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Abstract

A system that could enable fast and robust facial ex-
pression recognition would have many applications in be-
havioral science, medicine, security and human-machine
interaction. While working toward that goal, we do not
attempt to recognize prototypic facial expressions of emo-
tions but analyze subtle changes in facial behavior by rec-
ognizing facial muscle action units (AUs, i.e., atomic fa-
cial signals) instead. By detecting AUs we can analyse
many more facial communicative signals than emotional
expressions alone. This paper proposes AU detection by
classifying features calculated from tracked fiducial facial
points. We use a Particle Filtering tracking scheme using
factorized likelihoods and a novel observation model that
combines a rigid and a morphologic model. The AUs dis-
played in a video are classified using Probabilistic Actively
Learned Support Vector Machines (PAL-SVM). When tested
on 167 videos from the MMI web-based facial expression
database, the proposed method achieved very high recogni-
tion rates for 16 different AUs. To ascertain data indepen-
dency we also performed a validation using another bench-
mark database. When trained on the MMI-Facial expres-
sion database and tested on the Cohn-Kanade database, the
proposed method achieved a recognition rate of 84% when
detecting 9 AUs occurring alone or in combination in input
image sequences.

1 Introduction

Humans interact far more naturally with each other than
they do with machines. This is why face-to-face interac-
tion cannot be still substituted by human-machine interac-
tion in spite of the theoretical feasibility of such a substi-
tution in numerous professional areas including education
and certain medical branches. To approach the naturalness
of face-to-face interaction machines should be able to em-
ulate the way humans communicate with each other. Al-
though speech alone is often sufficient for communicating
with another person (e.g., in a phone call), non-verbal com-

municative cues can help to synchronize the dialogue, to
signal comprehension or disagreement and to let the dia-
logue run smoother, with less interruptions. With facial ex-
pressions we clarify what is said by means of lip-reading,
we stress the importance of the spoken message by means of
conversational signals like raising eyebrows, and we signal
comprehension, disagreement, boredom and intentions [1].
Machine understanding of facial expressions could revolu-
tionize human-machine interaction and has become, there-
fore, a hot topic in computer-vision research.

The method proposed in this paper is based on the Facial
Action Coding System (FACS) [3]. This is the best known
and the most commonly used system developed for human
observers to describe facial activity in terms of visually ob-
servable facial muscle actions (i.e., action units, AUs). Us-
ing FACS, human observers decompose a facial expression
into one or more of in total 44 AUs that produced the ex-
pression in question.

Previous work on this subject includes automatic detec-
tion of 16 AUs from face image sequences using lip track-
ing, template matching and neural networks [4], color and
motion based detection of 20 AUs occurring alone or in
combination in profile-view face video [5], detecting 15
AUs occurring alone or in combination by using temporal
templates generated from input face video [6] and detection
of 18 AUs using wavelets, AdaBoost and Support Vector
Machines [7]. For a good overview of the work done in the
field see [2, 13].

In this paper we present results of a system designed to
detect 16 AUs using features calculated from tracked fa-
cial point data. The facial points are tracked using an im-
proved version of Particle Filtering with Factorized Like-
lihoods (PFFL) proposed in [8]. We extend this particle
filtering scheme with a novel observation model combin-
ing a rigid and a morphological model. The system uses
further a different set of selected features per AU, each of
which represents a certain set of spatio temporal relations
between the tracked points. AUs are first detected for each
frame separately. Then, an adaptive threshold that uses the
predictions per frame as input data decides which AUs are



Figure 1: System outline. The 20 fiducial facial points are
tracked in raw video data. Features are extracted from the
tracked facial points and are used as input for an SVM-PAL
based Action Unit classifier.

present in the input video overall. Because of the large num-
ber of frames and classifiers to train (16 classifiers and over
15.000 frames), a Probabilistic Active Learning algorithm
(PAL) was implemented to reduce the validation time [9].
The system was trained and validated on 167 video’s from
the MMI-facial expression database [10]. To investigate the
generalization ability of the system, we conducted a second
validation using all 167 videos from the MMI-facial expres-
sion database as the training set and 153 videos from the
Cohn-Kanade Face Database [11] as the test set.

The remainder of the paper is organized as follows. In
section 2 we describe the process of feature extraction. Sec-
tion 3 describes the PAL-SVM classification scheme. Next
we present the results of our validation study in section
4. Conclusions and suggestions for future research are dis-
cussed in section 5.

2 Feature extraction

The method proposed here detects activation of AUs by
using motion patterns of 20 fiducial facial points (Fig 1) .
At this moment the initial positions of these points have to
be selected manually in the first frame. The positions in
all subsequent frames are determined with a tracker using
Particle Filtering with Factorized Likelihoods [8]. Particle
Filtering with Factorized Likelihoods is an extension to the
Auxiliary Particle Filtering theory introduced by Pitt and
Shephard [12], which itself is an extension to classical par-
ticle filtering (Condensation) [14].

2.1 Condensation

The main idea of particle filtering is to maintain a par-
ticle based representation of thea posteriori probability
p (α | Y ) of the stateα given all the observationsY up to
the current time instance. This means that the distribution
p (α | Y ) is represented by a set of pairs{(sk, πk)} such
that if sk is chosen with probability equal toπk, then it is
as if sk was drawn fromp (α | Y ). In the particle filtering
framework our knowledge about thea posterioriprobabil-
ity is updated in a recursive way. Suppose that at a previous
time instance we have a particle based representation of the
densityp (α−|Y −), that is, we have a collection ofK par-
ticles and their corresponding weights (i.e.

{(

s−k , π−
k

)}

).
Then, the Condensation Particle Filtering can be summa-
rized as follows:

1. DrawK particless−k from the probability density that
is represented by the collection

{(

s−k , π−
k

)}

.

2. Propagate each particles−k with the transition proba-
bility p (α|α−) in order to arrive at a collection ofK
particlessk.

3. Compute the weightsπk for each particle as follows,

πk = p (y | sk) (1)

Then normalize so that
∑

k πk = 1.

This results in a collection ofK particles and their corre-
sponding weights (i.e.{(sk, πk)} which is an approxima-
tion of the densityp (α|Y ).

2.2 Factorized Likelihoods

The Condensation algorithm has three major drawbacks.
The first drawback is that a large amount of particles that
result from sampling from the proposal densityp (α|Y −)
might be wasted because they are propagated into areas with
small likelihood. The second problem is that the scheme ig-
nores the fact that while a particlesk = 〈sk1, sk2, ..., skN 〉
might have low likelihood, it can easily happen that parts of
it might be close to the correct solution. Finally, the third
problem is that the estimation of the particle weights does
not take into account the interdependencies between the dif-
ferent parts of the stateα.

Particle filtering with factorized likelihoods [8] attempts
to solve these problems in one step, given the case that
the likelihood can be factorized, that is in the case that
p (y|α) =

∏

i p (y|αi). It uses a proposal distributiong (α)
the product of the posteriors of eachαi given the obser-
vations, that isg (α) =

∏

i p (αi|y), from which we draw
samplessk. These samples are then assigned weightsπk,
using the same proposal distribution. We now findπk and
sk as follows:



1. Propagate all particless−k via the transition probability
p (αi|α−) in order to arrive at a collection ofK sub-
particlesµik. Note, that whiles−k has the dimensional-
ity of the state space, theµik have the dimensionality
of the partitioni.

2. Evaluate the likelihood associated with each sub-
particleµik, that is letλik = p(y|µik).

3. DrawK particless−k from the probability density that
is represented by the collection{(s−k , λikπ−

k )}.

4. Propagate each particles−k with the transition proba-
bility p (αi|α−) in order to arrive at a collection ofK
sub-particlessik. Note, thatsik has the dimensionality
of the partitioni.

5. Assign a weightπik to each sub particle as follows,
wik = p(y|sik)

λik
, πik = wik

P

j
wij

. With this procedure,

we have a particle-based representation for each of the
N posteriorsp (αi | y). That is, we haveN collections
(sik, )πik, one for eachi.

6. Sample K particles from the proposal function
g (α) =

∏

i p (αi | Y ). This is approximately
equivalent to constructing each particlesk =
〈sk1...ski...skN 〉 by sampling independently eachsik

from p (αi | Y ).

7. Assign weightsπk to theK samples as follows:

πk =
p (sk|Y −)

∏

i p (sik|Y −)
(2)

The weights are normalized to sum up to one. With this,
we end up with a collection{(sk, πk)} that is a particle-
based representation ofp (α|Y ). Note that at the numerator
of eq. 2 the interdependencies between the different sub-
particles are taken into consideration. On the contrary, at
the denominator, the different sub-particles are considered
independent. In other words, the re-weighting process of
eq. 2 favors particles for which the joint is higher than the
product of the marginals.

2.3 Rigid and morphologic observation mod-
els

In steps 2 and 5 of the PFFL the likelihood and the
weight of a sub-particle are determined by applying an ob-
servation model. For the system described in this paper we
use two different models. Both models are robust color-
based observation models for template-based tracking. The
first model is suitable for the tracking of rigid motion of the
template around a facial micro feature. The second model
however, allows for minor morphologic transformations of

the template. The models are initialized in the first frame of
an image sequence when a set ofN windows are centered
around the facial micro-features that the user pointed and
that will be tracked for the rest of the image sequence. Let
us denote withoi the template feature vector, which con-
tains the RGB color information at windowi in frame 1.

We need to definep (y|αi). Let us denote withy (αi)
the template feature vector that contains the RGB color in-
formation at the window aroundαi. We use a color-based
difference between the vectorsoi andy (αi) that is invari-
ant to global changes in the intensity as follows:

c (oi, y (αi)) =

(

oi

E {oi}
− y (αi)

E {y (αi)}

)

(3)

whereE {x} is the (scalar) average intensity on a color tem-
platex. It is easy to show that the color difference vector
c (oi, y (αi)) is invariant to global changes in the light in-
tensity1. Finally, we define the scalar color distance using a
robust functionρ. Let us denote withj the index to the color
difference vectorj, that iscj (oi, y (αi)), the difference in
a specific color channel at a specific pixel. The scalar color
distance is then defined as:

dc (oi,y (αi)) = Ej {ρ (cj (oi, y (αi)))} (4)

where the robust function that has been used in our experi-
ments is theL1 norm.

The second model allows for non-rigid deformations of
the initial template, as mentioned above. Let us denote this
unknown transformation withφ : N2 → N2, a transforma-
tion that gives the correspondence between the pixel coor-
dinates of the color templateoi and the image patchy (αi).
Then, let us denote withy (αi, φ) the template that results
after the nonrigid transformationφ is applied to the image
patchy (αi). The distance metricdm for the second model
contains two terms: the first term,dc (oi,y (αi)), is simi-
lar to the distance measure for the rigid observation model,
only now we take the minimum color distance over all pos-
sible deformationsφ. The second term,ds (φ), is a measure
of the shape deformation that is introduced by the transfor-
mationφ. The distance measure is the minimum over all
possible transformations, formally:

dm (oi, y (αi)) = minφ (dc (oi, y (αi, φ)) + λds (φ))
(5)

where the first term is used to penalize large color-based
distances, the second term is used to penalize large shape
deformations and the parameterλ controls the balance be-
tween the two terms. Formally,ds (φ) is defined as the aver-
age Euclidean distance over the pixel based displacements,
that is

1Note thatc contains the color differences over all color channels (R,
G, B).



ds (φ) = Ei

{

√

‖i − φ (i)‖2

}

(6)

where‖x‖2is defined as theL2 norm ofx and, with a slight
abuse of notation,i denotes pixel coordinates. Finally, the
observation likelihood reads:

p (y|αi) =
1

z
exp

(−d (y (αi) , oi)

σi

)

(7)

whereσi is a scaling parameter andd (x, y) is either the
distance measuredc defined in (4) or the distance measure
dm defined in (5) depending on which observation model
is applied.z is a normalization term, which in the particle
filtering framework can be ignored, since the weights of the
particles are renormalized at the end of each iteration so as
to sum up to one.

2.4 Feature extraction

After tracking n facial micro features in an image se-
quence containingl frames, we attain a set coordinates
P = 〈pi . . . pl〉 with dimensionalityl∗n. In order to extract
features that are invariant to rigid head motions within one
image sequence we first intra-register all frames within one
sequence by subtracting point N (fig 1), which is tracked ex-
tremely robust, from all coordinates of facial micro features.
Variations in size and locations of the facial micro fea-
tures between different subjects are minimized by applying
a scaling transformationT on the facial points from which
we subtract the pointN to negate any translational vari-
ance. The scaling transformation is applied on the points in
a frame. This transformationT is obtained by comparing
facial pointsB, B1 andN of given subject with their corre-
sponding points in a selected expressionless ’normal’ face.
Thus, the registered pointsp′

i are obtained as:

p′

i = T (pi − N) (8)

From the set of pointsP ′ = 〈p′
1...p

′
n〉 we extract for ev-

ery AU a set of featuresFa with dimensionalityl ∗ da. The
features we extract for our system are simple relations be-
tween the coordinates, based on the rules for AU activation
as described in [13]. The relations are listed in Table 1.

Finally, we apply a temporal filter on the value of the
featuresFa to arrive at a feature setF ′

a = 〈f ′
a1, f

′
al〉 that is

more robust to noise and reveals the temporal pattern of an
AU activation more clearly.

f ′
ai =

1

7

i+3
∑

i−3

fai (9)

Figure 2 clearly shows the noise reduction achieved by (9).

Table 1: Feature representation of changes in position of
fiducial facial points

Feature Features for facial point fea-
tures

Edist (P1, P2) Euclidean distance between
the pointsP1 andP2

EdistInc (P1, P2, n) The Euclidean distance in-
crease between pointsP1

andP2 at framen relative to
their distance at frame 1

xDistFromN (P ) The vertical distance be-
tween pointP at frame n

and pointP at frame 1
yDistFromN (P ) The horizontal distance be-

tween pointP at frame n

and pointP at frame 1

3 SVM Classification

Support Vector Machines (SVMs) have proven to be ex-
tremely efficient classifiers, achieving classification rates
unparalleled by any other classifier in domains as diverse
as marine biology, face detection and speech recognition.
They are non-linear, generalize very well and have a well-
founded mathematical basis. The essence of SVMs can be
summarized in three steps: maximizing the hyperplane mar-
gin, mapping the input space to a (hopefully) linearly sep-
arable feature space and applying the ’kernel trick’ to the
results of the first two steps. In the remainder of this paper,
α denotes the Lagrange parameters that describe the sepa-
rating hyperplane in a SVM.

Maximizing the margin of the separating hyperplanew

results in a high generalization ability. In words, it is the
problem of finding the hyperplane that maximizes the dis-
tance between the support vectors (SVs) andw. This in-
volves finding the nonzero solutionsαi of the Lagrangian
dual problem, which is a quadratic programming problem
and can be solved efficiently. Having found the support
vector weightsαi and given a labeled training set〈x, y〉
the decision function in input space is:

f (x) = sgn

(

m
∑

i=1

αiyi 〈x, xi〉 + b

)

(10)

whereb is the bias of the hyperplane and〈a, b〉 is the in-
ner product ofa andb. Off course, most real-world prob-
lems are not linearly separable in input space. To overcome
this problem, we map each input samplex to its represen-
tation in feature spaceΦ (x) in which we can apply our al-
gorithm for finding the maximal margin hyperplane. The



Figure 2: Noise reduction by temporal filtering of two features for detection of Action Unit 25 (lips parted). The x axis
represents the feature EdistIncrease(I,J) and the y axis the feature {yDistFromN(L)-yDistFromN(K)} (see Fig 1 for the
location of points I, J, K and L). Blue circles are negative samples (lips together), red squares positive examples (lipsparted).
The left figure shows the unfiltered features, while the rightfigure clearly shows a reduction in noise and clearer spatio-
temporal patterns.

third step is probably the most important step. Maximiz-
ing the margin and evaluating the decision function both
require the computation of the dot product〈Φ (x) , Φ (xi)〉
in a high-dimensional space. These expensive calculations
are reduced significantly by using a Mercer kernelK, such
that

〈Φ (x) , Φ (xi)〉 = K (x, xi) (11)

The patterns which we want to detect using our maximal
margin classifier do not need to coincide with the inputx,
we might as well apply our decision function (10) directly
on Φ (x). Substituting (11) for the inner product, the deci-
sion function in feature space directly becomes

f (x) = sgn

(

m
∑

i=1

yiαiK (x, xi) + b

)

(12)

3.1 Probabilistic Active Learning

Because of the large amount of data points used in our
validation phase (over 15.000 frames), cross validation be-
comes an intractable problem. To overcome this problem,
we implemented a Probabilistic Active Learning algorithm
(PAL) [9]. PAL is computationally efficient when dealing
with large sets of data. The algorithm iteratively builds the
SV set, using only a small subset of the training samples
on which it trains a support vector classifier. The algorithm
estimates the likelihood that a new example belongs to the
actual support vector set and selects a set ofp new points
according to this likelihood, which are then used along with
the current set of SVs to obtain the new SV set. The likeli-
hood of an example being an SV is estimated using a com-
bination of two factors: the margin of the particular exam-

ple with respect to the current hyperplane and the degree
of confidence that the current set of SVs spans the actual
hyperplane (not, as Mitra et al. [9] propose, the actual set
of SVs, as the set of SVs spanning the hyperplane does not
need to be unique). This confidence factorc, which varies
adaptively with each iteration, can also be seen as a measure
for how close the current hyperplane is to the actual hyper-
plane. Thereforec can be used as a indication to either pick
for the next iteration a high number of new samples close
to the current hyperplane (highc) or instead far away from
the hyperplane (lowc). So instead of being randomly gen-
erated, the new set of samples for each iteration is generated
according to a probabilityPξ(x,f(x)) whereξ (x, f (x)) de-
notes the event that examplex is an SV. If 〈w, b〉 is the
current separating hyperplane, we have:

Pξ(x,f(x)) =

{

c if y (〈w, x〉 + b) ≤ 1
1 − c otherwise

(13)

Herec is the above mentioned confidence factor. This fac-
tor is estimated as follows. Let the current set of SVs be
denoted byS = {s1, s2, ..., sl}. Also, consider an integerk
(say,k =

√
l). For everysi ∈ S, compute the set ofk near-

est points in the train setx. Among thek nearest neighbors,
let k+

i andk−
i number of points have labels +1 respectively

-1. The confidence factorc is then defined as:

c =
2

lk

l
∑

i=1

min
(

k+
i , k−

i

)

(14)

Note that the confidence factor varies between zero, when
all nearest neighbors have the same label, and, one when
the class labels around each support vector are evenly dis-
tributed. This results in an adaptive algorithm that starts



with finding the general location of the separating hyper-
plane and then proceeds with fine tuning the exact location
of w.

4 Experimental evaluation

Until recently, the Cohn-Kanade database was the only
benchmark set for research efforts in automating facial ex-
pression analysis. However, since this data set exhibits a
number of drawbacks, another benchmark facial expression
data set has been recently proposed. The pertinent MMI fa-
cial expression database contains more than 800 face video
sequences recorded in true color instead of gray scale, hav-
ing a frame rate of 24 instead of 12 frames per second,
having no time stamps occluding the facial components and
containing a large number of AU-coded videos in a frame by
frame manner. Finally, this database has been developed as
a web-based direct-manipulation application, allowing easy
access and easy search of the available images [10].

To test the performance of our system, we performed two
validation studies. For the first study, we applied a leave-
one-session-out cross validation using samples of the MMI-
Facial expression database. The second study evaluates how
well the system generalizes on new data. For this purpose
we trained the system using 167 samples from the MMI-
Facial expression database and we tested it on 153 videos
from the Cohn-Kanade Database. Unfortunately, the Cohn-
Kanade database does not contains video samples picturing
all AUs that our system can recognize. Hence, we were not
able to perform this validation for all 16 AUs used in the
first study, but only for 9 of those.

4.1 MMI Facial expression database valida-
tion

We trained and tested 16 binary classifiers for 16 dif-
ferent AUs using data on 20 facial micro features (fig 1)
tracked in 167 videos from the MMI-Facial Expression
Database. The data are of 15 different subjects, display-
ing facial expressions produced on command. The utilized
data picture not only the 16 AUs we wish to detect but also
other AUs. This way we know that our system will work
in real-life situations where people can display any facial
expression, although we will not be able to recognize them
all. Validation was performed using a leave-one-session-out
scheme, where each session is an image sequence picturing
one facial expression. Ideally, for training an SVM classi-
fier one should have at least 15 samples of every class one
wishes to detect [7]. Considering the small number of sam-
ples we have for some AUs (see table 2), any other cross
validation technique would result in lower detection rates.

The SVM classifier detects AUs per frame. Since we

want to determine the presence of an AU within a video
overall, we add a decision layer that adaptively computes a
threshold, favoring the recall over the precision of the clas-
sification of AUs in facial video. First, we determine a set of
AU-activation predictions for each frame in every of the 167
facial videos. Suppose the SVM determined that a videox

hasm frames where a certain AU is active. LetNp be a
vector containing for every video in which the pertinent AU
is activated the number of frames that the SVM predicted
to have that AU activated. Similarly, letNn be the vec-
tor containing per video in which the pertinent AU is not
present the number of active frames that the SVM falsely
predicted that AU is to be present. Letmp = min (Np) be
the length of the shortest video segment belonging toNp

and let0 < mnp = max (Nn) < mp be the length of the
longest segment belonging to the subset ofNpcontaining
video segments with length smaller thanmp. The threshold
θ that is used to decide whether the test samplex contains
the AU under investigation (i.e.m > θ) is now defined as:

θ =
mp + mnp

2
(15)

The evaluated system uses for every binary classifier a
few selected featuresF ′

a. While for most AUs it was possi-
ble to derive features directly, for AU6 and AU9 (cheek rais-
ing and nose wrinkling, respectively) we cannot formulate
any features that directly indicate their activation. There-
fore, for the detection of AU6 and AU9 we use all features
defined for the other 14 AUs. Table 2 shows our results
using the leave-one-session-out validation. Columns three
to five list the classification rate, recall and precision. The
classification rate is the number of correctly classified sam-
ples divided by the total number of samples. The recall is
defined as the number of positive samples from the ground
truth that are correctly classified divided by the total num-
ber of ground truth positive samples. Precision is defined as
the correctly classified samples divided by the sum of cor-
rectly classified positive samples and the number of false
positives. As can be seen from table 2, the usage of all fea-
tures enables us indeed to detect AU6 and AU9, even though
we could not define any specific set of features that would
directly indicate the activation of these AUs.

An interesting observation is the detection of AU6. AU6
occurs naturally together with AU12 and AU13 (smiles).
However, in posed smiles, AU6 is often not activated. In our
validation set, 5 out of 21 ’smiles’ were not accompanied by
AU6. Still, instead of learning the correlation with AU12
and AU13 and, in turn, resulting in a large number of false
positives, our classifier for AU6 seems to have learned to
distinguish between the real and the posed smiles as can be
seen from the high precision achieved by the classifier for
this AU.



Table 2: Cross validation results on the MMI facial expres-
sion database. The second column lists the number of pos-
itive/negative sessions for the specified Action Unit. A ses-
sion is positive for an AU if the AU is contained in that
session.

AU truth cl. rate Recall Precision

1 13/154 1.00 1.00 1.00
2 10/157 1.00 1.00 1.00
4 22/145 0.96 0.91 0.83
6 16/151 0.96 0.69 0.92
9 10/157 0.99 1.00 0.83
10 15/152 0.90 0.67 0.48
12 11/156 0.99 0.82 1.00
13 10/157 0.97 0.90 0.69
16 17/150 0.77 0.53 0.23
18 13/154 0.95 0.77 0.67
20 10/157 0.98 0.80 0.80
22 8/159 0.95 0.75 0.46
25 75/92 0.90 0.87 0.92
26 17/150 0.95 0.65 0.85
27 10/157 1.00 1.00 1.00
30 8/159 0.97 0.75 0.67

Total: 0.95 0.82 0.77

4.2 Validation using two databases

To determine the generalisation ability of our system
we trained it on one database and we tested it on another
database. Training was performed using 167 videos from
the MMI-Facial expression database while testing has been
done using 153 videos from the Cohn-Kanade Database.
To do so, the Cohn-Kanade database video samples needed
to be AU-coded in the frame by frame manner as well.
We did that and achieved the results shown in table 3.
Clearly, although the classification rate is somewhat lower
than it is the case in the first validation study, the sys-
tem still performs very well with a 84% overall recogni-
tion rate. Most differences in classification rates arose due
to the differences of the facial expressions recorded for the
two databases. The Cohn-Kanade database contains record-
ings of multiple-AU facial expressions with sometimes ex-
tremely subtle AU activations. In contrast, the set we used
from the MMI-Facial expression database has only one or
two AUs active for each video and the AU activations are
always clearly visible. The problem is clearly visible in the
detection of AU26/AU27. The difference between the two
is just how great the distance between facial point M and
N is (see Fig 1). It is therefore no surprise that four out of
five false positives of AU27 are due to activation of AU26.
Another problem is the AU combination AU1 + AU4. This

Table 3: Results of database generalization, training the
classifier on data from the MMI facial expression database
and testing on data from the Cohn-Kanade database. The
second column lists the number of positive/negative ses-
sions for the specified Action Unit. A session is positive
for an AU if the AU is contained in that session.

AU truth cl. rate Recall Precision

1 55/98 0.87 0.71 0.91
2 41/112 0.86 0.83 0.71
4 47/106 0.87 0.66 0.89
6 32/121 0.53 0.53 0.8
9 25/128 0.94 0.80 0.83
12 36/117 0.84 0.92 0.61
25 94/59 0.90 0.90 0.93
26 20/133 0.82 0.52 0.39
27 25/128 0.97 1.00 0.83

Total: 0.84 0.76 0.77

frequently occurring AU combination has a distinct motion
pattern that cannot be simply described by adding the nor-
mal patterns of AU1 and AU4. In the training set this com-
bination does not occur, which explains the lower scores for
AU1 and AU4 when the method was tested on the Cohn-
Kanade database samples picturing AU1+AU4 activation2.

5 Conclusions

In this paper we present a facial point tracking scheme
using particle filtering with factorized likelihoods enhanced
with a novel observation model combining a rigid and a
morphologic model. Using features calculated from tracked
facial points as input of a PAL-SVM we are able to detect a
similar amount of AUs as reported in [2, 5, 4, 7] with similar
or higher recognition rates than those reported thus far.

The results presented in section 4.1 show clearly that a
data representation based on tracked facial points is very
well suited for the task of AU detection and, in turn, for the
task of automated facial expression analysis. The fact thatit
is possible to detect AUs per frame, makes this data repre-
sentation also suitable for analyzing the dynamics of facial
expressions. Section 4.2 indicates that our system showed
high generalizability when trained on one database and
tested on another independent facial expression benchmark
database. However, the results presented in section 4.2 also
indicate that a richer training set is desirable.

Except the number of AUs and the temporal dynamics

2When we exclude all AU1+AU4 samples from the test set, AU1 hasa
classification rate of 0.93 and a recall of 0.87 while AU4 has aclassification
rate of 0.92 and a recall of 0.77.



handled, our method has also improved other aspects of au-
tomated AU detection compared to previously reported sys-
tems . The performance of the proposed system is invari-
ant to occlusions like glasses an facial hair as long as these
do not entirely occlude facial fiducial points (e.g. point E
on the eyebrows). Due to the observation model used, the
method performs well independently of changes in the il-
lumnination intensity. Finally, our system is invariant to
translation and in plane rotation of the face. It is invariant
to out of plane rotation of the face as long as all facial points
remain visible.

Two limitations of the current system are the manual
initialisation of the facial points in the first frame of an
input face video and the computational complexity of the
PFFL technique. To address the first limitation we are cur-
rently investigating methods to automatically detect the fa-
cial point locations in the first frame. This improvement
would be a big step toward a fully automated facial expres-
sion detection system. Computational complexity however
still remains a problem to be addressed in the future.

In the near future we plan to conduct an even larger ex-
perimental study that would evaluate the generalizabilityof
our system using larger and more comprehensive training
and testing data sets. Furthermore, because the reliability
of the system is rather high, we will be able to perform
in-depth studies of the temporal dynamics of facial expres-
sions, which form the main focus of our future research in
the field.

Acknowledgements

The authors would like to thank Jeffrey Cohn of the
University of Pittsburgh for providing the Cohn-Kanade
database. The work of M.F. Valstar and I. Patras has been
supported by the Netherlands BSIK-MultimediaN-N2 In-
teraction project. The work of M. Pantic has been sup-
ported by the Netherlands Organization for Scientific Re-
search (NWO) Grant EW-639.021.202.

References

[1] J.A. Russell and J.M. Fernandez-Dols, Eds.,The Pshy-
chology of Facial Expression, New York: Cambridge
University Press, 1997

[2] M. Pantic and L.J.M. Rothkrantz, “Toward an Affect-
Sensitive Multimodal Human-computer Interaction”,
Proceedings of the IEEE, vol. 91, no. 9, pp. 1370-
1390, 2003

[3] P. Ekman and W.V. Friesen,The Facial Action Coding
System: A Technique for the Measurement of Facial

Movement, San Francisco: Consulting Psychologist,
1976

[4] Y.Tian, T. Kanade and J.F. Cohn, “Recognizing action
units for facial expression analysis”,IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 23, no. 2,
pp. 97-115, 2001

[5] M. Pantic, I. Patras and L.J.M. Rothkrantz, “Facial
action recognition in face profile image sequences”,
Proc. IEEE Int’l Conf. Multimedia and Expo, vol 1,
pp. 37-40, 2002

[6] M.F. Valstar, I. Patras and M. Pantic, “Motion history
for facial action detection in video”,Proc. IEEE Int’l
Conf. Systems Man and Cybernetics,vol 1, pp. 635-
640, 2004

[7] M.S. Bartlett, G. Littlewort,C. Lainscsek, I. Fasel, J.
Movellan, “Machine Learning Methods for Fully Au-
tomatic Recognition of Facial Expressions and Ac-
tions”, Proc. IEEE Int’l Conf. Systems Man and Cy-
bernetics,vol 1, pp. 592-597, 2004

[8] I. Patras and M. Pantic, “Particle filtering with fac-
torized likelihoods for tracking facial features”,Proc.
IEEE Int’l Conf. Automatic Face and Gesture Recog-
nition, pp. 97-102, 2004

[9] P. Mitra, C.A. Murthy, S.K. Pal, “A probabilistic ac-
tive learning support vector learning algorithm”,IEEE
Trans. on Pattern Analysis and Machine Intelligence,
vol. 26, no. 3, pp. 413-418, 2004

[10] M.Pantic, M.F. Valstar, R. Rademaker and L. Maat,
“Web-based database for facial expression analysis”,
Proc. of the IEEE Int’l Conf. Multimedia and Expo,
accepted for publication, 2005

[11] T. Kanade, J. Cohn and Y. Tian, “Comprehensive
database for facial expression analysis”,Proc. IEEE
Int’l Conf. Automatic Face and Gesture Recognition,
pp. 46-53, 2000

[12] M.K. Pitt and N. Shephard. Filtering via simulation:
auxiliary particle filtering.J. American Statistical As-
sociation,vol. 94, pp. 590-599, 1999

[13] M. Pantic and L.J.M. Rothkrantz, “Facial action
recognition for facial expression analysis from static
face images”,IEEE trans. on Systems, Man and Cy-
bernetics Part B, vol. 34, pp. 1449-1461, 2004

[14] M. Isard and A. Blake, “Condensation - conditional
density propagation for visual tracking”,Int’l J. Com-
puter Vision, pp. 5-28, 1998


