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ABSTRACT 
In this paper we describe our approach to a situation 

recogniser system that currently is being developed for a 
flight simulator environment. The situation recogniser is 
part of a context-aware system and can be seen as a first 
step to an artificial intelligent pilot bot. We will address our  
explorative data study (PCA analysis), our attempt to 
recognise and predict situations with an Elman neural 
network, and our choice to use a knowledge-based 
production system. 

INTRODUCTION 
Ever since the first airplane was built by the Wright 

brothers the capabilities of aircraft have continuously been 
improved. For example, the maximum speed of the average 
military fighter plane has gone from approximately 100 
Mph in 1920 to over 1500 Mph currently. These high 
speeds are responsible for the little time available to pilots 
to process information and make decisions. In addition, the 
improved range of weapons in military aircraft (missiles can 
be fired from 20 km away) reduces the pilot’s decision time 
even more. Also, the amount of information available to a 
pilot today and the complexity of the contents have 
increased significantly.  Where earlier planes only had a few 
meters, modern aircraft have several hundreds of meters or 
information displays, providing the pilot with a wealth of 
different information sources. 

 
To help the pilot deal with information processing and 

decision-making, and to avoid cognitive overload, a crew 
assistant system or intelligent pilot-vehicle interface (PVI) 
has been proposed [Mulgund and Zacharias 1996]. The idea 
is that such a system would present relevant information to 
the pilot at the right moment, depending on the situation, the 
status of the aircraft, and the workload of the pilot. 

 

The Data and Knowledge Systems group at the Delft 
University of Technology is currently working on a project 
called Intelligent Cockpit Environment, or ICE for short. 
The main objective of this project is to investigate new 
interface techniques and technology for intelligent PVIs. 
Part of the ICE project is to design a context-aware system 
that can automatically recognise the current situation of the 
pilot and aircraft. The first step towards this context-aware 
system is to create a situation recogniser module. The 
situation recogniser module should be able to determine the 
status of the aircraft and the corresponding phase in the 
flight plan.  

 
Although the ICE project does not explicitly focus on 

creating an A.I. pilot bot capable of reasoning and 
recognizing situations in a flight simulator, it should be 
possible to use the context-aware system for these purposes. 

THE FLIGHTGEAR SIMULATOR 
Many sophisticated flight simulator software packages are 

available on the market, but most programs are commercial 
software that cannot be extended. For the purpose described 
above we want to be able to manipulate input data and 
adapt our cockpit environment. Therefore, we chose the 
open-source FlightGear flight simulator as our experiment 
platform (see also Figure 1).  

 

 
Figure 1: Screen shot of the FlightGear program 
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The FlightGear simulator project is an open-source, 
multi-platform, cooperative flight simulator project. The 
idea for FlightGear was born out of dissatisfaction with 
current commercial available PC flight simulators. The goal 
of the FlightGear project is to create a sophisticated flight 
simulator framework for use in research or academic 
environments, for the development and pursuit of other 
interesting flight simulations ideas, and an good and 
extendable end-user application [Perry and Olson 2001]. 
The FlightGear platform is open to be expanded and 
improved upon by anyone interested in contributing. For 
more information on FlightGear visit the website 
http://www.flightgear.org 

EXPLORATIVE DATA ANALYSIS 
We started our research with an explorative data analysis. 

The FlightGear simulator allows us to log almost all internal 
variables (e.g. altitude, airspeed, gear position, etc). For our 
explorative data analysis we selected four variables: pitch, 
throttle, acceleration and roll. Figure 2 shows the time graph 
of the flight data generated on a sample flight. Note that the 
straight flight (part C) was flown using the auto-pilot. 

 

 
Figure 2: Time graph of selected flight variables during 

annotated sample flight 

PCA Analysis 
The goal of the PCA analysis was to investigate the 

possibility to give an automated interpretation of recorded 
data; what was the planned action of the pilot and what was 
his goal. As a proof of concept we limited ourselves to the 
following set of actions: going up, regular (straight) flight, 
turning right, turning left, going down, stand still (on the 
ground), and taxiing. 

 
Applying principal component analysis (PCA) or 

Sammon mapping we were able to project the logged data 
and cluster the data in the 7 selected action states. Figure 3 
shows two projections of variables’ tracks during our 
sample flight. From this figure we conclude that in principle 
it should be possible to define states, which will result in 
distinct clusters in the space of logged data. By tracking the 
(projected) flight we can label the position with the 
corresponding label of the cluster. This way we are able to 

give an automated interpretation of the flight behaviour 
based the logged data as is shown in Figure 4. 

 

 
 

 
Figure 3: Clustering in two PCA projections 

 

 
 

 
Figure 4: Tracking path in the two PCA projections 
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Elman neural network 
We found similar results using recurrent neural networks. 

We selected an Elman neural network with one hidden layer 
as is shown in Figure 5. As test input we used the same 
logged data as before and as output the earlier-mentioned 7 
states. We were able to train the neural network for the 
automatic recognition of the 7 states. The error rate on a set 
of test data was 13.5 %.  

 
We also used neural networks to predict the future values 

of the logged parameters. As displayed in Figure 6, for 
every variable X, we used at every point k the previous 
values (Xk,…Xk-p) to predict X’s future values (Xk+1, Xk+2). 
In Figure 7 we show the results using a feed forward 
network of two hidden layers (4-5-5-2 architecture) using 
window size 5.  

 

 
Figure 5: Architecture of used Elman neural network 

 

 
Figure 6: Model of prediction 

More results about the PCA analysis and the prediction 
with Elman neural networks can be found in [Capkova, Juza 
and Zimmerman 2002]. 

 

 
Figure 7: Results of neural network state prediction with 

window size 5 

KNOWLEDGE BASE 
After the explorative data study, we decided to take a 

knowledge-based production system as the basis for our 
real-time and on-line situation recogniser module. The 
advantage of a knowledge based system is that it is much 
more transparent how the system makes a decision, 
compared to the neural network approach. In addition, it is 
possible to make changes to the knowledge base and adapt 
the system to new circumstances or environments (e.g. other 
aircrafts). 

A simple prototype 
For our prototype program, we started with designing a 

set of rules to recognise situations that can occur while 
flying a Cessna 172, the default airplane in FlightGear. We 
made rules for the following situations; start-up, taxiing, 
hold-short, take-off, aborted take-off, set course to 
waypoint, in flight, start-landing, aborted landing, final 
approach, touchdown and shutdown. All situations can be 
recognised based on a number of parameters such as 
airspeed, vertical speed, throttle, brakes status, gear status, 
etc. For each state we tried to use as much of the available 
variables as possible, since this allows us to still get an 
accurate indication of the situation, even if one of the 
parameters is not normal for that situation. For example, if 
the pilot lowers the gear, it is obvious that he is trying to 
land. However, if for some reason the pilot forgets to lower 
the gear, we are still able to determine that the pilot is 
landing by looking at his airspeed, flaps, vertical speed and 
altitude. This allows us to provide feedback to the pilot 
about possible mistakes or malfunctions in a latter stage. 

 
To reduce the amount of rules that have to be checked, we 

devised a state-transition diagram and implemented this in 
the prototype program, which is shown in Figure 8. 
 



 

 

 
Figure 8: Screen shot of the prototype situation recogniser 

In almost all on-line test cases, our prototype program 
was able to recognise the correct situation in real-time. 
However, in some cases the recogniser was a little late in 
detecting that the pilot was initiating landing procedures. 

Expanding the prototype 
Our next step is to expand the prototype situation 

recogniser program to accommodate a military aircraft such 
as the F16. Not only will this provide us with a more 
challenging and interesting domain with other situations, we 
also expect that the usage of an intelligent interface, which 
is our end goal, will have much more added value in a 
military aircraft than in a civilian airplane. 

 
Rules and procedures about flying an F16 are well 

documented in two official F16 manuals available on the 
Internet [USAF 1996], [USAF 1995] and in the user 
manuals of the commercial flight simulator Falcon 4 
[Microprose 1998], [Falcon unified team 2001]. These 
documents describe many situations that can occur during a 
military mission, as well as the actions that should be taken 
by the pilot in those cases. In order to have a more generic 
recogniser that can be used with multiple airplanes, we 
chose to encode the F16 rules and procedures in XML. The 
following situations have been described in our XML 
knowledge base [Mouthaan 2002]: start-up, taxiing, taking 
off, aborted takeoff, normal flight, dogfight, visual attack, 
non-visual attack, guided attack, harm attack, taking evasive 
action, deep stall, air refuelling, normal landing, flame-out 
landing, aborted landing, and shutting down. Since we now 
have to recognise a larger number of situations compared to 
the Cessna, we decided to use a slightly different approach. 
For every situation we designed a set of rules that produce a 
probability that that particular situation is occurring. The 
probability is calculated based on the state of the aircraft 
(FlightGear variables) or the recent events (pilot or 
environment). An event can have three sources: 

 
Pilot: Pilot events are actions taken by the pilot, for 

example pushing a button or adjusting the throttle.  
 
Aircraft: Aircraft events are changes in the aircraft’s 

state, for example a change in altitude or speed. 
 
Environment: An event from the environment can be a 

missile that is launched at the aircraft by an enemy SAM 
site. 

 
Besides these three sources there is another source of 

information that can be used to determine the current 
situation, which is the flight plan. The flight plan contains 
information about the steer points the pilot should reach 

during the flight, but it also contains information about 
possible situations that will occur at those steer points (e.g. 
attack ground target). If the flight plan is entered in our 
system before the actual flight the system should be able to 
more accurately predict the current situation. 

The rules 
The rules are grouped according to the situation they 

relate to. Every rule has a value that indicates the 
probability that the rule accurately identifies the situation. 
When data (FlightGear variables) is passed to the 
knowledge base some rules will fire and some will not. A 
probability calculator will combine all the probabilities that 
are the result of the rules that fire and calculate a new 
probability for each situation. The probabilities that are 
stored in the knowledge base are fuzzy values from a fuzzy 
set. Once the probability calculators have produced a 
probability for every possible situation, an overall controller 
will evaluate all probabilities and determine if it can decide 
with enough certainty that one of the situations is taking 
place.  

 
For every situation there are several types of rules: 

 
Action rules: an action rule is a rule that states that a 

pilot has to or might perform a certain action during this 
situation. 
 

Visual check rules: a visual check rule states that the 
pilot should check a certain instrument during the situation. 
 

Conditional rules: the conditional rules can be used to 
determine if a situation has been started or if a situation has 
been finished. 
 

Additional rules: rules that do not fit in any of the 
categories above. 

 
Below we show an example of the XML code describing 

a dogfight situation:  
 

<situation name=”Dogfight” timewindow=”30”> 
<actions> 

<phase name=”ingress”> 
<action name=”fcr” priority=”0/1” probability=”vsp”>&ACM;</action> 

</phase> 
<phase name=”engage”> 

<action name=”master arm” priority=”1” 
probability=”BP”&MASTER_ARM;</action> 

……….. 
</actions> 
<visualChecks> 

<instrument name=”HUD”/> 
<instrument name=”radio/> 

…. 
</visualChecks> 
<constraints startProbability=”SP” end Probability=”BP”> 

<constraint name=”IFF” start=”&OFF;” /> 
<constraint name=”RWR” start=”&ON;” /> 

……… 
</constraints> 
</situations> 



 

 

CONCLUSIONS AND FUTURE WORK 
We have presented some results of work in progress on an 

automatic situation recogniser in a flight simulator. We 
experimented with PCA analysis and neural networks to 
automatically recognise 7 states. The results were fairly 
good, but because of flexibility we decided to implement 
the situation recogniser as a knowledge-based production 
system. We devised a prototype situation recogniser that 
can detect the most common situations when flying a 
Cessna airplane. The prototype system also performed very 
well, except in some cases it was slow in detecting landing 
events. We have also shown our ideas about extending the 
existing recogniser to detect more complex situations  
(flying an F16) and adding probability values to the 
reasoning process. 

 
The situation recogniser is part of a context-aware system 

that will be used in future research on intelligent interfaces 
in the cockpit. After our implementation of the F16 
knowledge base and improved reasoning system, we plan to 
add a pilot-state recogniser module that should be able to 
assess the pilot’s activities and workload. 

 
Since our experiment platform, the FlightGear simulator, 

does not support multiple aircrafts yet, we are currently 
working on a multiplayer extension for FlightGear. Once 
the multiplayer extension, knowledge base, and pilot state 
recogniser are finished we plan to start experimenting with 
different intelligent interface strategies. 
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