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Facial Action Recognition for Facial Expression
Analysis From Static Face Images

Maja Pantic, Member, IEEE, and Leon J. M. Rothkrantz

Abstract—Automatic recognition of facial gestures (i.e., facial
muscle activity) is rapidly becoming an area of intense interest in
the research field of machine vision. In this paper, we present an
automated system that we developed to recognize facial gestures
in static, frontal- and/or profile-view color face images. A multide-
tector approach to facial feature localization is utilized to spatially
sample the profile contour and the contours of the facial compo-
nents such as the eyes and the mouth. From the extracted contours
of the facial features, we extract ten profile-contour fiducial points
and 19 fiducial points of the contours of the facial components.
Based on these, 32 individual facial muscle actions (AUs) occurring
alone or in combination are recognized using rule-based reasoning.
With each scored AU, the utilized algorithm associates a factor de-
noting the certainty with which the pertinent AU has been scored.
A recognition rate of 86% is achieved.

Index Terms—Facial action units, facial action unit combina-
tions, facial expression analysis, image processing, rule-based rea-
soning, spatial reasoning, uncertainty.

I. INTRODUCTION

FACIAL expressions play a significant role in our social and
emotional lives. They are visually observable, conversa-

tional, and interactive signals that clarify our current focus of
attention and regulate our interactions with the environment and
other persons in our vicinity [22]. They are our direct and natu-
rally preeminent means of communicating emotions [12], [22].
Therefore, automated analyzers of facial expressions seem to
have a natural place in various vision systems, including auto-
mated tools for behavioral research, lip reading, bimodal speech
processing, videoconferencing, face/visual speech synthesis, af-
fective computing, and perceptual man-machine interfaces. It is
this wide range of principle driving applications that has lent
a special impetus to the research problem of automatic facial
expression analysis and produced a surge of interest in this re-
search topic.

Most approaches to automatic facial expression analysis at-
tempt to recognize a small set of prototypic emotional facial ex-
pressions, i.e., fear, sadness, disgust, anger, surprise, and happi-
ness (e.g., [2], [9], [13], [15]; for an exhaustive survey, see [17]).
This practice may follow from the work of Darwin [4], and more
recently Ekman [12], who suggested that basic emotions have
corresponding prototypic expressions. In everyday life, how-
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ever, such prototypic expressions occur relatively rarely; emo-
tions are displayed more often by subtle changes in one or few
discrete facial features, such as the raising of the eyebrows in
surprise [14]. To detect such subtlety of human emotions and,
in general, to make the information conveyed by facial expres-
sions available for usage in the various applications mentioned
above, automatic recognition of facial gestures (atomic facial
signals) is needed.

From several methods for recognition of facial gestures, the
facial action coding system (FACS) [6] is the best known and
most commonly used in psychological research [23]. It is a
system designed for human observers to describe changes in
the facial expression in terms of visually observable activations
of facial muscles. The changes in the facial expression are de-
scribed with FACS in terms of 44 different action units (AUs),
each of which is anatomically related to the contraction of either
a specific facial muscle or a set of facial muscles. Along with the
definition of various AUs, FACS also provides the rules for AU
detection in a face image. Using these rules, a FACS coder (i.e.,
a human expert having a formal training in using FACS) encodes
a shown facial expression in terms of the AUs that produce the
expression.

Although FACS provides a good foundation for AU-coding of
face images by human observers, achieving AU recognition by a
computer remains difficult. A problematic issue is that AUs can
occur in more than 7000 different combinations [23], causing
bulges (e.g., by the tongue pushed under one of the lips) and
various in- and out-plane movements of facial components (e.g.,
jetted jaw) that are difficult to detect in two-dimensional (2-D)
face images.

Few approaches have been reported for automatic recognition
of AUs in images of faces [16]. Some researchers described pat-
terns of facial motion that correspond to a few specific AUs, but
did not report on actual recognition of these AUs (e.g., [2], [9],
[11], [13]). To detect six individual AUs in face image sequences
free of head motions, Bartlett et al. [1] used a neural network
(NN) approach. They achieved 91% accuracy by feeding the uti-
lized NN with the results of a hybrid system combining holistic
spatial analysis and optical flow with local feature analysis. To
recognize eight individual AUs and four combinations of AUs
in face image sequences free of head motions, Donato et al.
[5] used Gabor wavelet representation and independent com-
ponent analysis. They reported a 95.5% average recognition
rate accomplished by their method. To recognize eight indi-
vidual AUs and seven combinations of AUs in face image se-
quences free of head motions, Cohn et al. [3] used facial fea-
ture point tracking and discriminant function analysis. They re-
ported an 85% average recognition rate. Tian et al. [27] used
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Fig. 1. Outline of the method for AU recognition from dual-view static face images.

lip tracking, template matching and NNs to recognize 16 AUs
occurring alone or in combination in nearly frontal-view face
image sequences. They reported an 87.9% average recognition
rate attained by their method. Pantic et al. [19] used face-pro-
file-contour tracking and rule-based reasoning to recognize 20
AUs occurring alone or in a combination in nearly left-pro-
file-view face image sequences. They achieved an 84.9% av-
erage recognition rate by their method.

In contrast to these previous approaches to automatic AU de-
tection, which deal neither with static face images nor with dif-
ferent facial views at the same time, the research reported here
addresses the problem of automatic AU coding from frontal-
and profile-view static face images. It was undertaken with three
motivations.

1) While motion records are necessary for studying temporal
dynamics of facial behavior, static images are important
for obtaining configurational information about facial ex-
pressions, which is essential, in turn, for inferring the re-
lated meaning (e.g., in terms of emotions) [7], [23]. Since
100 still images or a minute of a video tape take approxi-
mately one hour to manually score in terms of AUs [6], it
is obvious that automating facial expression measurement
would be highly beneficial. While some efforts in au-
tomating FACS coding from face image sequences have
been made, no such effort has been made for the case of
static face images.

2) In a frontal-view face image, AUs such as showing the
tongue or pushing the jaw forward represent out-of-plane
nonrigid movements which are difficult to detect. Such
AUs are clearly observable in a profile view of the face.
On the other hand, changes in the appearance of the
eyes and eyebrows cannot be detected from the nonrigid
changes in the profile contour, but are clearly observable
from a frontal facial view. The usage of both frontal and
profile facial views promises, therefore, a quantitative
increase in AUs that can be handled.

3) A basic understanding of how to achieve automatic facial
gesture analysis from multiple views of the human face is
necessary if facial expression analyzers capable of han-
dling partial and inaccurate data are to be developed [20].
Based on such knowledge, procedures of greater flexi-
bility and improved quality can evolve.

The authors’ group has already built a first prototype of an
automated facial action detector, the novel version of which

is presented in this paper. This prototype system was aimed
at automatic recognition of six basic emotions in static face
images. Pantic and Rothkrantz [15] used different image pro-
cessing techniques like edge detection, active contours and NNs
in a combination with rule-based forward reasoning to recog-
nize 27 AUs from a portrait and 20 AUs from a face profile
image and then classify them in six basic emotion categories.
The average recognition rate ranged from 62% to 100% for dif-
ferent AUs. This prototype system had several limitations.

1) It required manual detection of the features describing
different shapes of the mouth.

2) Detection of the features related to the image intensity
and brightness distribution in certain facial areas was not
robust since it required highly constrained illumination
conditions.

3) The algorithm used for localizing the face profile contour
performed only well for face-profile images having a uni-
form dark background.

4) The system was not capable of dealing with minor inac-
curacies of the utilized detectors.

5) The employed forward chaining inference procedure is
relatively slow since it finds one solution in each “pass”
through the knowledge base.

The current version of the automated facial action detector
addresses many of these limitations. Fig. 1 outlines our novel
method proposed in this paper. First, static frontal and/or pro-
file-view image of an expressionless face of the observed sub-
ject is processed. Under the assumption that input images are
nonoccluded, scale- and orientation-invariant face images (e.g.,
Fig. 1), each subsequent image of the observed subject (acquired
during the same monitoring session with the pertinent subject) is
processed in the following manner. The face region is extracted
from the input frontal-view face image. The face-profile region
is extracted from the input profile-view face image. To do so,
watershed segmentation with markers is applied on the morpho-
logical gradient of the input color image. For the frontal view,
the segmented face region is subjected to a multidetector pro-
cessing: per facial component (eyes, eyebrows, mouth), one or
more spatial samples of its contour are generated. From each
spatially sampled contour of a facial component, we extract a
number of points. In total, we extract 19 different frontal-face
feature points. For the profile-view, we extract ten feature points
from the contour of the segmented face-profile region (i.e., face
profile contour). By performing an intra-solution consistency
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check, a certainty factor CF is assigned to each extracted point.
A comparison of CFs assigned to frontal-face feature points
leads to a selection of the most accurate of the redundantly ex-
tracted data. Subtle changes in the analyzed facial expression are
measured next. Motivated by AUs of the FACS system, these
changes are represented as a set of midlevel feature parame-
ters describing the state and motion of the feature points and the
shapes formed by certain feature points. Based on these feature
parameters, a rule-based algorithm with the fast-direct chaining
inference procedure interprets the extracted facial information
in terms of 32 AUs occurring alone or in combination. With each
scored AU, the utilized algorithm associates a factor denoting
the certainty with which the pertinent AU has been scored.

Face and face-profile detection, facial feature extraction,
parametric representation of the extracted information and AU
coding are explained in Sections II–IV. Experimental results
are presented in Section V.

II. FACE AND FACE-PROFILE DETECTION

The first step in automatic facial expression analysis is
to locate the face in the scene. Possible strategies for face
detection vary a lot, depending on the type of input images
[31]. We address this problem as a segmentation problem
in two objects: the face and the background. For its low
computational complexity and its good localization properties
we chose the watershed segmentation with markers as the
segmentation means. For each input face image (either in
frontal or in profile view), the markers of the two objects
are extracted as follows. First, a color-based segmentation
extracts the skin region as the largest connected image
component with hue, saturation, and value within the range

,
and , respectively, where is the average hue
in the horizontal middle of the image. Although people have
different skin color, several studies have shown that the major
difference lies in the intensity rather than in the chrominance
[26], [30], [31]. After analyzing 360 dual-view face images
of different people (see Section V-A), we have found out that
the hue of the human face color seldom exceeds
the range and that the saturation , remains
within the range [0, 0.7]. Similar results have been reported in
[30], [26]. The experimentation also showed that the hue never
deviates more than 0.35 from its average value for a given face
image. Hence, under the assumption 1) that we do not deal
with face detection in arbitrary scenes, 2) that the largest part
of an input, true-color, PAL-camera acquired image is either
a portrait or a profile view of a face (see Section V-A) and,
in turn, 3) that calculating the average hue in the horizontal
middle of the image will indeed identify the face-skin color of
the observed person, we defined human face-skin color hue,
saturation, and value domains as given above.

The skin region that results in this way is in general well lo-
calized but might suffer from small inaccuracies along the face
boundaries. Moreover, the marker-based watershed segmenta-
tion requires that the objects’ markers (for the face and for the
background, respectively) are placed completely within the per-
tinent objects. In order to deal with the above, the Face marker

Fig. 2. Face region extraction by watershed segmentation with markers.

is extracted by performing a binary erosion with a small square
structuring element (3 3) on the skin region, an operation that,
roughly speaking, “shrinks” the latter by 1–2 pixels. In the ab-
sence of a model for the color of the background, such as the
skin color model is for the face, we base the extraction of the
background marker also on the skin region. To do so, we con-
sider a box, which is by pixels larger than the bounding box of
the skin region, as the background marker. The number should
be rather small (in our experiments five) since otherwise, in the
presence of clutter in the background, strong background edges
may appear between the two markers. Once the markers of the
two objects are extracted, we apply the watershed segmentation
algorithm [29] on the morphological gradient of the input color
image. The gradient is estimated as the color difference between
the morphological opening and closing operators, each of which
is applied separately to each of the three components of the color
image. We choose the Euclidian distance in the color
space as a metric of color difference, since the space
is perceptually uniform under this metric [25]. Fig. 2 outlines
the employed algorithm. It yields a good localization of the face
given that the most prominent color edge between the markers
is indeed the face contour.

III. FACIAL FEATURE EXTRACTION

Contractions of facial muscles change the appearance of per-
manent and transient facial features. Permanent facial features
are facial components such as eyebrows, eyes, and mouth. Their
shape and location can alter immensely with expressions (e.g.,
pursed lips versus delighted smile). Transient facial features are
any facial lines and bulges that did not become permanent with
age but appear with expressions. To reason about shown facial
expression and the facial muscle actions that produced it, one
must first detect facial features and their current appearance.

Our approach to facial features’ detection in images of faces
utilizes the face region and/or the face-profile region, extracted
from an input face image as described above, and adopts the as-
sumption that input images acquired during a single monitoring
session with a subject are nonoccluded, scale and orientation in-
variant, with face-profile images in right profile view.

A. Profile Face Feature Extraction

The contour of the segmented face-profile region is treated as
the face profile contour in further processing. To extract the fea-
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Fig. 3. Feature points (fiducials of the contours of the face components and of the profile contour).

Fig. 4. Definitions of the profile-contour fiducial points P and the related search windows W given in the order in which the points are extracted from the
profile contour function f defined for image I . The size of each search window W (width � height) is defined relative to the size of the search window basis
W , which is defined relative to the location of stable facial points P1 and P4. The positioning of each search window W is defined relative to the position of
point P extracted from the face profile image N of a neutral expression of the observed subject.

ture points from the face profile contour, we move from image to
function analysis and treat the right-hand side of the face profile
contour as a profile contour function. We extract ten profile-con-
tour fiducial points, illustrated in Fig. 3, as the extremities of this
function.

The zero-crossings of the function’s first-order derivative
define extremities. Usually, many extremities are found. To
handle the false positives and to ascertain correct extraction of
the feature points illustrated in Fig. 3 in all situations (e.g., also
when the tongue is visible and P7 and P7 exist), we proceed
as follows. We exploit the knowledge about facial anatomy, the
knowledge about spatial arrangement of the extreme points,
and the information extracted from the image of a neutral
facial expression of the observed subject, and we extract the
feature points in a particular order (Fig. 4). After analyzing 240
dual-view face images of different people showing different fa-
cial expressions (see Section V.A), a standard “search” window

has been defined for each fiducial point with respect to
anatomically possible directions and magnitudes of the motion
on the skin surface affecting the temporal location of . For
instance, nonrigid movements of the eyebrows (raised and/or
frowned eyebrows) cause upward and/or outward movement
of P2, while the upward pull of the skin along the nose (i.e.,

wrinkled nose) causes outward and downward movement of
P2. This and the fact that no facial muscle activity can push
the eyebrow arcade either to the nasal bone or to the middle
of the forehead, define the size and the positioning of the
search window given in Fig. 4. Furthermore, each search
window has been defined relative to the “search window
basis” , and, in turn, relative to the referential, stable
facial points P1 and P4, (Fig. 4). Given these referential points,
the search window basis and the search windows are
defined in a scale- and person-invariant manner. Fiducial point

is determined eventually such that it represents a specific
global extremity (Fig. 3) of the profile contour function within
the search window , which is set around the location of
discerned for the face-profile image of a neutral expression
of the observed subject.

B. Frontal Face Feature Extraction

Each of the known techniques for facial feature detection in
static face images (e.g., snake fitting, template matching, local
spatial filtering) has circumstances under which it performs
poorly and circumstances under which it performs extremely
well. Introducing redundancy in the extracted facial expression
data by employing multidetector processing and then selecting
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Fig. 5. Typical results of the mouth template matching.

the best of the acquired results could yield, therefore, a more
accurate and complete set of detected facial features. Hence, we
employ multidetector processing of the face region segmented
from an input frontal-view face image to spatially sample the
contours of the facial components. This “hybrid” facial feature
detector is expected to result in a more robust performance than
either a single detector used for all facial features or a set of dif-
ferent detectors, each of which used for one facial feature. Each
facial feature detector that we exploit is an already existing
facial feature detector. The utilized detectors have been chosen
because they are simple and easy to implement. Yet, another set
of detectors, which under the same conditions perform similarly
(qua robustness and accuracy) to the detectors we are currently
using to spatially sample the contours of the eyebrows, eyes,
nostrils, and mouth from the facial portrait, could be chosen
instead (e.g., the template-matching methods proposed in [27]).
Since virtually all the employed facial feature detectors have
been presented elsewhere, we provide in Appendix A just a
short overview of the utilized methods.

After the multidetector processing of the face region, we pro-
ceed with the feature point extraction. For the cases where mul-
tiple detectors are used to localize the contour of a certain facial
component, a relevant set of fiducial points is extracted from
each spatially sampled contour of the pertinent facial compo-
nent. For instance, from each localized mouth contour Mouth,
we extract four feature points (see Fig. 5). In total, we extract
19 different feature points corresponding to the vertices and/or
the apices of the contours of the facial components (Fig. 3).

C. Data Certainty Evaluation and Feature Selection

We assign the same certainty factor to each fiducial point that
belongs to the same contour of a facial component spatially sam-
pled by a certain detector. For example, we assign the same cer-
tainty factor to all
fiducial points of the right eye. To do so, we measure first the
distance between the currently detected inner corner of the eye

and point detected in the neutral expression
image of the subject. Then we calculate the pertinent by
using the functional form (1).

(1)

(2)

In (1), is the distance between points p1 and p2
measured in pixels and is a Sigmoid func-
tion given in (2), whose parameters are determined under
the assumption that there are 60 to 80 pixels across the
width of the subject’s eye (see Section V.A). This functional
form implies that if ,

Fig. 6. Spatial sampling of the eye contour—measured error:
d(B ;B ) = 14 (left) d(B ;B ) = 1 (right).

if , and if
will be assigned to

the fiducial points of the right eye (Fig. 6).
We use the inner corners of the eyes as the referential points

for calculating CFs of the fiducial points of the eyes because of
the stability of these points with respect to nonrigid facial move-
ments: contractions of the facial muscles do not cause physical
displacements of these points. Under the assumption that the
images acquired during a single monitoring session with an ob-
served subject are scale and orientation invariant (see the begin-
ning of Section III), the location of the stable facial points such
as the inner corners of the eyes should remain the same during
the entire session. Hence, the certainty of spatial sampling of
a facial feature obtained by a given detector can be estimated
based upon the error made by the given detector while local-
izing the stable points belonging to the facial feature at issue;
the larger the degree of the detection error, the lower the cer-
tainty of the data at issue.

The referential features used for calculating CFs of other fidu-
cial points are the tip of the nose (point P4 of the profile con-
tour, Fig. 3), the size of the eyebrow area, the inner corners of
the nostrils, and the medial point of the mouth . Point is
calculated as the center of gravity of the distribution obtained
from the mouth region-of-interest filtered to reveal colors in
the vicinity of the pure red [18]. Independently of bilateral fa-
cial muscle actions that can affect the facial appearance of the
mouth (e.g., mouth stretching, smile, etc.), the medial point of
the mouth remains stable. However, this point does not remain
stable if unilateral muscle actions occur, causing subtle facial
changes in one mouth corner only. In such cases, the CF calcu-
lated based upon the referential point will be decreased even
though the relevant mouth contour could be spatially sampled
with high precision.

The utilized intra-solution consistency check assumes
indirectly that all fiducial points are accurately extracted from
the reference expressionless-face image of the current subject.
To ascertain this assumption, we inspect visually the fiducial
points extracted automatically from a neutral expression
image acquired at the beginning of each monitoring session
with a subject and, if necessary, we mark them manually in
the pertinent image. Other images acquired during a single
monitoring session are processed in the entirely automatic
manner described above.
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Eventually, in order to select the best of sometimes redun-
dantly available solutions (e.g., for the fiducial points belonging
to the eyebrows), we perform an inter-solution check. We com-
pare, namely, the CFs of the feature points extracted from the
contours spatially sampled by different detectors of the same
facial component. The feature points having the highest CF are
used for further analysis of shown AUs.

In the case of the fiducial points of the mouth, we also perform
an “inter-solution consistency check” as a part of the inter-solu-
tion check. It compares the outputs of the vertical mouth classi-
fier and the horizontal mouth classifier (see Appendix A) with
the properties of the mouth contour localized by a mouth de-
tector. It proceeds as follows.

1) Let us designate the curve fitting of the mouth detector
as , the mouth template matching detector as

, the vertical mouth classifier as , the
horizontal mouth classifier as , and the certainty
factor assigned to the mouth features extracted from the
mouth contour localized by as .

2) try to fire the following rules:
If result smile" AND (

OR ) Then
%,

If result sad" AND (
OR ) Then

%,
If result stretched" AND (

OR ) Then
%, and

If result puckered" AND (
OR ) Then

%.
The values of and correspond to the
y-coordinate and x-coordinate of point I, respectively,
which has been extracted from the mouth contour local-
ized by the detector . The values of and

correspond to the y-coordinate and x-coordi-
nate of point I, respectively, which has been localized in
the neutral expression image of the currently observed
subject. Although the and achieved a 100%
average recognition rate when tested on a set of 100
full-face images, both methods use only some average
properties of the image [18], which do not necessarily
depict subtle differences between various mouth ex-
pressions. Therefore, when the detector passes
this inter-solution consistency check successfully, we
increase the associated certainty factor for
a mere 10%. This increase of 10% has been decided on
based upon a number of visual observations conducted
by several human observers which suggested that this
increase would result neither in an overestimated nor in
an underestimated certainty factor .

3) Select the mouth feature points having the highest CF for
further analysis of shown AUs. If this process results in a
draw, select the mouth feature points extracted from the
mouth contour localized by the detector whose re-
sults have been selected more frequently during the cur-
rent session with the observed subject.

Fig. 7. Midlevel feature parameters for AU recognition: two describing the
motion of the feature points (upper part of the table), two describing their state
(middle part of the table), and two describing shapes formed between certain
points (lower part of the table). The value of y(P ) and y corresponds to the
y-coordinate of point P (similar for the x-coordinate); " is 1 pixel.

IV. FACIAL ACTION DETECTION

Each AU of the FACS system is anatomically related to the
contraction of one or more specific facial muscles [6]. Contrac-
tions of facial muscles alter the shape and location of the facial
components. Some of these changes in facial expression are ob-
servable from the changes in the position of the feature points
illustrated in Fig. 3. To classify detected changes in the position
of the feature points in terms of AUs, the pertinent changes are
represented first as a set of suitable midlevel feature parameters.

A. Parametric Feature Representation

Six midlevel feature parameters, defined in Fig. 7, describe
the changes in the position of the fiducial points depicted in
Fig. 3. They are calculated for various feature points, for each
input image (see Tables II and III, Section IV-B), by comparing
the currently extracted points with the relevant points extracted
from the neutral expression image of the subject.

More specifically, two midlevel feature parameters de-
scribe the motion of the feature points:
and . These parameters are calculated only
for profile contour fiducial points. The parameter

describes
the upward or downward movement of point . If

, point moves up. If
, point moves down.

is point localized in the neutral expression image of the
currently observed subject. is point localized in
the currently examined image of the observed subject. The
values of corresponds to the y-coordinate of point
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TABLE I
FACS RULES FOR RECOGNITION OF 32 AUS THAT OUR METHOD ENCODES AUTOMATICALLY IN DUAL-VIEW FACE IMAGES

and the value assigned to is 1 pixel. Midlevel feature pa-
rameter describes
the inward or outward movement of point . This param-
eter is calculated only for profile contour fiducial points.
If , point moves outward.
If , point moves inward.
Two midlevel feature parameters describe the state of the
feature points: and .
Midlevel feature parameter denotes the absence
of point belonging to the profile contour function .
This parameter is calculated only for points P6, P7 , P7 ,
P8, and P9 (see Figs. 3 and 4). If there is no maximum
of the profile contour function between P5 and P7, then

. If there is no minimum of the profile contour
function between P8 and P10, then . Sim-
ilar rules are used for P7 , P7 , and P8. Feature parameter

de-
scribes the increase or decrease of the distance between points

and . If , distance in-
creases. If , distance decreases.
The distance between points and is calculated
as given in Fig. 7. Finally two midlevel feature parameters
describe two specific shapes formed between certain feature
points. Midlevel feature parameter true
denotes the presence of an angular shape formed between the
profile contour fiducial points P6 and P8 (see Fig. 7). This
parameter is calculated only for points P6 and P8. Feature

parameter true denotes
the presence of an increased curvature between the profile
contour fiducial points P5 and P6 (see Fig. 7). This parameter
is calculated only for points P5 and P6.

We assign a certainty factor to each calculated
midlevel feature parameter. We do so based upon the CFs
associated with the selected feature points (see Section III-C),
whose state or motion is described by the pertinent midlevel
feature parameter. For example:

, and

.

B. Action Unit Recognition

The last step of automatic facial action detection is to trans-
late the extracted facial information (i.e., the calculated feature
parameters) into an AU-coded description of the shown facial
expression. To achieve this, we apply a rule-based method with
the fast-direct chaining inference procedure to two separate sets
of rules.

Motivated by the rules of the FACS system (Table I), each of
the rules utilized for AU recognition is defined in terms of the
predicates of the midlevel feature representation (Fig. 7) and
each encodes a single AU in a unique way according to the rele-
vant FACS rule. A set of 24 rules, say set-1, for encoding 24 AUs
occurring alone or in combination in an input face-profile image
is given in Table II. A set of 22 rules, say set-2, for encoding 22
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TABLE II
RULES FOR RECOGNITION OF 24 AUS IN A FACE-PROFILE IMAGE

AUs occurring alone or in combination in an input frontal-face
image is given in Table III. If the input images are face-pro-
file images, the method encodes 24 AUs occurring alone or in
combination by utilizing the rules of set-1. If the input images
are frontal-face images, the method encodes 22 AUs occurring
alone or in combination by utilizing the rules of set-2. Yet, if the
input images are dual-view face images, the method encodes 32
AUs occurring alone or in combination by utilizing the rules of
both set-1 and set-2.

The applied fast direct-chaining inference procedure takes ad-
vantage of both a relational representation of the knowledge and
the depth-first search to find as many conclusions as possible
within a single “pass” through the knowledge base [24]. The
term direct indicates that as the inference process is executing, it
creates the proper chain of reasoning. A recursive process starts
with the first rule of the knowledge base (set-1 or set-2). Then
it searches a linkage between the fired rule and the rule that
it will try to fire in the next loop. If such a relation does not
exist, the procedure tries to fire the rule that in the knowledge
base comes after the rule last fired. As can be seen, the fast di-
rect-chaining inference process is more efficient than both the
forward chaining and the backward chaining because it tries to
fire only the rules that may potentially contribute to the infer-
ence process.

To prevent firing of a rule more than once, we utilize a list
of fired rules (LFR). Thus, if a rule has fired (i.e., the rule’s
premise is true and ), the rule number is added to
the LFR. The value of the threshold T is set to . We
do so to enable potential encoding of all shown AUs, even if the
reached conclusions might have low certainties (due to the prop-
agation, and hence accumulation, of potentially low certainties
of extracted facial data).

We assign an initial certainty factor to each AU that
can be scored. With each actually scored AU, we associate a
factor denoting the certainty with which the perti-
nent AU has been scored. Its value equals the overall certainty
factor p of the premise of the rule whose firing caused the
AU in question to be scored.

The certainty factor of the premise of a fired rule is
calculated as follows:

1) if contains a clause of a kind “ ,” then
;

2) if contains AND , where and are the clauses
of the premise , then ;

3) if contains OR , where and are the clauses
of the premise , then ;

4) if contains just clause , being of a different kind than
“ ,” en ;

5) , where fp is the feature parameter to
which clause is related (see also Section IV-A).

In the case of dual-view input face images, some AUs could
be scored twice (e.g., AU12, see Tables II and III). Hence, the
last processing step of the utilized algorithm deals with those
redundantly available scores. For each such pair of the redun-
dantly inferred conclusions, it discards the one with which a
lower CF has been associated.

V. EXPERIMENTAL EVALUATION

There are at least two crucial issues in evaluating the perfor-
mance of an automated system. The first concerns the acquisi-
tion of a relevant test data set and the second is that of validation.
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TABLE III
RULES FOR RECOGNITION OF 22 AUS IN A FRONTAL-VIEW FACE IMAGE

A. Test Data Set

As already remarked by many researchers (e.g., [7], [16],
[20]), no database of images exists that is shared by all diverse
facial-expression-research communities. In general, only iso-
lated pieces of such a facial database exist. An example is the un-
published database of Ekman-Hager AU Exemplars [8], which
has been used by Bartlett et al. [1], Donato et al. [5], and Tian
et al. [27] to train and test their methods for AU detection from
face image sequences. Another example is the database of static
full-face images, so called FACS Dictionary [10], which is also
not publicly available. This, together with the inapplicability of
the databases mentioned above for the purposes of testing our
face-profile-based AU encoder, incited us to generate our own
database of test images.

The following criteria have been defined for our database of
static face images.

1) Resolution: The images should have standard PAL
camera resolution, that is, when digitized, images should
measure 720 576 pixels. The largest part of each image
is either a portrait or a profile view of a face. In other
words, there are at least 450 pixels across the width of
the subject’s face in the case of a portrait image and at
least 300 pixels across the width of the face in the case of
a profile-view face image. In turn, this implies that there
are approximately 60 to 80 pixels across the width of the
subject’s eye (as assumed in (1)).

2) Color: The images should be true-color (24-bit) images.

3) DB structure: The images should belong to one of three
database clusters:

a) Portraits of faces (no in-plane or out-plane head ro-
tations are present); include images scanned from
photographs used as behavioral science research
material (see Fig. 8, first row);

b) Profile-view images of faces (no in-plane or out-
plane head rotations are present; see Fig. 8, second
row);

c) Dual-view face images (i.e., combined portraits and
profiles of faces; see Fig. 8, third row).

4) Distribution: the database is installed on our group’s
server and can be easily accessed by any group member.

Similarly to the method presented in this paper, most of the
existing approaches to AU detection assume that the presence
of the face in the input image is ensured [16]. However, in
most real-life situations the location of the face in the scene
is not known a priori. The presence of a face can be ensured
either by using a method for automatic face detection in ar-
bitrary scenes (see [31]) or by using a camera setting that as-
certains the assumption at issue. The method proposed here
does not perform face detection in an arbitrary scene; it oper-
ates on face images stored in our facial database, almost each
of which has been acquired by a head-mounted CCD digital
PAL camera device (Fig. 9). The pertinent device contains two
cameras—the camera set in front of the face acquires portraits
while the camera placed on the right side of the face acquires
face-profile images. The utilized camera setting ascertains the
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Fig. 8. Examples of facial database images. First row: portraits of faces.
Second row: profile-view face images. Third row: dual-view face images.

assumption that the images remain orientation and scale in-
variant during a monitoring session with a subject and that the
face-profile-images are in right profile view (e.g., Fig. 8).

The database images represent a number of demographic
variables including ethnic background, gender, and age, and
provide, in principle, a basis for generality of research findings.
Overall, the subjects were students and college personnel (in
total 25 different persons) of both sexes, young but still ranging
in age from 20 to 45, and of either European, African, Asian,
or South American ethnic background. In order to avoid effects
of the unique properties of particular people, each DB partition
has been supplied with images of several individuals (e.g., the
dual-views DB partition contains images of eight different
subjects). The subjects were asked to display expressions that
included single AUs and combinations of those. They were
instructed by an expert (a certified FACS coder) on how to
perform the required facial expressions. A total of 330 portraits
(excluding some 60 images scanned from the photographs
used as behavioral science research material), 240 profile-view
images, and 560 dual-view images of subjects’ faces were
recorded during sessions, which began with displaying a neutral
expression.

B. Validation Studies

Validation studies on the AU detection method proposed here
address the question of whether the conclusions reached by our
method are acceptable to human observers judging the same
face images. The presented validation of the rule base and the
overall method is based upon the dual-view face images con-
tained in our database.

First, two experts (i.e., certified FACS coders) were asked to
evaluate the available 560 dual-view face images in terms of dis-
played AUs. Inter-observer agreement as to the depicted AUs in
the images was found for a total of 454 images. The pertinent
observers’ judgments of these 454 test images were further com-
pared to those generated by our method. Overall results of this
comparison are given in Table IV in the following terms.

Fig. 9. Head-mounted two-cameras device.

TABLE IV
OUR METHOD’S PERFORMANCE IN AU CODING OF 454 TEST DUAL-VIEW

STATIC FACE IMAGES MEASURED FOR AUS PER FACIAL FEATURE, FOR

UPPER- AND LOWER-FACE AUS, AND OVERALL

1) Correct denotes that the AU codes generated by our
method were completely identical to the AU codes
scored by human observers judging the same images.

2) Partially correct denotes that AU-coded description ob-
tained by the method is similar but not identical to the
one given by human observers when interpreting the same
image (e.g., some AU codes may be missing or may be
recognized in addition to those recognized by human ob-
servers).

3) Incorrect denotes that none of the AU codes discerned by
human observers were recognized by the method.

4) Recognition rate has been calculated as the ratio between
the number of correctly recognized test images and the
total number of test images. If more than one AU of a par-
ticular feature was misidentified in a test image, the perti-
nent image was counted once for the given feature. If sev-
eral AUs of different features were misidentified in a test
image, that image was counted for each of the pertinent
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Fig. 10. Facial expression of AU7 + AU12 activation.

features. To calculate the percentage of agreement (i.e.,
the recognition rates), human FACS coders typically use
the ratio between the number of correctly recognized AUs
and the total number of AUs shown in the stimulus image.
However, it is more appropriate to calculate the recogni-
tion rates based on the number of test images when one
evaluates the performance of an automated system. This
is because the system may score additional AUs besides
those scored by human observers; such errors would not
be taken into account if the recognition rates were mea-
sured based upon the number of correctly scored AUs and
the total number of AUs shown in an image.

As can be seen from Table IV, in 86% of 454 test cases our
method coded the analyzed facial expression using the same set
of AU codes as the human observers. If we consider only the
images in which the AUs were encoded with higher certainty
factors (say ; there are in total 423 such images),
agreement between the system and the human observers was
even 91%.

As far as misidentifications produced by our method are con-
cerned, most of them arose from confusion between similar AUs
(AU1 and AU2, AU6 and AU7, AU18, and AU35) and from
subtle activations that remained unnoticed by human observers
(e.g., AU26, AU38, AU39). The reason for the confusion be-
tween AU1 and AU2 (i.e., recognizing AU1 in addition to AU2)
is that activation of AU2, which raises the outer portion of the
eyebrow(s), tends to pull the inner eyebrow (AU1) as well. Al-
though human observers also confuse AU6 and AU7 often [6],
[27], in the case of our method, the reason for the confusion be-
tween AU6 and AU7 are the utilized rules for recognition of
these AUs. Namely, if AU12 is present, AU6 will be scored
(Table III) although this does not necessarily match the actu-
ally shown expression (Fig. 10). The confusion between AU18
and AU35 is also caused due to the utilized rules for encoding
these AUs. Since inward pull of the cheeks is not detected by the
system, only the width of the mouth distinguishes AU18 from
AU35, causing misidentification of a weak AU35 (Table III).
The reason for most of the mistaken identifications of AU26,
AU38, and AU39 are subtle activations of these AUs, which re-

mained unnoticed by the human observers. Actually, in most of
such cases, our method coded the input images correctly, unlike
the human observers. Yet such cases were addressed as misiden-
tification.

Thus, comparing an automated system’s performance to that
of human judges is not enough. Human observers sometimes
disagree in their judgments of AUs pictured in an analyzed
image (e.g., that is why we reduced the initial set of 560 images
to the test set of 454 images). They occasionally make mistakes
and if the tested system does not produce the same mistakes, its
performance measure is reduced. To estimate the performance
of an automated system precisely, it is necessary to compare it
to a validated standard. A better, readily accessible, standard
set of face images objectively encoded in terms of displayed
AUs is, therefore, necessary. Yet no effort in establishing such
a benchmark database of test images has yet been reported (see
also Section V.1).

VI. CONCLUSION

In this paper, we proposed a novel, automated method for
detecting facial actions based upon changes in contours of fa-
cial components and/or face profile contour detected in a static
frontal-view and/or profile-view face image.

The significance of this contribution is in the following.

1) The presented approach to automatic AU recognition ex-
tends the state of the art in automatic facial gesture anal-
ysis in several directions, including the kind of face im-
ages (static), the facial view (frontal, profile, and dual
view), the number of AUs (32 in total), the difference in
AUs, and the data certainty propagation handled. Namely,
the previously reported automated AU detectors do not
deal with static images, cannot handle more than one fa-
cial view at a time, do not assign certainty measures to
the inferred conclusions (let alone varying them in accor-
dance with the certainty of the input data), and, at best,
can detect 16 to 20 AUs.

2) This paper provides a basic understanding of how
to achieve automatic AU coding in both frontal-face
and face-profile static images. It exemplifies how such
knowledge can be used for devising procedures of greater
flexibility and improved quality (e.g., inaccurate/partial
data from one facial view can be substituted by data
from the other view). This can form the basis of further
research on AU analysis from multiple facial views.

Based upon the validation study explained in Section V-B,
it can be concluded that the proposed method’s performance in
AU recognition from dual-view static images of faces exempli-
fies an acceptable level of expertise. The achieved results are
similar to those reported for other automated FACS coders. The
method achieves an average recognition rate of 86.3% for en-
coding 32 AU codes and their combinations in 454 test samples,
while other automated FACS coders have (in the best case and
for face image sequences) an average recognition rate of 88%
for encoding 16 AU codes and their combinations in 113 test
samples [27].

Though it is quite acceptable, the performance of the pre-
sented method can be improved in several respects.
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1) The proposed algorithm cannot handle distractions like
occlusions (e.g., by a hand), glasses, and facial hair.
Hence, its analysis is limited to nonoccluded faces
without a beard, moustache, and glasses.

2) It cannot deal with rigid head movements; the analyzed
images have to be scale and orientation invariant with re-
spect to the image of the expressionless face of the cur-
rently observed subject, as if they were acquired by a
head-mounted camera device (such as the one illustrated
in Fig. 9).

3) Head-mounted camera devices usually reduce the
freedom with which the subject can move around and
they are commonly perceived as being uncomfortable or
even cumbersome.

4) The proposed method cannot encode the full range of fa-
cial behavior (i.e., all 44 AUs defined in FACS); it per-
forms facial action coding in static frontal-view face im-
ages in terms of 22 AU codes, in profile-view face images
in terms of 24 AU codes, and in dual-view face images in
terms of 32 AU codes (Tables II and III).

Further efforts will be required if these limitations are to be ad-
dressed. In addition, it will be interesting to test the proposed
method with a substantially large database.

APPENDIX A
FRONTAL FACE FEATURE DETECTORS

This appendix provides a short overview of the detectors we
are using to spatially sample the contours of the eyebrows, eyes,
nostrils, and mouth from an input frontal-view face image.

We apply a simple analysis of image histograms in a combi-
nation with various filter transformations to locate six regions
of interest (ROIs) in the face region segmented from an input
frontal-view face image: two eyebrows, two eyes, nose, and
mouth. The details of this procedure can be found in [15], [18].
Then, to spatially sample the contour of a certain facial compo-
nent, we apply one or more facial-feature detectors to the perti-
nent ROI.

A. Eyebrows

Two different detectors localize the contours of the eyebrows
in the eyebrow ROIs. One applies the contour-following algo-
rithm based on four-connected chain codes and the other fits
a 2-D model of the eyebrow consisting of two second degree
parabolas. The details of these algorithms are reported in [21].

B. Eyes

The contours of the eyes are localized in the eye ROIs by a
single detector representing an adapted version of the method
for hierarchical-perceptron feature localization [28]. The de-
tector employs a set of 81 4 1 back-propagation neural net-
works with a Sigmoid transfer function to locate the iris of the
eye and the eye microfeatures illustrated in Fig. 5. The border
between the eyelids and the eye on which the microfeatures lie
is then approximated by two third-degree polynomials. The de-
tails of this algorithm can be found in [15].

C. Nostrils and Chin

The contours of the nostrils are localized in the nose ROI
by applying a method that fits two 2-D small circular models
onto the two small regions delimited as the nostril regions by a
seed-fill algorithm. The seed-fill algorithm is also used to color
eyes and mouth regions in the face region. An adapted version
of the Vornoi-diagrams-based algorithm delimits the symmetry
line between them. The tip of the chin is localized as the first
peak after the third deepest valley (the mouth) of the brightness
distribution along the symmetry line [15].

D. Mouth

We utilize two detectors to spatially sample the contour of
the mouth in the mouth ROI. Curve fitting of the mouth applies
a simple boundary-following algorithm to achieve a coarse es-
timation of the mouth contour and a second-order least-square
model algorithm to fit four second degree parabolas on the
coarse mouth contour. Mouth template matching detector
localizes the contour of the mouth in the mouth ROI by
fitting a 2-D model of the lips to the mouth (Fig. 6). We also
employ two detectors to classify the horizontal and the vertical
movements of the mouth. The vertical mouth classifier utilizes
a set of back-propagation neural networks to classify the mouth
movements into one of the categories ‘”smile,” “neutral” and
“sad.” The horizontal mouth classifier employs rule-based
reasoning to classify the mouth movements into one of the
categories “stretched,” “neutral,” and “puckered.” Details of
these algorithms are reported in [18].

E. Computational Costs

For a standard frontal-view image (i.e., pixels across
the width of the face), the multidetector processing takes ap-
proximately 8 s on a Pentium 2, 0 GHz. This represents more
than 75% of the total time spent on AU detection in a dual-view
face image. Yet, none of the utilized detectors runs a computa-
tionally expensive algorithm. Hence, we feel that a careful reim-
plementation, aimed at obtaining optimal code of the employed
detectors will greatly improve the performance.

ACKNOWLEDGMENT

The authors would like to thank I. Patras and J. Wojdel, of
Delft University of Technology, as well as the anonymous re-
viewers for their helpful comments and suggestions.

REFERENCES

[1] M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski, “Measuring
facial expressions by computer image analysis,” Psychophysiolgy, vol.
36, pp. 253–263, 1999.

[2] M. Black and Y. Yacoob, “Recognizing facial expressions in image se-
quences using local parameterized models of image motion,” Comput.
Vis., vol. 25, no. 1, pp. 23–48, 1997.

[3] J. F. Cohn, A. J. Zlochower, J. Lien, and T. Kanade, “Automated face
analysis by feature point tracking has high concurrent validity with
manual faces coding,” Psychophysiolgy, vol. 36, pp. 35–43, 1999.

[4] C. Darwin, The Expression of the Emotions in Man and Ani-
mals. Chicago, IL: Univ. of Chicago Press, 1872, 1965.

[5] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski,
“Classifying facial actions,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 21, pp. 974–989, Oct. 1999.



PANTIC AND ROTHKRANTZ: FACIAL ACTION RECOGNITION FOR FACIAL EXPRESSION 1461

[6] P. Ekman and W. Friesen, Facial Action Coding System. Palo Alto,
CA: Consulting Psychol. Press, 1978.

[7] P. Ekman, T. S. Huang, T. J. Sejnowski, and J. C. Hager, Eds., “Final
Report to NSF of the Planning Workshop on Facial Expression Un-
derstanding,” Human Interaction Lab., Univ. California, San Francisco,
1993.

[8] P. Ekman, J. Hager, C. H. Methvin, and W. Irwin, “Ekman-Hager Fa-
cial Action Exemplars,” Human Interaction Lab., Univ. California , San
Francisco.

[9] I. Essa and A. Pentland, “Coding, analysis, interpretation and recogni-
tion of facial expressions,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 19, pp. 757–763, July 1997.

[10] W. V. Friesen and P. Ekman, “Dictionary—Interpretation of FACS
Scoring,” Human Interaction Laboratory, Univ. California, San Fran-
cisco.

[11] S. B. Gokturk, J. Y. Bouguet, C. Tomasi, and B. Girod, “Model-based
face tracking for view-independent facial expression recognition,” in
Proc. IEEE Int. Conf. Automatic Face Gesture Recognition, 2002, pp.
272–278.

[12] Handbook of Emotions, M. Lewis and J. M. Haviland-Jones, Eds., Guil-
ford Press, New York, 2000, pp. 236–249.

[13] K. Mase, “Recognition of facial expression from optical flow,” IEICE
Trans., vol. E-74, no. 10, pp. 3474–3483, 1991.

[14] A. Ortony and T. J. Turner, “What is basic about basic emotions?,” Psy-
chol. Rev., vol. 74, pp. 315–341, 1990.

[15] M. Pantic and L. J. M. Rothkrantz, “Expert system for automatic anal-
ysis of facial expression,” Image Vis. Comput. J., vol. 18, no. 11, pp.
881–905, 2000.

[16] , “Automatic analysis of facial expressions: The state of the art,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 1424–1445, Dec.
2000.

[17] , “Toward an affect-sensitive multimodal human-computer interac-
tion,” in Proc. IEEE, vol. 91, Sept. 2003, pp. 1370–1390.

[18] M. Pantic, M. Tomc, and L. J. M. Rothkrantz, “A hybrid approach to
mouth features detection,” Proc. IEEE Int. Conf. Systems, Man, Cyber-
netics, pp. 1188–1193, 2001.

[19] M. Pantic, I. Patras, and L. J. M. Rothkrantz, “Facial action recognition
in face profile image sequences,” in Proc. IEEE Int. Conf. Multimedia
and Expo, 2002, pp. 37–40.

[20] A. Pentland, “Looking at people,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, pp. 107–119, Jan. 2000.

[21] B. Raducanu, M. Pantic, L. J. M. Rothkrantz, and M. Grana, “Auto-
matic eyebrow tracking using boundary Chain code,” in Proc. Advanced
School Computing Imaging Conf., 1999, pp. 137–143.

[22] J. Russell and J. Fernandez-Dols, The Psychology of Facial Expres-
sion. New York: Cambridge Univ. Press, 1997.

[23] Handbook Methods in Non-Verbal Behavior Research, K. R. Scherer
and P. Ekman, Eds., Cambridge Univ. Press, Cambridge, MA, 1982.

[24] M. Schneider, A. Kandel, G. Langholz, and G. Chew, Fuzzy Expert
System Tools. New York: Wiley, 1997.

[25] L. Shafarekno, M. Petrou, and J. Kittler, “Automatic watershed seg-
mentation of randomly textured color images,” IEEE Trans. Image Pro-
cessing, vol. 6, pp. 1530–1544, Nov. 1997.

[26] K. Sobottka and I. Pitas, “A novel method for automatic face segmen-
tation, facial feature extraction and tracking,” Signal Process. Image
Commun., vol. 12, no. 3, pp. 263–281, 1998.

[27] Y. Tian, T. Kanade, and J. F. Cohn, “Recognizing action units for facial
expression analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23,
pp. 97–115, Jan. 2001.

[28] J. M. Vincent, D. J. Myers, and R. A. Hutchinson, “Image feature
location in multi-resolution images using multi-layer perceptrons,” in
Neural Networks for Vision, Speech & Natural Language, R. Lingard,
D. J. Myers, and C. Nightingale, Eds. London, U.K.: Chapman &
Hall, 1992, pp. 13–29.

[29] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient al-
gorithm based on immersion simulations,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 33, pp. 583–589, June 1991.

[30] J. Yang and A. Waibel, “A real-time face tracker,” in Proc. Workshop on
Applications of Computer Vision, 1996, pp. 142–147.

[31] M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images:
A survey,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 34–58,
Jan. 2002.

Maja Pantic (M’98) received the M.S. and Ph.D.
degrees in computer science from Delft University
of Technology, Delft, The Netherlands, in 1997 and
2001.

She joined the Data and Knowledge Systems
Group of the Mediamatics Department, Delft Uni-
versity of Technology as an Assistant Professor, in
2001. Her research interests pertain to the application
of AI and computational intelligence techniques in
the analysis of different aspects of human behavior
for the realization of perceptual, context-sensitive,

multimodal human-computer interfaces.
Dr. Pantic is a member of the ACM and the American Association of Artificial

Intelligence.

Leon J. M. Rothkrantz received the M.Sc. degree
in mathematics from the University of Utrecht,
Utrecht, The Netherlands, the Ph.D. degree in
mathematics from the University of Amsterdam,
Amsterdam, the Netherlands, and the M.Sc. degree
in psychology from the University of Leiden,
Leiden, the Netherlands, in 1971, 1980, and 1990,
respectively.

He joined the Data and Knowledge Systems group
of the Mediamatics Department, Delft University of
Technology, Delft, The Netherlands as an Associate

Professor, in 1992. His long-range research goal is the design and develop-
ment of natural, context-aware, multimodal man-machine interfaces. His cur-
rent research focuses on a wide range of the paper’s related issues including
lip-reading, speech recognition and synthesis, facial expression analysis and
synthesis, multimodal information fusion, natural dialogue management, and
human affective feedback recognition.


