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Abstract—This paper presents work addressing the challenges
of video analysis for automatic detection of aggression in a train.
Using data from surveillance cameras, the system assists human
operators in their work. It is unobtrusive and respects the privacy
of passengers. We used existing algorithms to recognize and
classify human behavior. While evaluating the algorithms we paid
special attention to their ability to cope with environment specific
issues, such as varying lighting conditions and (self)occlusions. A
passenger behavior model was developed based on many hours
of observing and studying professional operators as they analyze
and respond to surveillance data. Experiments were conducted
in a real train to evaluate the detection system.

Index Terms—aggression, surveillance, train, rule-based.

I. INTRODUCTION

Aggression in public transport causes destruction of prop-
erty as well as mental and physical harm to passengers. To
prevent aggression in trains, the Dutch Railway company
(NS) has equipped some trains with surveillance cameras.
To maintain a safe train, human operators need to monitor
the camera images and take actions when necessary. All the
cameras are therefore connected to a central control room
where human operators can keep watch.

As the number of camera is expected to increase over time,
it is expected that human operators will have difficulty to keep
up with the ensuing data explosion. Another problem with
humans is that they lack the ability to concentrate on repetitive
and monotonous tasks for lengthy periods of time [1], such
as monitor camera images. Computers do not suffer from this
concentration problem. Thus, from this perspective, computers
seem to be better candidates for the surveillance function.
However, object detection tasks that seem easy or even basic
for humans proof difficult even for the state of the art object
detection algorithms. Making sense of situations and predicting
possible aggressive outcomes of situations poses an even
greater challenge.

This paper presents research done in cooperation with the
NS to explore the opportunities and possibilities for computer
assisted aggression detection. During the project, we inter-
viewed and analyzed human surveillance operators to find out
what cues they use to detect and to assess aggressive situations.
Next we designed and implemented an aggression detection
system based on these findings. The system consists of two
parts: a low level observation part and a high level reasoning
part. The implemented system is designed to function as
a support system for the human observer. If an aggressive

situation occurs in the compartment, the detection system will
warn a human operator in the control central to take further
actions. To test and evaluate the system we conducted several
experiments with actors playing aggressive as well as normal
roles. In the future, each train compartment is to be equipped
with such a system.

The remainder of this paper is structured as follows. First
we will delve deeper into the problem and discuss the work
and research already done in this area. Next the design of
the system will be presented in which we will go into more
detail in the observation part and the reasoning part separately.
Finally we will describe the experiments conducted in the
evaluation phase and end the paper with a discussion and
conclusions.

II. BACKGROUND AND RELATED RESEARCH

A prerequisite for an automated aggression detection system
is the ability to detect (abnormal) behavior patterns in the input
data. In the field of pattern recognition, many techniques for
detecting all kinds of patterns have already been developed. In
the train we have to deal with additional challenges. Some of
these challenges are technical in nature. They stem from the
unpredictable world of the train environment in which environ-
ment parameters are only partly under control, such as lighting
conditions, background noise, train movement (shaking), and
occlusions. The main challenge however lies in the correct
interpretation of detected patterns and reasoning with them in
the context of unpredictable human (aggressive) behavior.

Numerous methods have been used by other researchers
to detect and recognize patterns that are related to aggres-
sive behavior. These methods range from low level event
detection [2], [3] to emotion recognition [4] and activity
and behavior modeling [5], [6]. In order to get a broader
understanding of the problem domain and to get a feel of the
kinds of cues related to aggression, we will first discuss the
concept of aggression.

A. Aggression

Because of the broad definition of aggression, many dis-
cussions about aggression can be encountered in literature.
The current consensus is for at least two broad categories [7]:
instrumental aggression and affective aggression.
• The instrumental aggressor acts to obtain an apparent

goal e.g. theft. Our approach to recognize instrumental
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aggression is to detect the patterns (actions and behaviors)
that are associated or correlated with the goal. Most secu-
rity experts will also concur that this type of aggression
usually occurs when the situation and the environment
permits. Being able to identify and detect these “high
risk” environments thus forms a part of the detection
process.

• Affective aggression is associated with strong emotional
feelings. Anger and fear are usually the dominant emo-
tions. Often affective aggression follows as a defensive
response to a perceived provocation. If this happens, the
aggression can be detected as a cycle of provocations and
responses.

The main targets for our detection system are the specific
aggressive situations that have the most impact or occur most
frequent in the train. Co-incidentally, these situations (e.g.
robbery, theft, violence (towards conductor), abandoned lug-
gage, vandalism) fall under instrumental aggression. Therefore,
we will assume the definition of instrumental aggression, and
consider emotion as a pattern correlated with the aggression
(where appropriate).

B. Behavior recognition

Analyzing spatio-temporal changes in a dynamic scene is an
important aspect of aggression detection. During this process
one tries to detect unusual deviations from logical sequences
of usual activity patterns. Many techniques to model behavior
have been suggested e.g. Hidden Markov Models [8], Bayesian
networks [9], Finite state machines [10] and stochastic context
free grammars [6]. In [11], [12] behavior recognition was also
applied to surveillance systems in public transport. Compared
to previous approaches, the method adopted in this paper
follows a more human centered route concerning the inference
of aggressive situations. We interviewed security experts from
the NS, which resulted in heuristics and a stepwise procedure
for aggression detection and control summarized below.

1) Trigger: detect something unusual based on experience,
external warning, a hunch, etc.

2) Orient: find the most salient cues in the scene and create
one or more hypotheses.

3) Observe: find other cues that support or refute the
hypotheses.

4) Conclude: when a threshold of plausibility is reached the
hypothesis can be concluded.

5) Act: take the appropriate actions to solve the problem.

From the interviews, it was clear that the difficulty in the
aggression detection and control process lies mainly in the
unpredictability of human behavior. This also makes it difficult
to create generic methods for aggression detection. However,
given the specific scope of the problem however, we can limit
the behaviors to those associated with normal situations (e.g.
entering, sitting, exiting) and those associated with aggression.
The detection steps leading to the conclusion can then be
captured in a domain specific rule-base for the limited number
of relevant behaviors. Rule-based inference can then be applied

to reason about the aggressiveness or aggression potential of
a specific train compartment.

To obtain information of behaviors that occur most fre-
quently, we analyzed the incident database of the NS. This
database contains all occurrences of major and minor incidents
that have been reported in all train in the Netherlands. These
incidents are divided into 8 categories: suspicious behavior,
theft, violence, serious inconvenience, small inconvenience,
vandalism, accident and fire.

C. Aggressive behaviors

To illustrate the kind of aggressive behavior we are inter-
ested in, this section gives a breakdown of the most frequent
forms of aggression in the NS incident database. Each form
of aggression is complemented with the possible ways of
detection we extracted from the interviews with experts.
• Theft. The detection method applied in the system is to

recognize the behavior of a potential thieve. A thieve is
usually lingering around waiting for an opportunity and
the deed itself shows an approach-strike-disperse pattern.

• Violence, such as fighting, can be detected by analyzing
frequency and magnitude of physical contact and the
reaction of the victim. Physical aggression will often be
accompanied by shouting. Other passengers in the train
may react to the situation as well.

• Serious inconveniences, such as intimidation, is a subtle
form of aggression with little or no physical contact. This
includes signals such as obscene or threatening gestures.
Angry facial expressions are also an indication of this
form of aggression. The aggressor often stands very close
to the victim confronting him. There may be shouting
involved.

• Vandalism causes objects in the train to be destroyed
or defaced (e.g. graffiti). It is important to identify all
train objects and their normal usage. The reactions and
body language from other passengers can indicate when
vandalism is going on.

• Abandoned luggage has become an incident that needs
special attention since the recent bombings in the London
underground and in trains in Madrid. Luggage forgotten
by accident can cause great distress among worried pas-
sengers.

III. SYSTEM DESIGN

The system is designed to function as a support system for
the human observer. In the future, each train compartment is
to be equipped with an aggression detection system. When an
aggressive situation occurs in the compartment, the detection
system will warn a human operator in the control room to take
further actions. Since the system has to fulfill the purpose of
reducing the risk of physical harm or other illegal activities in
a public area, it has to adhere to several general requirements
relating to the nature of the environment.
• The system should not be invasive of privacy or should

be less invasive than alternative methods. The privacy
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Fig. 1. General architecture of the aggression detection system

implications of such systems has been explored in other
works e.g. [13].

• The positive effects of the system should not wear off
over time. This problem appears with dummy camera’s
or surveillance systems lacking human operators, where
people quickly learn the weakness of the system. An
automatic detection system keeping a constant watch
would not suffer from this effect.

• The system should have a classification of severity. This
classification is needed to prioritize actions.

• The system should be non-obtrusive. As a result, sensors
may need to be placed in sub-optimal locations.

Because of the complexity of aggression and the many
objective and subjective factors that affect the emergence and
perception of aggression, it is unlikely that all the factors
can be cramped into one single algorithm. Instead, several
classification sub-algorithms are necessary. Each sub-algorithm
performs detection or classification of a separate contributing
factor (possibly from different data sources) while all the de-
tected contributing factors combine into the final classification
system to yield the final classification.

A. System architecture

The general architecture of the aggression detection system
has the properties shown in Figure 1. It consists of multiple
independent, autonomous aggression detection units in each
train compartment. A detection unit is a computer (located
at a safe place in the compartment) connected to distributed
sensors (multiple cameras) inside the compartment that provide
it with raw sensor data. The computer combines the sensor
data to assess the level of aggression in that compartment. The
communication between units from neighboring compartments
takes place to inform them of inter-compartment activities (e.g.
fire, aggressive person moving to another compartment). Each
computer has a wireless connection to a control room where
a human operator is available.

In each computer, multiple classification algorithms are
run in parallel. Each algorithm focuses on a different aspect
of the aggression spectrum: one algorithm might perform
face recognition, another applies gesture recognition etc. For
many classification tasks, algorithms already exist. A detailed
overview of the algorithms used in the detection process will
be discussed in following sections.

Fig. 2. The observation model describes how low level features (F1...Fn)
from raw data are combined into high level concepts. The reasoning model
describes how high level concepts (O1...Om) are reasoned with in order to
infer the presence of aggression

B. Aggression detection approach

The aggression detection approach is divided into two parts:
(1) the observation model which describes how low level
features from raw data are combined into high level concepts
and (2) the reasoning model in which high level concepts are
reasoned with in order to infer the presence of aggression (see
Figure 2). The following sections explores both models in more
detail.

IV. THE OBSERVATION MODEL

The most common sensors in surveillance are microphones
and cameras. This section describes the features that are ex-
tracted from the stream of images coming from a surveillance
camera.

A. Camera alignment

We use the Direct Linear Transform (DLT) to determine
the camera parameters of the captured images. With the
knowledge of the camera parameters (such as orientation) we
have a better understanding of the positions of objects in a
image in relation to their real coordinates. This is important
for object localization and multi-camera object tracking. The
images produced by a projective camera can be interpreted as
a sequence of three projective transformations: given a point
p = (xw, yw, zw, 1) in homogeneous world coordinates and a
point q = (f ·xi, f · yi, f) in image coordinates corresponding
to the projection of p onto the image, the mapping of p to q
can be expressed as:

q =

σx σθ u0
0 σy v0
0 0 1

 ·
1 0 0 0
0 1 0 0
0 0 1 0

 ·M · p (1)

The first matrix represents the intrinsic parameters of the
camera, with (u0, v0) the coordinates of the principal point,
and σx and σy the scale factors along the axes of the image.
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Fig. 3. Lines known to lie parallel to the x-axis can be used for determination
of φ (left). Validation of the result: after rotation in the reverse angle, all the
chosen lines are approximately horizontal (right)

The parameter σθ describes the skewness of the two image
axes. For most cameras σθ is very close to zero.
M represents the extrinsic parameters of the camera and is

given by:

M =


. . .

...
...

. . . R . . . T
...

. . .
...

0 0 0 1

 (2)

Where R is the rotation and T the translation which relates
the world coordinate system to the camera coordinate system.
The optical center of the images can be approximated at the
true image center. The camera orientation relative to a xyz
axis system may be specified by three Euler angles: φ, θ and
ψ.

Any rotation of the camera about the z-axis (φ) of the
camera coordinate system, causes all horizontal lines to be
rotated the same amount in the resulting camera images (as
φ is the angle between a line along the x axis of the world
coordinate system and the projection of it into the image
plane). As a result, φ can be estimated by the rotation of some
lines in the image known to be horizontal. Since all the seats
in the train are ordered in straight rows, finding a few of these
lines is straightforward (see Figure 3).

In a similar fashion θ and ψ can be estimated. For more
details we refer to [14].

B. Motion segmentation

Advanced processing algorithms, such as tracking, need to
know the objects to track in order to function. So first we need
motion segmentation, to differentiate between pixels belonging
to moving objects and pixels belonging to static background.
One method is to use background subtraction techniques [15]:
a model of the background is kept in memory, and when there
appears a change, that is not consistent with the background
model, it is seen as foreground. Because changes in lighting or
weather can influence the background, an adaptive background
model is used.

The codebook algorithm [16] that we used for this task (see
Figure 4) adopts a quantization/clustering technique, inspired
by Kohonen to construct a background model from long
observation sequences. For each pixel, it builds a codebook
consisting of one or more codewords. Samples at each pixel are
clustered into the set of codewords based on a color distortion
metric together with brightness bounds.

Fig. 4. Background subtraction method using the codebook method (b) of
the original image (a). Post-processing connects foreground pixels to create
blobs and can recover errors (c)

Fig. 5. Motion estimation of a person walking through the train corridor
using silhouettes of detected blobs overlaid in time

1) Motion direction: To get an indication of the general
movement of the detected foreground areas (a.k.a. blobs),
motion templates are used. The silhouette of the blob is used to
track its movement. By the movement of the blobs over several
frames new silhouettes are captured and overlaid with the
(new) current time stamp. Older motions gradually fade. These
sequentially fading silhouettes record the history of previous
movements and thus are referred to as the motion history
image (MHI). Once the motion template has a collection of
object silhouettes overlaid in time, we can derive an indication
of overall motion by taking the gradient of the MHI image
(see Figure 5). Matching a motion template gives a (context
independent) indication of the general direction of motion.

2) Energy signatures: As the MHI image assigns values to
a pixel according to the amount of change (motion) observed in
the last few frames, it can be used to create an energy signature
of the image by summing these values. The energy signature
shows the amount of change in the scene and thus gives an
indication of the amount of action that is taking place in the
scene (Figure 6). Energy signatures provide a quick way to
calculate the amount of motion in the train compartment. To be
useful for aggression detection however, this information needs
to be combined with other attributes of the train compartment
(e.g. train status) in order to infer if the amount of motion is
typical for the type of situation.
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Fig. 6. The amount of motion in the compartment during certain actions
results in different energy distributions. The graphs show the energy during
the ‘enter train’ scenario

Fig. 7. Frontal face detection using Viola and Jones algorithm

C. Human detection

The most important object to detect regarding aggression
is obviously the human. Several human characteristics can be
used to detect humans e.g. faces, body poses or speech. De-
pending on the environment, setup and capability of the sensors
one method performs better than the other. In large public
spaces cameras may not get a sufficiently high resolution to
achieve good results in face recognition. In this case, body
recognition is a better choice. On the other hand, in confined
spaces it is better to use face recognition since occlusion might
influence the performance of human body recognition.

1) Number of people: The method we consider for the
purpose of human detection is face detection, because other
human characteristics are less effective for the train compart-
ment. When a face is detected in an image, this means a
person has been detected as well. In addition, the number
of faces, indicates the number of people in the compartment.
We choose the algorithm proposed by Viola and Jones [17]
mainly for its speed. It is however not very robust under
noisy circumstances, and very susceptible to changes in face
orientation. Nevertheless, in larger frontal faces of sizes around
50x50 pixels, we achieved very good detection rates (see
table I). A snapshot of a video frame where all faces are
detected successfully is shown in Figure 7. If the size of a
face drops below this threshold, detection rates fall rapidly.

With our train videos data, we also saw a high number of

Fig. 8. Empty train (a) and designation of areas for masks and seat positions
where faces are unlikely or likely to occur (b and c)

TABLE I
FACE DETECTION RESULTS OF A VIDEO SEQUENCE OF 1420 FRAMES. THE
FALSE POSITIVE RATE (FP) IS REDUCED BY MASKING AREAS (MS) AND

ANALYZING A DETECTED FACE IN RELATION TO A BLOB (MT)

Detection rate FP + MS FP + MT FP + MS + MT

68% 20% 11% 4%

false positives (>20%). To lower the number of false positives,
we first used a mask filter (see Figure 8)to remove all faces
from areas where no faces are expected. This includes areas
such as the windows and the ceiling, where the false positives
commonly occur.

Another method to reduce false positives is to use the
results of the motion segmentation process. Since the motion
segmentation algorithm is independent of the face detection
algorithm, we can cross reference a detected face with a
moving blob (see Figure 4): the face should appear at the top
of the blob.

2) Clusters and personal space: Another attribute of the
train compartment derived from face detection is the distance
between people in the train and the existence of clusters of
passengers. For the clustering algorithm we used an algorithm
in which we execute exactly one iterative refinement step per
frame. Initially, each face is assigned to a separate cluster
m

(1)
1 , ...,m

(1)
k , where K is the number of detected faces. For

each iteration step:
1) For each cluster, calculate new cluster influence range

(R) by taking into account the average Mahalanobis
distance of a face (x) to the center of the cluster (µ).

Rk =
2

N

N∑
n=1

√
((x− µ)TS−1(x− µ)) (3)

2) Assign each new face (x) to the cluster (C) with the
closest mean but within the influence range .

Ck = {xj : ‖xj − µ‖ ≤ Rk} (4)

3) For faces that don’t belong to any cluster, a new cluster
is created forming a single cluster.

4) Two single clusters are merged if the distance between
the clusters is less than a threshold (half a seat length in
this case).

5) Calculate the new means of each cluster.

µk =
1

‖Ck‖
∑
xj∈Ck

xj (5)
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Fig. 9. Track plot for fragment of scenario 8b, overlaid on last frame of the
scenario. The track is manually enhanced to improve visibility

The influence range (R) gives an indication of how close
people are within a cluster. More specific behaviors, such
as invasion of privacy and confrontations, can be found by
analyzing the distance of a pair of people over time. A feature
that is extracted is thus the minimum distance of the closest
pair of faces in each cluster. The conclusion whether there
is actual invasion of private space however is delayed till the
reasoning phase, because this depends on other factors, such
as the occupation of the compartment.

3) Unusual direction of attention: An interesting side effect
of frontal face detection is that the direction of the visual
attention of a person is known when a face is detected. In
the train compartment, people tend to look forward or out
the window. If the majority of the passengers (especially
passengers that do not belong in the same cluster) focus their
attention towards the same direction, then there is probably
something going on in the compartment (e.g. a majority of
people looking backward is very unusual).

D. Tracking

State-of-the-art tracking methods can be divided in several
ways. An important first distinction is the way in which the
tracked persons are represented. When there is no predefined
explicit shape model, some possibilities are a box, an ellipse,
the contours of a blob, or the blob itself. If there is an explicit
shape model, a stick figure can be used, or every body part
can have its own box. For the sake of efficiency we used the
rectangle around a detected faces as shape model.

For the tracking algorithm, we adapted the Mean Shift
algorithm to use the results of the face recognition algorithm.
The ‘mean shift’ is the estimated direction and distance in
which the target moves, and this is computed by comparing
an already defined model target with candidate targets [18].
The advantages of this method are that no dynamic model is
needed in advance. This produces satisfactory results as can
be seen in Figure 9.

In the Initialization step of our tracking algorithm, a new
track is created for every detected face. After that our tracking
algorithm is continues as follows:

1) For every track, calculate the histogram of the last
detected face. (We use the histogram of the face as a

density estimate of the target.)
2) For every detected face, calculate the histogram.
3) Assign detected faces to existing tracks by analyzing

a similarity measure and a search range. For target t
and candidate location c, the similarity measure is the
Bhattacharyya distance:

d(t, c) = −ln

(∑
x∈H

√
t(x)− c(x)

)
(6)

4) For the tracks that have no newly detected faces as-
signed, we use the similarity measure to find a suitable
candidate in the search range. The search range is
represented by an elliptical region with axis Sx and Sy
that is expanded every frame to a maximum of 12 frames.
The expansion value is based on the average motion of
the previous points (p) of the track in both directions
(x, y).

Sx =
1

N

N∑
i=1

‖pix − µx‖ , Sy =
1

N

N∑
i=1

‖piy − µy‖ (7)

5) For remaining faces that have no tracks assigned, new
tracks are created

By connecting the tracked points over consecutive frames
we obtain motion paths. Typical motion paths can be distin-
guished. Most people enter a train compartment, sit, and leave
it when they have reached their destination. Sporadicly, people
hang around or move without any plan.

For typical behaviors of passengers we use a template based
classifier that compares the observed path of a person to
typical paths for certain actions. A typical path or template
is a specific observation of a complete action, that is, a path
of observed locations over time. The template consists of the
coordinates and times of actions in the train (e.g. walking,
running, begging). The templates are manually determined
from experiment data.

The templates are then used to compute the similarity
with an observed path, expecting similar behaviors to have
similar paths. We use the Mean Square Error (MSE) as a
measure for similarity. We can then compute the MSE for
all coordinates separately. To score an entire measurement
against a template we compute the sum of these errors, and
divide it by the number of points compared. The template
matching algorithm chooses the best match with the template
most closely resembling the track taken by the object.

V. THE REASONING PROCESS

The previous sections have presented a number of tech-
niques to detect different cues or objects in the train compart-
ment. In order to draw conclusions concerning the situation,
these observations have to be viewed in the proper perspective.
To this end we have created a behavior model, which specifies
the meaning and relationship of relevant concepts to aggression
(and to each other).
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Fig. 10. Overview of the scenario sub ontology. A Scenario consists of a
sequence of Situations and a timeline on which Events can be placed

Fig. 11. Overview of the event sub ontology. An event has a location, a time
and optional relations to actors, factors and products

A. Behavior model

The behavior model contains a formal definition of behav-
iors and objects in the train compartment to accommodate
reasoning. The behavior model consists of a static context that
specifies the objects in the compartment that play a role in
aggression and their spatial relationships. The second part is
the dynamic context, which describes the temporal aspects of
the domain, for example how objects can interact within the
environment. Because the static context is essentially just an
enumeration of objects, we will not go into detail here.

The central classes in the dynamic context are ‘Situation’
and ‘Event’ (Figure 10). A ‘Situation’ includes an arrangement
of concepts (from the static context) and dynamic relationships
among them. ‘Event’ contains information about events in the
real world observed at a specific time, it represents a way by
which we can classify certain useful and relevant patterns of
change. ‘Scenario’ describe situations that can occur in the
environment, more specifically it summarizes the events and
actions that are usually observed and their order of occurrence
when such a situation takes place. A ‘Scenario’ consists of a
sequence of situations and a timeline on which events can be
placed. An ‘Event’ that leads to a transition of one situation
into another is represented by a ‘SituationSwitch’.

The ‘Timeline’ concept addresses temporal information as
depicted in Figure 11. A number of intervals and instants can
be defined by which events can be associated to the ‘Timeline’.
An ‘Event’ thus has a location, a time and optional relations
to actors, factors and products.

An ‘Actor’ is the object that caused the event (e.g. pas-
senger), a ‘Product’ is the possible appearing or disappearing

objects as a result of the event (e.g. train stops in station
results in passengers exiting), while a ‘Factor’ is an object
that also plays a role in the event but does not belong
in the aforementioned categories. In addition, an event can
consist of a number of sub events. The ‘Event’ concept forms
the connection between the objects in the static context and
situations and scenarios in the dynamic context.

B. Unusual situations

Aggression detection by humans is triggered by an observa-
tion of a cue or heuristic that compels him to investigate further
(see Section II-B). Following this approach, we created a list
of triggers for unusual situations that, when detected, requires
further investigation. The list is summarized below. All the
situations can be detected by (combining) the features detected
in the observation phase.
• Crowding,
• Running through the compartment,
• Lingering around,
• Moving against the general flow,
• Same direction of attention of passengers,
• Looking backwards or around continuously,
• Sudden high motion energy without apparent reason,
• Motion at unexpected places,
• Invasions of personal space.
Once an unusual event has been identified, it triggers the

scenario based detection discussed in the next section.

C. Scenario based detection

In order to draw conclusions concerning the situation in
the compartment, inferences have to be made given detected
observations by the observation model. We used a rule-based
detection approach in which a set of rules describes which
conclusion to draw given the input. The idea is inspired by
the schema theory [19]. In this theory, schemas are cogni-
tive structures that link declarative and procedural knowledge
together in patterns that facilitate comprehension of behavior
within a context. The declarative part is comprised of object
classes together with associated features and arranged in hier-
archies in space and/or time. The procedural knowledge for the
understanding and enacting of behavioral patterns and routines
is encoded in scripts. A classic example of a script is Schank
and Abelson’s restaurant script [20] that includes a structure
for entering a restaurant, ordering, eating etc.

Following the schema theory, the possible aggressive sce-
narios are modeled as scripts, containing information about the
concepts and events that usually occur when the aggressive
scenario is encountered. A script is stimulated if the concepts
in the script are really being observed. When a concept is
observed, it adds to the support of the script. Each concept adds
a different weight depending on the salience of the observation
to the script. When a script reaches a threshold the script
is triggered and the result is that the system recognizes the
scenario.

A key idea in the theory is that some events can be more
salient for a script than others (in a car accident, a damaged
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car is more salient than a police officer although both are
things that one would expect to see) and that events need
not necessarily occur in a strict sequence. Furthermore, the
existence of a threshold ensures that not all events in the script
need to be observed before the situation can be recognized.

D. Implementation overview

The aggression detection approach modeled after scripts in
the schema theory is implemented as a rule-based reasoning
scheme. In the beginning, when a small number of events are
observed, many competing scripts may be in the reasoning
system. But by further observation and the detection of new
concepts, over time, a final hypothesis emerges (similar to
expert recognition steps described in Section II-B). A script is
implemented as a sequence of events and their consequences in
the form of rules. An expert system’s inference engine controls
the proper application of these rules. CLIPS [21] was used as
the expert system shell.

To construct the rule base, the expert knowledge obtained
from interviews with human experts and results from analyzing
surveillance videos have been formalized. The first stage in
creating the rule base is to create a list of possible aggressive
scenarios and a list of high-level concepts that have been
observed in these scenarios. We have defined more than 40
scenarios. The scenarios are grouped in the incident types
defined by the NS (see Section II-A).

The salience of the relationship between a concept and
a scenario (i.e. the weight that a concept adds to a script
when observed) is specified in an influence matrix. The matrix
indicates for each feature how much the feature contributes to
the likelihood of each scenario.

To limit the influence of old observations, a saliency decay
function is also implemented. Whenever a concept enters the
system, a timestamp (t) is attached to it (if the feature is
already in the system, t of the old observation is updated).
When the support for a scenario is calculated, the salience of
each concept is adjusted with a value depending on t. For
simplicity, the salience decreases linearly over time with a
fixed decay factor. If the saliency reaches zero, the feature
is removed from the system.

VI. EVALUATION AND RESULTS

Several experiments were conducted in a real train com-
partment to collect usable data for testing and evaluating the
aggression detection system. During the experiments, actors
had to perform scenarios as described in storyboards. These
storyboards where previously validated by security experts
for their realism. As the actors performed the scenarios, data
was captured using the cameras in the train. As opposed to
rigidly scripted approaches, storyboards offer more flexibility.
As a result, many different versions of the same scenario were
captured.

A. Experiment setup

The sensor setup used to capture the scenarios consists
of four cameras. Their location and orientation is shown in

Fig. 12. The locations of the sensors seen from a top view of the train
compartment. All cameras face downward with an angle and the center of the
compartment has the largest camera coverage and overlap

Fig. 13. All cameras face downward with an angle and the center of the
compartment has the largest camera coverage and overlap

Figure 12. The cameras are mounted in a straight line along
the roof of the compartment and face downward with an angle.
The orientation of the cameras is such that they face the center
of the compartment.

The cameras have zooming, panning and tilting capabilities,
but these settings were fixed during the recordings. Aggressive
and normal scenarios are recorded in sequences which total up
to about four and a half hours of audio and video data. The
data contains the aggressive scenarios as well as recordings
of normal and spontaneous situations. The video cameras
captured colored video at about 12 frames per second, at a
resolution of 640x256 pixels.

The captured data was annotated with ground truth values
about the situation in the train compartment. The annotation
includes all the objects, their locations and characterizing
features and relations with other objects. We used the concepts
defined in the behavior model discussed earlier as annota-
tion language. Essentially, an annotation file starts with the
introduction of the sensors, the introductions of the actors and
objects and then a list of events in which the actors and objects
play a role.

B. Evaluation

The internal workings of the rule-based system are not that
complicated. Therefore, extensive testing of the software was
straightforward. The application was implemented such that it
logs all the processing steps, allowing clear-cut evaluation and
validation of intermediate results and decisions. In practice
validating the application entails running the system, while
a user manually checks whether or not the output (which
includes the positive, negative and currently activated features)
matches the desired output. Any unexpected or undesired
results which could be mapped to flaws in the rule-based
code (reasoning phase) were subsequently fixed. Undesired
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results that could be attributed to errors in the feature extraction
and classification algorithms (observation phase), we tried to
fix with modifications to the algorithms. These modifications
have been discussed throughout Section IV. Using this method,
all 10 aggressive scenarios in our dataset could be correctly
classified.

C. Discussion and conclusions

In this paper, we presented a system that is able to detect
aggressive scenarios in a dataset of videos taken from surveil-
lance cameras in a train compartment. This dataset contains
the most frequent aggressive behaviors. The system consists
of a rule-base modeled using knowledge of the train and
passengers. Modeling the rule-base constituted the largest part
of the work, as knowledge extracted from security experts and
personal observations had to be formalized and captured in
rules.

Not all the concepts and conditions that experts reason with
can be detected accurately and consistently at the moment.
The technology needs to mature to a state that the results
achieved by current algorithms can cope with the challenging
conditions in the train compartment. For example, a face
recognition algorithm was able to detect the position of the
faces, from which the position of the human body is estimated.
However, non of the algorithms to recognize emotions (such as
anger, surprised) from facial expressions of the detected faces
performed well. Thus the workable input space of the system
is limited to the features that we are currently able to detect.
Despite this limitation, the system was able to recognize the
target scenarios correctly. At this moment we cannot give a
statistical evaluation of the performance of the system because
we only have a few test examples per scenario. In addition,
the data used to train the system were captured in only two
experiment session. Therefor, any conclusion regarding the
performance of the system might be biased by over-training.
The bottom line is that more experiment data is needed to truly
evaluate the system.

A drawback of the rule-based approach is the complexity of
building and maintaining large rule-based systems. A rule base
of thousands of rules may require a trained staff to maintain.
In addition, even though the threshold in the scripts allows for
some flexibility in the recognition of scenarios, the reasoning
system is essentially unable to cope with unexpected situations.
That is why we looked to alternative approaches. For example
fuzzy inference systems based on fuzzy rules instead of the
crisp rules. Another option is the Bayesian alternative that
summarizes complex relations between entities in terms of
uncertainty values.
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