be overwritten.

• getName returns the name of the environment. Cannot be overridden.

• takeDown is called to release the resources of the environment.

• For implementing external-actions you have to implement for each such
action amethodwith the signature Term actionName(String agent,
Term... params). These methods are called by the agent-executor.

An observation is that the environment stores agents as objects. Further-
more there is a format for exchanging data (perceive/act) between agents and
the environment, based on the class apapl.data.Term: APLIdent for con-
stants, APLNum for numbers, APLFunction for functions, and APLList for
lists.

2.1.2 GOAL Environments

To use a GOAL-environment, the user has to copy a jar-�le or a folder with class-
�les to a convenient location (e.g. the folder containing the MAS-description)
and adapt the MAS-�le [7].

To function as an environment, a class has to implement the Java-interface
goal.core.env.Environment and implement themethods de�ned therein.

Agents are executed by a scheduler that invokes the mentioned methods.
Here is the environment-interface:

public interface Environment {

public boolean executeAction(String pAgent, String pAct) throws Exception;
public ArrayList<Percept> sendPercepts(String pAgentName) throws Exception;
public boolean availableForInput();
public void close();
public void reset() throws Exception;

}

5 Technical Report IfI-09-09

The Meta-Model

• executeAction is called by the scheduler in order to execute an action.
The �rst parameter is the respective agent's name, the second one is a
string that encodes the action. The method returns true if the action has
been recognized by the environment, false if not. An exception is thrown
if the action has been recognized by the environment but its execution
has failed.

• sendPercepts is called by the scheduler to retrieve all observations of
an agent. The parameter is the respective agent's name. The method
returns a list of percepts. It throws an Exception if retrieving the observa-
tions has failed.

• availableForInput is called by the scheduler to determine whether
the environment is ready for accepting input or not.

• close is called by the platform-manager to shut down the environment.

• reset is called by the platform-manager to reset the environment. It
throws an exception if the reset has failed.

Note that the IDE user manual explicitly states that executeAction needs
not to be thread-safe, i.e. the scheduler is supposed to ensure thread-safety.

2.1.3 Jadex Environments

In JADEX [5], agents are composed of beliefs, goals and plans, that are Java-
objects. XML-based Agent De�nition Files glue together initial instances of
those mental attitudes.

Associating an agent with an environment is usually done by putting the en-
vironment into the belief base, either as a set of facts representing the environ-
ment-state, or as a single environment-object encapsulating the state. The
environment objects are typically part of the agents' beliefs and when they
change the agents automatically notice this (via property changes).

There are two ways of associating several agents with a single environment:
(1) sharing a singleton environment-object, or (2) implementing an agent,
that manages the state and the evolution of the environment and allows other
agents to act and perceive by message-passing. A singleton environment is
shared by the agents and accessed via normal method calls. These calls are
synchronized within the environment object. An environment agent manages
the environment object. This allows a system distribution as actions/percepts
are transferred via messages to/from the environment agent.

In JADEX the normal Java class-path is used for loading all kinds of resources,
i.e. if the class �le is contained in a jar and that jar �le is in the class-path.

Since JADEX does have a strict policy when it comes to connecting to en-
vironments we will show an example. This is a code-snippet of the garbage-
collector-agent:

DEPARTMENT OF INFORMATICS 6

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

<agent [...]>

<beliefs>
<!-- Environment object as singleton.

Parameters are name and type of agent for adding it
No clean solution but avoids registering of agents.-->

<belief name="env" class="Environment">
<fact>

Environment.getInstance(Environment.COLLECTOR, $scope.getAgentName())
</fact>

</belief>

<!-- The actual position on the grid world. -->
<belief name="pos" class="Position" evaluationmode="push">

<fact language="clips">

?agent = (agent (agent_has_localname ?agentname))
?rbel_env = (belief (element_has_model ?mbel_env) (belief_has_fact ?env))
?mbel_env = (mbelief (element_has_name "env"))
?env = (jadex.bdi.examples.garbagecollector.Environment (

getPosition (?agentname) ?ret))
</fact>

</belief>

[...]

</beliefs>

[...]

</agent>

As we can see, the environment is stored in the belief-base as a Java-object.

2.1.4 Jason Environments

To create a new environment a class has to be established extending the class
jason.environment.Environment[1]. Environments are distributed as jar-
�les. Each MAS has at most one environment. The jar-�le has to reside in the
user directory. Agents are executed using infrastructures (e.g. centralised of
Jade). Infrastructures also load agents and environments.

Here is the class:

public class Environment {

private static Logger logger = Logger.getLogger(Environment.class.getName());
private List<Literal> percepts =

Collections.synchronizedList(new ArrayList<Literal>());
private Map<String,List<Literal>> agPercepts =

new ConcurrentHashMap<String, List<Literal>>();
private boolean isRunning = true;
private EnvironmentInfraTier environmentInfraTier = null;
private Set<String> uptodateAgs = Collections.synchronizedSet(new HashSet<String>());
protected ExecutorService executor;

public Environment(int n) { ... }
public Environment() { ... }
public void init(String[] args) { ... }
public void stop() { ... }

7 Technical Report IfI-09-09

The Meta-Model

public boolean isRunning() { ... }
public void setEnvironmentInfraTier(EnvironmentInfraTier je) { ... }
public EnvironmentInfraTier getEnvironmentInfraTier() { ... }
public Logger getLoger() { ... }
public void informAgsEnvironmentChanged(Collection<String> agents) { ... }
public void informAgsEnvironmentChanged() { ... }
public List<Literal> getPercepts(String agName) { ... }
public void addPercept(Literal per) { ... }
public boolean removePercept(Literal per) { ... }
public int removePerceptsByUnif(Literal per) { ... }
public void clearPercepts() { ... }
public boolean containsPercept(Literal per) { ... }
public void addPercept(String agName, Literal per) { ... }
public boolean removePercept(String agName, Literal per) { ... }
public int removePerceptsByUnif(String agName, Literal per) { ... }
public boolean containsPercept(String agName, Literal per) { ... }
public void clearPercepts(String agName) { ... }
public void scheduleAction(final String agName, final Structure action,

final Object infraData) { ... }
public boolean executeAction(String agName, Structure act) { ... }

}

• Environment(int n) and Environment() instantiate the environ-
ment with n threads to execute actions.

• init(String[] args) initializes the Environment. The method is cal-
led before the MAS execution. The arguments come from the MAS-�le.

• stop() stops the environment.

• isRunning() checks whether the environment is running or not.

• setEnvironmentInfraTier(EnvironmentInfraTier je) and
getEnvironmentInfraTier() set and get the infrastructure tier (saci,
jade, centralised,...).

• getLoger() [sic!] gets the logger (not used).

• informAgsEnvironmentChanged(Collection<String> agents)
informs the agents that the environment has changed.

• informAgsEnvironmentChanged() informs all agents that the envi-
ronment has changed.

• getPercepts(String agName) returns the percepts of an agents. In-
cludes common and individual percepts. Called by the infrastructure tier.

• addPercept(Literal per) adds a percept to all agents. Called by
the environment.

• removePercept(Literal per) removes a percept from the common
percepts. Called by the environment.

DEPARTMENT OF INFORMATICS 8

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

• removePerceptsByUnif(Literal per) removes all percepts from
the common percepts, that match the uni�er per.

• clearPercepts() clears the common percepts.

• containsPercept(Literal per) checks for containment.

• addPercept(String agName, Literal per) adds a percept to an
agent. Called by the environment.

• removePercept(String agName, Literal per) removes a percept.

• removePerceptsByUnif(String agName, Literal per) removes
all percepts matching the uni�er per.

• containsPercept(String agName, Literal per) checks for con-
tainment.

• clearPercepts(String agName) clears all percepts.

• scheduleAction(final String agName, final Structure
action, final Object infraData) is used to schedule an action
for execution.

• executeAction(String agName, Structure act) executes an ac-
tion act of the agent agName.

An observation is that the environment allows for (external) control over
action-execution strategies and provides logging-functionality (redirecting sys-
tem interface System.out). Note that although the environment de�nes these
functions the two essential methods are executeAction and getPercepts,
which provide a minimal agent interface.

2.1.5 Comparison

• Restrictiveness/portability: From the point of view of an agent-/en-
vironment-/MAS-developer, 2APL and GOAL are most restrictive, JASON is
moderately restrictive and JADEX is not restrictive at all. To create agents
in 2APL/ GOAL/JASON you have to provide jar-�les (or also compiled Java-
classes in the case of GOAL), that contain the environment. In the case
of 2APL and JASON, creating an environment boils down to creating a
class that inherits from an abstract environment-class, in GOAL on the
other hand one has to implement an environment-interface. JADEX is ab-
solutely open, one can plug-in almost everything. This is true to a certain
degree for JASON as well, because JASON is (in comparison to 2APL and
GOAL) open-source. One can implement environments without sticking
to the instructions, but this does not seem to be the way intended by the
developers.

9 Technical Report IfI-09-09

The Meta-Model

Criterion 2APL GOAL Jadex Jason

Portability jar-�les jar-�les everything jar-�les

Perceiving sense-actions
and external
events

getting all
perceps via
a provided
method

accessing
environment-
objects or
requesting
percepts
from an
environment-
agent

getting all
percepts via
a provided
method

Acting invoking
methods

invoking a
method

manipulating
an enviro-
ment object
or sending a
message to an
environment
agent

invoking a
method

Abstract En-
vironment
Functionality

mapping
from agent-
names to
agent-objects

no special
functionality

no abstract
environment
de�ned

logging
and action-
scheduling

Formats logical terms
and atom
encoded as
Java-objects

strings java-objects logical literals
and structures
encoded as
Java-objects

Java accessi-
bility

jar-�les jar-�les everything
that is in the
class-path

jar-�les

Table 1: Comparison-matrix to give an overview.

DEPARTMENT OF INFORMATICS 10

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

• Perceiving: In 2APL/ GOAL/JASON perceiving and acting means invoking
special methods in the environment-class. 2APL allows for active and for
passive sensing. An agent can perform a sense-action to get percepts,
or the environment can send percepts by throwing events. In GOAL and
JASON the only way to get percepts is to call special methods. This is
usually done in the reasoning cycle of each agent.

JASON also differentiates between individual (available to one agent) and
global percepts (available to all agents). It also allows for switching be-
tween active and passive sensing in the MAS-speci�cation �les. In JADEX

perceiving means either querying an environment that is stored as an ob-
ject in the agents' belief-base, or by communicating with an agent that
functions as an environment-agent.

• Acting: Acting in 2APL/ GOAL/JASON is done by calling special meth-
ods. In GOAL and JASON the action to be performed is a parameter of a
special method, in 2APL the action-name is also the name of the special
method. Executing an action-method in 2APL can have two outcomes.
Either a return-value (an object) indicating success is returned, that might
be non-trivial (e.g. list of percepts in the case of an sense-action) or
terminate with an exception indicating action-failure. In GOAL invoking
the execute-action-method might have tree outcomes. Either the return-
value true indicating success, false indicating that the action has not
been recognized, or an exception indicating that the action has failed.
The JASON execute-action-method returns a boolean. In JADEX acting
means either updating an environment that is stored as an object in the
agents' belief-base, or again by communicating with an agent that func-
tions as an environment-agent.

• Functionality of the abstract environments: The GOAL interface im-
plements no standard functionality. The abstract environment-class of
2APL only implements a mapping from agent-names to agent-objects.
The abstract environment-class of JASON on the other hand implements
more sophisticated functionality, like support for multi-threaded action-
execution, dealing with the environment infrastructure tier, noti�ers for
agents that the environment has changed . . . JADEX does not de�ne any
interface or abstract class for implenting environments.

• Formats: 2APL actions/percepts/events are instances of derivatives of the
class Term. A GOAL-percept is an instance of the class Percept, an ac-
tion is a Java-string. A JASON-percept is an instance of the class Literal,
an action is an instance of Structure. In JADEX actions/percepts/events
are arbitrary Java-objects.

• Java-accessibility: Accessing Java code in 2APL/ GOAL/JASON is possible
through jar-�les. In comparison to 2APL and GOAL, JASON allows for

11 Technical Report IfI-09-09

The Meta-Model

internal-actions stored in a jar-�le that does not contain an environment.
Accessing Java code in JADEX is easy.

2.2 Meta Model

APL Side Environment Side

Environment
Management

System

Platform

Agents

Environment
Interface
Standard

Environment
Model

Figure 1: The components of our proposal.

In this section, we present an abstract model of what we would like to
achieve. We intend this meta-model to be as general as possible. The main
goal is to allow establishing connections between APL platforms and environ-
ments, by means of the functionality provided by the EIS. This functionality
has yet to be de�ned. The main feature that we believe should be included in
the standard at this point is an agents-entities-relation. This relation associates
agents with what we have labeled controllable entities in the environment, i.e.
it lets agents control entities in the environment.

We identify �ve components from a software engineering perspective (see
Fig. 1):

• Agent: The objective of de�ning an environment interface standard is
to provide a generic approach for connecting agents to environments.
Agents may refer to almost any kind of software entity but the stance
taken here is that these entities are able to act and process percepts. We
use the following very generic de�nition taken from [8] that includes

DEPARTMENT OF INFORMATICS 12

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

precisely these two aspects: An agent is anything that can be viewed as
perceiving its environment through sensors and acting upon that environ-
ment through effectors. We do not intend to restrict our proposal to any
speci�c kind of agent, although we are primarily motivated by the AOP-
perspective.

• Environment model: We assume an environment to contain controllable
entities. Controllable entities establish the connection between agents
and the environment by providing (1) effectoric capabilities and (2) sen-
sory capabilities to agents, thus facilitating the situatedness of these agents.

Such entities may be controlled from outside of the environment (by
agents) and are capable of performing actions in the environment to
change the state of that environment. We assume that each entity has
its own repertoire of actions, and we do not assume anything about how
the actions are performed in the environment.

Similarly, we assume each entity to receive percepts that may be speci�c
to that entity. See the paragraph about perceiving below for more details
on different modes of perception that are supported. Note that we allow
other active entities in the environment that are not controlled by agents.
Finally, we assume that controllable entities can be created or removed
from the environment.

Controllable entities may be linked one-to-one to concrete Java-objects
at the code level but need not be so. That is, entities may be implicit
and we do not require that entities can be matched to particular Java-
objects that are part of an environment. Entities thus primarily are used
conceptually and refer to abstract containers for actuators and sensors to
which agents can connect. The only representation that is obligatory for
each controllable entity is an identi�er.

The model of the environment is illustrated in Figure 2. We assume (pos-
sibly) intersecting spheres of in�uence of multiple agents acting in an
environment. The sphere of in�uence of an agent is de�ned by the effec-
toric and sensory ranges of its associated controllable entites. Note that
we do not assume a one-to-one relation between agents and control-
lable entities. Different perspectives may be taken towards these spheres
of in�uence: (i) an action perspective (agents may interfere with each
other, change same parts of environment) and (ii) a perception perspec-
tive (agents may have different views on the environment).

Controllable entities can be something very simple like thermostats or
something quite complex like a robot. In the Multi-Agent Contest 2009,
the cowboys are the controllable entities. The sensory capabilities are
limited to some sort of camera, that provides agents with a limited vi-
sual range. The effectoric capabilities consist of moving the cowboy in
different directions.

13 Technical Report IfI-09-09

The Meta-Model

Finally, although it is natural to talk about states of the environment this
should not be taken to imply that we impose any additional structure
on an environment being e.g. a discrete state system. The environment
model is generic and can be instantiated to all kinds of speci�c environ-
ments.

• Platform: We assume the platform to be responsible for instantiating and
executing agents. Furthermore we assume that it facilitates connecting
agents with environments, and associating agents to controllable entities
in environments.

• Environment management system (EMS):We assume this component
to provide all the actions for managing an environment. Such actions
might be: initializing an environment using a con�guration �le, releas-
ing the resources of the environment and kill it, furthermore actions like
pausing, unpausing, and resetting. The environment management sys-
temmay be run independently from an APL platform. However, our main
concern is to de�ne this component in an abstract way as a means to al-
low platforms to exert some control over the environment. Note that we
propose the EMS to potentially be on both sides (we would like to leave
this issue �open� to a certain extent). We believe that this will be clari�ed
during practical experiments. Note also that we propose the EMS and its
functions, but we do not de�ne anything about it to be obligatory.

• Environment interface standard (EIS): The environment interface stan-
dard is the layer that connects the platform, the environment manage-
ment system, and the agents with the environment(s).

Fig. 1 shows the meta-model. Connections are:

1. between the agents to the EIS (allows for acting and perceiving) (see be-
low for an explanation on different modes of sensing),

2. between the platform to the EIS (allows for manipulating the agents-
entities-relation),

3. between the EMS to the EIS (allows for controlling the execution of the
environment),

4. between the EMS and the environment (allows for direct control over the
environment's execution),

5. between the EIS and the environment (facilitates the already mentioned
functionalities on the environment side), and

6. between the platform and the agents (e.g. for controlling the agents'
execution, or creating/removing agents).

DEPARTMENT OF INFORMATICS 14

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Perceiving: We allow for three different ways of perceiving: (1) active sens-
ing through sensing actions, (2) passive sensing, and (3) perceptions sent by
the environment automatically. Sensing actions are actions that are selected
by the agent to perform next. In this sense, these actions represent a choice
of the agent to inspect its environment by means of some sensory equipment.
These actions should be part of the agent program. In contrast, passive sens-
ing should not involve a choice of the agent, but is embedded in the control
cycle of the agent. Note that our distinction does not relate to the usual dif-
ferentiation in robotics regarding active and passive sensors: �A sensor is often
classi�ed as being either passive sensor or active sensor. Passive sensors rely on
the environment to provide the medium for observation, e.g., a camera requires a
certain amount of ambient light to produce a useable picture. Active sensors put
out energy in the environment to either change the energy or enhance it. A sonar
sends out sound, receives the echo, and measures the time of �ight.�[6] The term
active sensor is not the same as active sensing. Active sensing is used to denote
in a the system when effectors are used to dynamically position a sensor for a
"better look". A camera with a �ash is an active sensor; a camera on a pan/tilt
head with algorithms to direct the camera to turn to get a better view is using
active sensing.

Components: The platform and the agents are on the APL side. The envi-
ronment is on the environment side. The EMS on the other hand has a special
role, it can be on both sides. We do not wish to impose a restriction by requir-
ing that the EMS is to be a component of the APL platform. In the case of the
Multi-Agent Contest[2] for example, it is not allowed to control the execution
of the environment through the connected APL platforms.

The platformmay be equipped with further functionality like graphical user-
interaction and integrated development of MAS, but we do not require that
functionality.

Note that we assume the components � except for the EIS � to be implicit.
Each object that is associated to the EIS via the agents-to-EIS connection quali-
�es as an agent, each object that uses the platform-to-EIS connection quali�es
as the platform, and so on.

The connection between the EIS and the environment is arbitrary. It could be
facilitated for example by Java programming constructs (methods, buffers,...)
in the case that the connection to a Java-environment is to be established, Java-
RMI if a distributed application is desired, JNI if the connection to a C/C++ appli-
cation is desired, or TCP/IP (compare with Multi-Agent Contest) for a general,
distributed solution.

Our aim is to allow speci�c interfaces to speci�c environments to be dis-
tributed. The EIS should allow for: (1) wrapping already existing environments
(e.g. 2APL's blocksworld), (2) creating new environments by connecting al-
ready existing applications (e.g. Unreal Tournament), and (3) creating new

15 Technical Report IfI-09-09

The Meta-Model

environments from scratch.

2.3 Principles

In order to de�ne an environment interface standard, we have identi�ed the
following principles that we think should be adhered to when designing the
interface standard:

1. Portability: We aim to facilitate the easy exchange of environments be-
tween platforms by (1) downloading the speci�c interface to an environ-
ment, (2) quickly adapting the MAS, (3) executing. We believe that using
jar-�les � following the examples of 2APL/ GOAL/JASON � facilitates the
desired portability. Therefore we need a solid policy for locating the en-
vironment entry-points in the jar-�les. We do not want to make the use
of jar-�les obligatory, however.

When it comes to MAS-con�gurations, we are open for any suggestions.
An environment is something arbitrary that agents connect to through
the environment interface. If it is intended to instantiate several environ-
ments, this can be done using one environment interface each. Naming
environments and resolving naming issues should not be our concern.
These can be tackled by the APL platform programmers.

2. Environment Interface Generality:�a The interface should be generic
and impose only minimal restrictions on the platform or environment.
That is (compare with Fig. 1):

• The interface should not impose scheduling restrictions when it comes
to the execution of actions, actions can be either scheduled by the
platform/agents or by the environment itself. The interface standard
is supposed to plainly provide the functionality to connect to the en-
vironment. We expect that there will be cases in which the agents
schedule actions (environments that do only change their states if
agents act), and in which the environment will schedule the actions
(like the Multi-Agent Contest in which the environment can evolve
on its own and schedules the agent's actions).

• It does not impose any assumptions on agent communication or on
organization structure. Communication can be on both sides of the
interface (i.e. facilitated by the agent/platform components or by
the environment model in the meta-model).

• It does not impose any assumptions about what is controlled in an
environment, except for the fact that controllable entities are able to
perform actions (and it is possible they do so by being "instructed"
by an agent).

DEPARTMENT OF INFORMATICS 16

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

• It also does not impose any assumptions about how an agent plat-
form controls entities in an environment.

• The interface does not require the components of the meta-model
to be implemented explicitly.

• The interface should not limit the use of various technical options:
the environment interface can be used for different types of connec-
tions (TCP/IP, RMI, wrapping Java code, JNI).

• The interface should not prohibit the use of several environments in
a MAS.

3. Separation of concerns: We assume the agents to be separated from
the environment(s) (see Fig. 2). We distinguish between APLs and agent
programs on the one hand (agents are action-generators, and percept-
processors) and an environment model and controllable entities on the
other hand (entities can be instructed to perform actions, and the envi-
ronment provides these entities with percepts which can be provided to
agents through our interface).

Environment 

Agents 
A1 

A2 

A3 

A4 

Figure 2: Environment-MAS Model.

>From the implementation point-of-view we disallow agent-objects be-
ing stored on the environment side and entity-objects being stored on
the APL side. Rather we suggest that the environment interface stores

17 Technical Report IfI-09-09

The Proposed Standard: EIS

identi�ers to both agents and entities and the relation (who-controls-
whom) as a mapping. We repeat here that we do not assume a one-
to-one relation between agents and controllable entities.

4. Uni�ed connections: The environment interface standard should pro-
vide uni�ed means for the connections between the agents, the platform
and the environment management system on one side and the environ-
ment on the other. It should not restrict any existing approaches. The
interface should facilitate acting, active and passive sensing, and events
sent by the environment, by providing a set of agent-methods. The in-
terface should facilitate creating, removing entities and assigning entities
to agents, by providing a set of platform-methods. Finally the interface
should facilitate controlling the execution of the environment(s), by pro-
viding a set of environment-management-system-methods.

5. Standards for actions/percepts/events/etc.: The environment inter-
face standard has to provide a convention for actions, percepts, events,
and other concepts of that kind, that does not restrict any existing ap-
proach. We intend to propose a standard based on special Java-objects.

6. Support for heterogeneity: The interface standard needs to facilitate
heterogeneity. Currently, we think the easiest way of establishing het-
erogeneity that conforms with all other principles would be this: (1) set
up and run a central application that contains the environment, and (2)
provide a jar-�le based on EIS that connects the platforms to the environ-
ment (TCP/IP, RMI, wrapping Java code, JNI).

As an example, we would like to mention the multi-agent contest again.
Here, heterogeneity would be established by (1) providing an environ-
ment interface that connects to the MASSim-server, and (2) providing a
new action that allows for inter-agent communication.

3 The Proposed Standard: EIS

In this section, we present our proposal for an environment-interface standard.
After de�ning a language for data exchange between interfaces and other com-
ponents, we propose an abstract class for de�ning environment-interfaces.

This can be viewed as a semi-complete documentation to the software-
packages. For a complete documentationwe refer to the accompanying javadoc.

3.1 Interface Immediate Language

We design an interface immediate language, that is, a language for exchanging
data between interfaces and other components via Java-objects. This corre-

DEPARTMENT OF INFORMATICS 18

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

sponds to principle 5 (see Section 2) for data-exchange between the environment-
interface and different components. However, a convention is necessary that
does not restrict existing and future approaches. We have decided to go for
java-objects. They can be handled and integrated into existing approaches
easily.

The language consists of 1. data containers (e.g. actions and percepts), and
2. parameters to those containers.

3.1.1 Parameters

Parameters are: identi�ers, numbers, functions over parameters, and lists of
parameters.

These are the Java-classes representing parameters:

• eis.iilang.Identifier represents an identi�er,

• eis.iilang.Numeral represents a number,

• eis.iilang.Function represents a function over parameters, and

• eis.iilang.ParameterList represents a list of parameters.

3.1.2 Data Containers

Data containers are: actions that are performed by agents, results of such ac-
tions, percepts that are received by agents, and events that are sent to agents
by the interface. Furthermore they are: environment commands that are for
example issued to control the execution of the environment, and events that
are sent to notify about changes of the state of execution.

Each of these data containers consist of (1) a name, and (2) a set of parame-
ters. Here are the respective classes:

• eis.iilang.Action represents an action.

• eis.iilang.ActionResult represents the result of an action. This
can be something very simple that just indicates the success of an action,
or something more complex like the results of a sensing action.

• eis.iilang.Percept is a percept.

• eis.iilang.EnvironmentCommand is a command that is sent to the
interface for example to control the execution of the environment.

• eis.iilang.EnvironmentEvent is an event that is sent by the inter-
face to notify about changes in the environment.

19 Technical Report IfI-09-09

The Proposed Standard: EIS

When it comes to environment-commands and environment-events we im-
pose a convention. An environment-command can either be starting, pausing,
initializing, resetting, or killing the environment. Additionally we provide a way
for implementing further commands. The same holds for environment-events.
There are events that indicate that the environment has been started, paused,
et cetera.

Note however that the use of these commands and events is not obliga-
tory. There will be application-cases in which it makes sense to have the en-
vironment released via a respective environment command. But in the agent-
contest, such a thing does not make sense. The same holds for all the other
commands as well. Also it is not obligatory that environment-interfaces send
environment-events. And �nally, we expect this convention to be extended in
the future.

Appendix A contains several examples.

3.2 Environment Interface Standard

We now elaborate on the main package, that contains an abstract class that
is supposed to be used to implement speci�c environment-interfaces and a
listener that is to be used to allow the environment-interface to notify other
components about certain events.

The �rst point that we would like to elaborate on is the correspondence
between an environment-interface and components (platform, agents). We
allow for a two-way connection via interactions that are performed by the com-
ponents and noti�cations that are performed by the environment-interface (see
Fig. 3).

Interactions are facilitated by function calls to the environment-interface,
that can yield a return-value. For noti�cations we employ the observer design
pattern[4] (known as listeners in Java). The observer pattern de�nes that a sub-
ject maintains a list of observers. The subject informs the observers of any state
change by calling one of their methods. This way distributed event handling
is facilitated. The observer pattern is usually employed when a state-change
in one object requires changing another one. This is the reason why we made
that choice. The subject in the observer pattern usually provides functionality
for attaching and detaching observers, and for notifying all attached observers.
The observer, on the other hand, de�nes an updating interface to receive up-
date noti�cation from the subject.

We allow for both interactions and noti�cations, because this approach is
the least restrictive one. This clearly corresponds to the notions of polling (an
agent performs an action to query the state of the environment) and interrupts
(the environment sends percepts to the agents as in the agent-contest).

The second point that we would like to elaborate on is the agents-entities-
relation. We make three assumptions: 1. there is a set of agents on the APL

DEPARTMENT OF INFORMATICS 20

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Environment

Interface
Component

interact

notify

Figure 3: We provide two means for transfering data: interacting (polling) and
notifying (interrupts).

platform side (we do not know anything about those), 2. there is a set of con-
trollable entities on the environments side (again we do not know anything),
and 3. agents can control entities through the environment-interface. A im-
portant design decision that we had to made was to store in the environment-
interface only identi�ers to the agents, identi�ers to the entities and a mapping
between those two sets. The reason for that decision is, as we have mentioned
before, that we do not assume anything about the APL-platform-side and the
environment-side.

Fig. 4 shows the agents-entities-relation. The agents live on the APL-platform-
side, they are known by the environment-interface by their identi�ers. The en-
tities live on the environment-side, they are also known by their identi�ers. The
agents-entities-relation is stored as a mapping between both sets of identi�ers.

Finally, these are the main classes of the environment-interface standard. We
will elaborate on their functions later:

• eis.EnvironmentInterfaceStandard represents an interface. This
is an abstract Java-class, that should be inherited from in order to create a
speci�c interface. It represents the subject of the observer pattern. It con-
tains all the functionality that allows for connecting platforms/agents/etc.
to environments.

• eis.EnvironmentListener establishes a connection from the inter-
face to other components. The interface is used for call-backs. Classes
that implement that interface are the observers of the design pattern.
Informs about changes in the environment.

• eis.AgentListener establishes a connection from the interface to agents.
It sends percepts to agents.

Before we explain the services that are provided by the EIS, we assume a
functional point of view. The environment-interface standard provides func-
tions for

1. attaching, detaching, and notifying listeners;

21 Technical Report IfI-09-09

The Proposed Standard: EIS

Environment Interface

APL Platform Side Environment Side

Agent

Agent

Agent

Id

Id

Id

Id

Id

Id

Id

Figure 4: The agent-entities-relation.

2. registering and unregistering agents;

3. adding and removing entities;

4. managing the agents-entities-relation;

5. performing actions and retrieving percepts;

6. managing the environment;

7. loading environment-interfaces from jar-�les;

8. miscellanea.

We will now consider these functions.

3.2.1 Attaching, Detaching, and Notifying Listeners

There are two directions for sending events to components. One is via environ-
ment-listeners, which inform observers about changes in the environment or
the environment interface. The second is via agent-listeners, which send per-
cepts to agents. In order to facilitate sending events, that is agent-events
and environment-events, eis.EnvironmentInterfaceStandard provides
functions that allow for attaching and detaching listeners, and for notifying
components connected via listeners.

DEPARTMENT OF INFORMATICS 22

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Classes that are supposed to function as the observer in the observer-pattern
have to implement the interface eis.EnvironmentListener and/or the in-
terface eis.AgentListener and their methods.

The AgentListener-interface has these methods:

• void handleEnvironmentEvent(EnvironmentEvent event) han-
dles an environment-event.

• void handleFreeEntity(String entity) handles the incident that
the environment-interface noti�es about a free entity.

• void handleDeletedEntity(String entity) handles the incident
that the environment-interface noti�es about a deleted entity.

• void handleNewEntity(String entity) handles the incident that
the environment-interface noti�es about a new entity.

The AgentListener-interface has this method:

• void handlePercept(String agent, Percept percept) handles
a percept. Is supposed to hand the event over to the speci�c agent.

These are the respectivemethods of eis.EnvironmentInterfaceStandard
when it comes to environment-listeners:

• public final attachEnvironmentListener(
EnvironmentListener listener) attaches an environment-listener.

• public final detachEnvironmentListener(
EnvironmentListener listener) detaches a environment-listener.

• protected final void notifyFreeEntity(String entity)No-
ti�es about a free entity. Invokes handleFreedEntity of all environment-
listeners.

• protected final void notifyNewEntity(String entity)No-
ti�es about a new entity. Invokes handleNewEntity of all environment-
listeners.

• protected final void notifyDeletedEntity(String entity)
Noti�es about a deleted entity. Invokes handleDeletedEntity of all
environment-listeners.

• protected final void notifyEnvironmentEvent(
EnvironmentEvent event) Noti�es about an environment-event. In-
vokes handleEnvironmentEvent of all environment-listeners.

23 Technical Report IfI-09-09

The Proposed Standard: EIS

Note that some functions are protected. They are not supposed to be called
from outside the environment-interface.

These are the respectivemethods of eis.EnvironmentInterfaceStandard
when it comes to agent-listeners:

• public final void attachAgentListener(String agent,
AgentListener listener) attaches an agent-listener for a speci�c
agent.

• public final void detachAgentListener(String agent,
AgentListener listener) detaches an agent-listener.

• protected final void notifyAgents(Percept percept,
String...agents) noti�es a list of speci�c agents about a certain event.
Invokes handlePercept of all listeners. If the list of agents is empty, all
agents will be used.

• protected final void notifyAgentsViaEntity(Percept
percept, String...pEntities) Looks up those agents that are as-
sociated to the given list of entities and noti�es them. Invokes the method
handlePercept of all listeners. If the list of entities is empty, all entities
will be used.

Note that the notifying-methods are �nal.

3.2.2 Registering and Unregistering Agents

These methods provided by eis.EnvironmentInterfaceStandard: facili-
tate registering and unregistering agents.

• public final void registerAgent(String agent) throws
AgentException registers an agent. An exception is thrown if an agent
of the same name has already been registered.

• public final void unregisterAgent(String agent) throws
AgentException unregisters an agent. Throws an exception if the agent
has not been registered. Also updates the agents-entities-relation.

• public final LinkedList<String> getAgents() returns the list
of registered agents.

3.2.3 Adding and Removing entities

Adding and removing entities is facilitated by thesemethods of the Java-interface
eis.EnvironmentInterfaceStandard:

DEPARTMENT OF INFORMATICS 24

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

• protected final void addEntity(String entity) throws
EntityException adds an entity. An exception is thrown if an entity of
the same name has already been added.

• protected final void deleteEntity(String entity) throws
EntityException deletes an entity. Throws an exception if the entity
does not exist. Also updates the agents-entities-relation.

Note that these methods are not visible. Only the environment is supposed
to add and remove entities.

3.2.4 Managing the Agents-Entities-Relation

Managing the agent-entities-relation is facilitated by these methods of the Java-
interface eis.EnvironmentInterfaceStandard:

• public void associateEntity(String agent, String entity)
throws RelationException associates an agent with an entity. Throws
an exception if the agent has not been registered and/or the entity has
not been added. Can be overridden to restrict the agents-entities-relation.

• public final void freeEntity(String entity) throws
RelationException frees an entity. An exception is thrown if the en-
tity does not exist.

• public final void freeAgent(String agent) throws
RelationException frees an agent. An exception is thrown if the
agent as not been registered.

• protected final HashSet<String> getAssociatedEntities(
String agent)
throws AgentException returns the set of entities associated with a
speci�c agent. Throws an exception if the agent has not been registered.

• protected final HashSet<String> getAssociatedAgents(
String entity)
throws EntityException returns the set of agents associated with a
speci�c entity. Throws an exception if the entity does not exist.

• public final LinkedList<String> getFreeEntities() returns
a list of free entities.

3.2.5 Performing Actions and Retrieving Percepts

These methods of the Java-classeis.EnvironmentInterfaceStandard fa-
cilitate performing actions and retrieving percepts:

25 Technical Report IfI-09-09

The Proposed Standard: EIS

• public final LinkedList<ActionResult> performAction(
String agent, Action action, String...entities) throws
PerceiveOrActFailureException,NoEnvironmentException per-
forms an action of an agent through the entities in the given list. If the list
is empty the agent will act through all its entities. Throws an exception
if the agent has not been registered, or the list of entities is inconsistent
with the list of associated entities of the agent, or if the interface is not
connected to an environment. Looks up a method that corresponds to
the action's name and its parameters via Java-re�ection.

• public final LinkedList<Percept> getAllPercepts(String
agent, String...entities) throws
PerceiveOrActFailureException,NoEnvironmentException lets
an agent sense through its associated entities. Senses either through
all associated entities if the list is empty or through the speci�c entities.
Throws an exception if the agent has not been registered, or the list of
entities is inconsistent with the list of associated entities of the agent, or if
the interface is not connected to an environment. Calls the next function
for each associated entity.

• public abstract LinkedList<Percept>
getAllPerceptsFromEntity(String entity) has to be overrid-
den to provide sensing (sensing is interface-speci�c; compare to perform-
ing actions). This method is called by the previous one.

The method performAction processes the given action and invokes a re-
spective method using Java-re�ection. For example, if an action with the name
moveto, with two parameters is to be executed, the interface will attempt
to look up the method actionmoveto(String entity, Parameter p1,
Parameter p2), where entity is the identi�er of an associated controllable
entity. The naming of action-methods is a convention the string action is to
be followed by the actual name of the action for the sake of readability.

Note that we do not support identity management. That is, we do not pro-
vide means to ensure that the caller of the method performAction and/or
getAllPercepts is either the respective agent or an instance acting on its
behalf. In our point of view, the developer of the agent-platform is responsible
to ensure the right identity management. We have to stress that we assume a
very non-restrictive position with the EIS. Especially when it comes to agents.
We do not want to take anything about agents for granted. Nothing about
their structure or how they are implemented. The only point that me made
obligatory is that each agent that wants to act/perceive has to be represented
in the interface by its id. In summary we provide means for storing agents and
entities represented by their identi�ers and their relation in the environment-
interface.

DEPARTMENT OF INFORMATICS 26

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Furthermore note that we use arrays as parameters (here and in other meth-
ods). Note however if you would like to use collections instead of arrays you
can easily transform to collections using the method asList of the Java-class
java.util.Arrays.

3.2.6 Managing the Environment

Managing the environment is facilitated by this method of the Java-interface
eis.EnvironmentInterfaceStandard:

• public abstract void manageEnvironment(EnvironmentCommand
command, String... args)
throws ManagementException processes an environment-command.
Throws an exception if this fails. Must be overridden.

We refer to Subsection 3.1.2 for the convention for environment-events and
environment-commands.

3.2.7 Loading environment-interfaces from jar-�les

This method of eis.EnvironmentInterfaceStandard facilitates loading
environment-interfaces from jar-�les:

• public static EnvironmentInterfaceStandard fromJarFile(
File jarFile) throws IOException loads a speci�c environment
interface from a given jar-�le.

The name of the �le without the extension de�nes the class that is loaded
and instantiated. For example, given the �le carriageexample.jar the
class carriageexample.EnvironmentInterface will be loaded.

3.2.8 Miscellanea

The connection between the environment-interface and the environment can
be terminated using this method of eis.EnvironmentInterfaceStandard:

• public abstract void release()will terminate the connection and
release all resources. After that the environment-interface cannot be used
anymore. A programmer that has to implement such a connection has
to make sure that these requirements are ful�lled.

Note that there is a difference between calling the release()-method and
sending a kill-environment-command. The �rst disconnects the environment-
interface from the environment, not necessarily releasing the environment.
The second releases the environment.

27 Technical Report IfI-09-09

How to Connect to the EIS

The state of the connection between the environment-interface and the en-
vironment can be queried using this method of the Java-interface
eis.EnvironmentInterfaceStandard:

• public abstract boolean isConnected() returns true if the con-
nection is valid, false otherwise. Again the programmer has to ensure
this requirement.

4 How to Connect to the EIS

Given an environment, what needs to be done to connect this environment to
our interface?

We suggest the following steps (they are not obligatory) that can be used to
connect environments to an interface:

1. Incorporate a mechanism for loading environment-interfaces.

2. Implement transformations for mapping the data-containers (actions, per-
cepts, et cetera) to APL-platform-speci�c data-structures and vice versa.

3. Prepare the platform for callbacks (agent-events, environment-events, et
cetera).

4. Implement a policy for registering agents to the environment-interface.

5. Implement a policy for associating your agents with the controllable en-
tities provided by the environment.

6. Incorporate acting and perceiving.

Some of these steps can be skipped for some environments, but not for
others. Some of these steps can be implemented in a 'minimal' sense (like
always automatically connecting some agent to an entity when it appears).

We will now elaborate on three examples: (1) the platform example shows
how an APL platform could be connected to an environment-interface, (2)
the carriage example shows how an environment could be connected to an
environment-interface by wrapping it, (3) the MASSim connector shows how
the MASSim server (used for the annual agent contest) can be easily connected
to an environment-interface.

4.1 The Platform Example

The platform example shows how a simple APL platform could be connected to
an environment-interface. Please compare with package eis.examples.platform.

First, the platform class is de�ned:

DEPARTMENT OF INFORMATICS 28

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

public class Platform implements EnvironmentInterfaceListener { ... }

The platform-class implements the listener-interface in order to make it re-
ceive events.

4.1.1 Mechanism for Loading Environment Interfaces

Given the �lename of a jar-�le that contains an environment-interface, it can
be loaded like this:

EnvironmentInterfaceStandard ei = null;
try {

ei = EnvironmentInterfaceStandard.fromJarFile(new File(jarFileName));
System.out.println("Environment interface loaded.");

} catch (IOException e) {
System.out.println("Jar-file could not be loaded.");
System.exit(0);

}

The static method fromJarFile is invoked to load an environment from a
jar-�le. The exception-handling is very important at this position, since loading
an interface could fail.

4.1.2 Preparing for Callbacks

Now that the environment-interface has been loaded, the platform has to be
connected in order to function as an observer:

ei.attachListener(this);

4.1.3 Agent Registering

The string agent represents the id of an agent. The agent can be registered as
follows:

try {
ei.registerAgent(agent);
System.out.println("Added agent " + agent);

} catch (AgentException e) {
System.out.println("Agent " + agent + " could not be added.");

}

Again, some exception handling is necessary, because registering could fail.

4.1.4 Agent Associating

Now we will associate agents with entities. agent is a string representing the
id of an agent, and entity is a string representing the id of an entity.

Associating could look like this:

29 Technical Report IfI-09-09

How to Connect to the EIS

try {
ei.associateEntity(agent, entity);
System.out.println("Associated " + agent + " with " + entity);

} catch (RelationException e) {
System.out.println("Failed to associate " + agent + " with " + entity);

}

4.2 The Carriage Example

The rules of the game are as follows:

• The environment contains a carriage on a circular track (see Fig. 5). There
are three distinct positions for the carriage on the track.

• The environment also contains two robots, which are the controllable
entities.

• An agent that controls a robot can make it push the carriage or wait. If
both robots push or if none of them pushes, nothing will happen. If only
one robot pushes the carriage will be moved to the next position.

The package carriageexample consists of these classes:

• carriageexample.Environment contains the environment.

• carriageexample.EnvironmentInterface contains the interface to
the environment

• carriageexample.EnvironmentWindow contains the environment win-
dow.

• carriageexample.Main contains a test scenario with two agents.

The environment provides these methods:

• public int getCarriagePos() returns the position of the carriage.

• public long getStepNumber() returns the current step of the envi-
ronment.

• public void robotPush1() lets the �rst robot push the carriage in
the current step.

• public void robotPush2() lets the second robot push the carriage
in the current step.

• public void robotWait1() lets the �rst robot wait in the current
step.

DEPARTMENT OF INFORMATICS 30

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Figure 5: Screenshot of the carriage example.

• public void robotWait2() lets the second robot wait in the current
step.

• public int getRobotPercepts1() returns the percepts of the �rst
robot, that is its perceive carriage position.

• public int getRobotPercepts2() returns the percepts of the sec-
ond robot, that is its perceive carriage position.

In its constructor the environment-interface adds the two entities:

public EnvironmentInterface() {

try {

this.addEntity("robot1");
this.addEntity("robot2");

} catch (EntityException e) {
e.printStackTrace();

}

[...]

The interface has a thread that noti�es the attached listeners once per second
about the entities that are free and the current step-number:

31 Technical Report IfI-09-09

How to Connect to the EIS

// notify about free entities
for(String free : this.getFreeEntities())

this.notifyFreeEntity(free);

// tell current step
long step = env.getStepNumber();
Percept p = new Percept("step", new Numeral(step));
for(String entity : this.getEntities())

try {
this.notifyAgentsViaEntity(p, entity);

} catch (EnvironmentInterfaceException e1) {
e1.printStackTrace();

}

To facilitate perception the method getAllPerceptsFromEntity had to
be overridden:

@Override
public LinkedList<Percept> getAllPerceptsFromEntity(String entity) {

LinkedList<Percept> ret = new LinkedList<Percept>();

if(entity.equals("robot1"))
ret.add(

new Percept(
"carriagePos",
new Numeral(env.getRobotPercepts1())
)

);
else if(entity.equals("robot2"))

ret.add(
new Percept(

"carriagePos",
new Numeral(env.getRobotPercepts2())
)

);

return ret;

}

Since the are only two actions � push and wait � two methods had to be
implemented, in order to have them invoked via Java-re�ection:

public ActionResult actionpush(String entity) {

// push
if(entity.equals("robot1"))

env.robotPush1();
if(entity.equals("robot2"))

env.robotPush2();

return new ActionResult("success");

}

public ActionResult actionwait(String entity) {

// push
if(entity.equals("robot1"))

env.robotWait1();
if(entity.equals("robot2"))

env.robotWait2();

DEPARTMENT OF INFORMATICS 32

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

return new ActionResult("success");

}

Finally the connection is terminated using like this:

@Override
public void release() {

env.release();

env = null;

}

The method releases the environment itself and then the connection.

4.3 The MASSim-Connector

The MASSim-connector is an environment-interface to the MASSim-server. The
MASSim-server is the application that manages and executes the annual Multi-
Agent Contest1. For us the most important aspect is: The MASSim-server con-
tains an environment with which agents can interact.

The environment is discrete in space and time. The world is a grid, the
simulation is executed in a step-wise way. There are two teams of cowboys.
Each cowboy is a controllable entity that can move in the environment. The
environment is only partially accessible, an entity can only perceive the cells of
the grid that are in the visibility range. There are also non-controllable entities
in the environment: cowsmove according to a special movement-algorith. The
goal is to use the cowboys to push cows in to the corrals.

>From a technical point-of-view, the server allows and manages TCP/IP con-
nections: One connection for each controllable entity. Agents are executed
remotely and interact with the server by exchanging XML-messages. The sim-
ulation in each step sends a message containing the current perception (what
is visible) of each cowboy and waits for a reaction from the cowboys. After a
speci�c time-out the environment evolves by one step.

The implementation consists of these classes:

• acconnector2009.Connection contains a connection between the
interface and the MASSim-server that contains the environment. Each
entity can be associated with one connection.

• acconnector2009.ConnectionListener is used to handle incom-
ing messages, that is messasges sent by the MASSim-server.

• acconnector2009.EnvironmentInterface contains the environment-
interface.

1http://www.multiagentcontest.org

33 Technical Report IfI-09-09

Conclusion

• acconnector2009.Main contains a sample application that shows a
single agent connecting to and interacting with the MASSim-server.

Actions are:

• public ActionResult actionconnect(String entity,
Identifier server, Numeral port, Identifier user,
Identifier password) throws ActException implements the au-
thenti�cation-step of the communication protocol. A server location (IP-
adress or URL) and a port have to be provided. If the connection cannot
be established an exception is thrown.

• public ActionResult actionmove(String entity, Identifier
direction) throws
ActException, NoEnvironmentException sends an actionmessage
encapsulating a movement-action to the MASSim-server. If the action
cannot be performed and/or there is no valid connection to the MASSim-
server an exception is thrown.

• public ActionResult actionskip(String entity) throws
ActException, NoEnvironmentException sends an actionmessage
encapsulating a skip-action to the MASSim-server. If the action cannot be
performed and/or there is no valid connection to the MASSim-server an
exception is thrown.

There are two ways of perceiving: incoming messages that contain percepts
are transformed into the IIL and then 1. sent to the respective agents via the
listener-interface and 2. stored for the use of getAllPercepts.

For details we refer to the source-code and its javadoc.

5 Conclusion

In this paper we have developed, to the best of our knowledge for the �rst time,
an environment interface standard (EIS). This standard facilitates connecting
agents programmed in various agent programming languages (APL) to arbi-
trary environments. The standard is based on a set six principles. We have
shown how several of the currently employed platforms in the agent commu-
nity (2APL, GOAL, JADEX, JASON) can be easily connected to our EIS. In addi-
tion, we have indicated a general methodology how to connect an arbitrary
environment to our EIS.

We are currently testing our EIS with the agent contest, an annual contest on
comparing and evaluating multi-agent systems on a grid where entities have
to cooperatively solve a particular goal.

A standard like the one proposed in this paper can have a huge in�uence in
the agent community. Not only are working environments made available for

DEPARTMENT OF INFORMATICS 34

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

all platforms that comply to the standard, but also future environments (e.g.
for the next agent contest) can be dealt with without changing the under-
lying functionality. Even more importantly, such a standard allows for a truly
heterogenous MAS, whose agents can belong to completely different APL plat-
forms (that comply to the standard).

35 Technical Report IfI-09-09

References

References

[1] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-
ming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[2] Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest competi-
tion - 3rd edition. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and
M. Winikoff, editors, Proceedings of ProMAS '07, Revised Selected and Invited
Papers, number 4908 in Lecture Notes in Arti�cial Intelligence, Honululu,
US, 2008. Springer.

[3] Mehdi Dastani et al. 2APL Manual. http://www.cs.uu.nl/2apl/.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[5] Braubach Lars, Pokahr Alexander, and Lamersdorf Winfried. Jadex: A BDI-
agent system combiningmiddleware and reasoning. In Von Rainer Unland,
Matthias Klusch, and Monique Calisti, editors, Software agent-based appli-
cations, platforms and development kits, 2005.

[6] Robin R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge, MA,
USA, 2000.

[7] Wouter Pasman. GOAL IDE user manual. http://mmi.tudelft.nl/
~koen/goal.php.

[8] S. J. Russell and Norvig. Arti�cial Intelligence: A Modern Approach (Second
Edition). Prentice Hall, 2003.

DEPARTMENT OF INFORMATICS 36

http://www.cs.uu.nl/2apl/
http://mmi.tudelft.nl/~koen/goal.php
http://mmi.tudelft.nl/~koen/goal.php

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

A Interface Immediate Language Examples

We will now show some examples. Internally data containers are stored as
Java-objects. We assume that they can be printed as XML-strings and strings
in predicate-form. Note, however that the Java-objects are intended to be the
main means for data exchange.

Example 1 This action is moving to a speci�c position:

new Action(
"moveTo",
new Numeral(2),
new Numeral(3)

)

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<action name="moveTo">
<actionParameter>

<number value="2.0"/>
</actionParameter>
<actionParameter>

<number value="3.0"/>
</actionParameter>

</action>

Predicate-form-printout:

action(moveTo,2.0,3.0)

Example 2 This action is following a speci�c path (a list of coordinates) at a given
speed.

new Action(
"followPath",
new ParameterList(

new Function("pos", new Numeral(1), new Numeral(1)),
new Function("pos", new Numeral(2), new Numeral(1)),
new Function("pos", new Numeral(2), new Numeral(2)),
new Function("pos", new Numeral(3), new Numeral(2)),
new Function("pos", new Numeral(4), new Numeral(2)),
new Function("pos", new Numeral(4), new Numeral(3))
),

new Function("speed", new Numeral(10.0))
)

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<action name="followPath">
<actionParameter>

<parameterList>
<function name="pos">
<number value="1.0"/>
<number value="1.0"/>

37 Technical Report IfI-09-09

Interface Immediate Language Examples

</function>
<function name="pos">
<number value="2.0"/>
<number value="1.0"/>

</function>
<function name="pos">
<number value="2.0"/>
<number value="2.0"/>

</function>
<function name="pos">
<number value="3.0"/>
<number value="2.0"/>

</function>
<function name="pos">
<number value="4.0"/>
<number value="2.0"/>

</function>
<function name="pos">
<number value="4.0"/>
<number value="3.0"/>

</function>
</parameterList>

</actionParameter>
<actionParameter>

<function name="speed">
<number value="10.0"/>

</function>
</actionParameter>

</action>

Predicate-form-printout:

action(
followPath,
[pos(1.0,1.0),pos(2.0,1.0),pos(2.0,2.0),pos(3.0,2.0),pos(4.0,2.0),pos(4.0,3.0)],
speed(10.0))

Example 3 This percept represents a red ball that is made of rubber:

new Percept(
"sensors",
new ParameterList(

new Function("red", new Identifier("ball")),
new Function("rubber", new Identifier("ball"))

)
);

XML-printout:

<percept name="sensors">
<perceptParameter>

<parameterList>
<function name="red">
<identifier value="ball"/>

</function>
<function name="rubber">
<identifier value="ball"/>

</function>
</parameterList>

</perceptParameter>
</percept>

DEPARTMENT OF INFORMATICS 38

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Predicate-form-printout:

percept(sensors,[red(ball),rubber(ball)])

Example 4 This environment command tells the environment-interface to pause
the execution of the environment:

new EnvironmentCommand(
EnvironmentCommand.PAUSE
);

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<environmentCommand type="pause">
</environmentCommand>

Predicate-form-printout:

environmentcommand(pause)

Example 5 This environment command tells the environment-interface to initial-
ize the environment with a con�g-�le:

new EnvironmentCommand(
EnvironmentCommand.INIT,
new Identifier("/home/groucho/eisexamples/config.txt")

);

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<environmentCommand type="init">
<environmentCommandParameter>

<identifier value="/home/groucho/eisexamples/config.txt"/>
</environmentCommandParameter>

</environmentCommand>

Predicate-form-printout:

environmentcommand(init,/home/groucho/eisexamples/config.txt)

Example 6 This environment command requests the current time of the environ-
ment:

new EnvironmentCommand(
"request",
new Identifier("time")

);

XML-printout:

39 Technical Report IfI-09-09

Interface Immediate Language Examples

<?xml version="1.0" encoding="UTF-8"?>
<environmentCommand name="request" type="misc">
<environmentCommandParameter>

<identifier value="time"/>
</environmentCommandParameter>

</environmentCommand>

Predicate-form-printout:

environmentcommand(misc,request,time)

Example 7 This environment-event has the meaning that the execution of the
environment has been paused:

new EnvironmentEvent(
EnvironmentEvent.PAUSED

);

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<environmentEvent type="paused">
</environmentEvent>

Predicate-form-printout:

environmentevent(paused)

Example 8 This environment-event transports the current time of the environ-
ment:

new EnvironmentEvent(
"environmentTime",
new Numeral(System.currentTimeMillis())

);

XML-printout:

<?xml version="1.0" encoding="UTF-8"?>
<environmentEvent name="environmentTime" type="misc">
<environmentEventParameter>

<number value="1200020201"/>
</environmentEventParameter>

</environmentEvent>

Predicate-form-printout:

environmentevent(misc,environmentTime,1200020201)

DEPARTMENT OF INFORMATICS 40

	Introduction
	The Meta-Model
	Summaries
	2APL Environments
	GOAL Environments
	Jadex Environments
	Jason Environments
	Comparison

	Meta Model
	Principles

	The Proposed Standard: EIS
	Interface Immediate Language
	Parameters
	Data Containers

	Environment Interface Standard
	Attaching, Detaching, and Notifying Listeners
	Registering and Unregistering Agents
	Adding and Removing entities
	Managing the Agents-Entities-Relation
	Performing Actions and Retrieving Percepts
	Managing the Environment
	Loading environment-interfaces from jar-files
	Miscellanea

	How to Connect to the EIS
	The Platform Example
	Mechanism for Loading Environment Interfaces
	Preparing for Callbacks
	Agent Registering
	Agent Associating

	The Carriage Example
	The MASSim-Connector

	Conclusion
	Interface Immediate Language Examples

