

TOWARDS A NEURAL CONTROL ARTIFICIAL PILOT

Qiuxia Liang, Patrick Ehlert, and Leon Rothkrantz
Department of Media and Knowledge Engineering

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: { Q.Liang, P.A.M.Ehlert, L.J.M.Rothkrantz} @ ewi.tudelft.nl

ABSTRACT

In this paper we will address our efforts to design a
neural control system that can control a simulated aircraft,
which ultimately should lead to a realistic artificial pilot.
The system we designed consists of a flight plan module,
the actual neural controller module, and a graphic user
interface. The goal of the flight plan module is to manage
the global control of the whole system. For the neural
controller we chose to use a Forward Modeling and Inverse
Controller. The Jordan Network was used to construct the
pre-trained identifier and the online learning controller.
Our first experiments showed that improvements were
necessary to make the aircraft fly more smoothly. Although
the aircraft “wobbles” a bit at the start of a new flight
procedure, the controller is able to adapt to changing
circumstances during flight.

1. INTRODUCTION

The Intelligent Cockpit Environment (ICE) project is a
project of the Department of Media and Knowledge
Engineering of Delft University of Technology. Originally,
the main purpose of this project was to investigate
techniques that can be used to create a situation-aware
crew assistance system [Ehlert and Rothkrantz 2003] 1 .
Basically, a crew assistance system functions as an
electronic co-pilot looking over the shoulder of the crew of
an aircraft and helping out when necessary.

A secondary objective of the ICE project has been to

create a realistic artificial pilot, also called flightbot, that
can be used for simulations. Such a pilot can increase the
realism of flight simulators and enhance the training of real
pilots as well as study the different ways different pilots are
flying.

In this paper we will address our efforts to design a

neural control system that can control a simulated aircraft.
The control structure we used for this application is called

1 More information on the ICE project can also be found via
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/

Feed Forward and Inverse Control and consists of two
neural networks. One is a pre-trained network and the other
is an online learning network for inverse control.

2. RELATED WORK

2.1. Simulating pilots
There are several projects that deal with the construction

of artificial pilots. Here we will shortly mention two
examples found in literature;

 TacAir-Soar is a rule-based system that generates

believable human-like pilot behaviour for fixed-wing
aircraft in large-scale distributed military simulations
[Jones et al 1999]. Each instance of TacAir-Soar is
responsible for controlling one aircraft and consists of a
Soar architecture [Laird, Newel and Rosenbloom 1987]
linked to the ModSAF simulator [Ceranowicz 1994]. The
advantage of using Soar is that the reasoning and decision-
making of the system is similar to the way humans are
generally believed to reason.

The Linköping University in collaboration with Saab

Military Aircraft AB in Sweden developed an intelligent
air-to-air combat agent [Coradeschi, Karlsson, and Törne
1996]. The system is designed specifically for air-to-air
combat experts and allows the experts to specify the
behaviour and decision-making of the intelligent pilot
agents, without the help of a system expert. The agents are
modelled by decision trees. These trees contain production
rules that describe the agent’s dynamic task priorities.
During one decision cycle, several branches of the tree can
be processed in parallel after which all selected actions are
evaluated for priority and compatibility.

Both TacAir-Soar and Linköping University’s agent try

to simulate realistic pilot flight behaviour and both focus
primarily on decision-making during flight. However, both
systems use a rule-based approach for aircraft control. No
project was found that uses a neural control approach.

The possible advantage of neural control over a rule-
based approach is that there is no need to specify rules for
pilot behaviour. Although rule-based approaches are very

suitable to model normative pilot behaviour, it is much
more difficult to model the different styles that different
pilots use for flying. Secondly, using neural networks
automated learning can be used to avoid the difficult
process of explicating flight rules and finetuning rules and
parameters. Thirdly, neural networks allow automatic
adjustment to changing circumstances, such as different
weather conditions, different aircraft, and malfunctioning
controls.

2.2. Neural networks and flight control
The first Neural Network (NN) controller was developed

by Widrow and Smith in 1963. Since then many
applications have shown that NNs can be applied
successfully to control unknown nonlinear systems. There
have been a number of studies that investigated neural
networks for flight control, for example [Calise
1996],[Wyeth et al 2000],[Pesonen et al 2004]. However,
all neural control studies try to improve (a particular part
of) automated flight control and focus mainly on the
control of Unmanned Aerial Vehicles (UAVs), helicopters,
and missiles. Their goal is simply to create a controller that
functions as good as possible. We did not find any studies
that investigated neural networks for simulating realistic
flight behaviour of real pilots.

3. SYSTEM DESIGN

3.1. General system scheme
The essential element of a powerful and flexible neural

control system is of course the controller itself. However,
to create a flightbot we also need some assistant parts, for
example a flight-planning system.

Our system has been divided into three parts according

to the different tasks and functions which are; the graphic
user interface, the flight plan module, and the neural
controller module. Figure 1 shows the general system
scheme. The user interface sends orders from the user to
the flight plan system. The flight plan system will analyse
the order to determine whether it is reasonable or not. If it
is reasonable, the planning system will create a flight plan,
which consists of at least one flight procedure. Then, the
planning system will send different data (the desired plant
output) to the controller module corresponding to each
flight procedure. The controller will produce the necessary
control data that will finally be applied to the plant
(aircraft).

Figure 1: general scheme of the neural flight control autopilot
system

3.2. Flight plan module
The goal of the flight plan module is to manage the

global control of the whole system. The flight plan module
will keep an eye on the flight process and update its flight
records to provide the proper plant output data. To be
precise the duties of the flight plan module are:

• Analyzing the reasonability of the current goal;
• Deciding on the flight plan;
• Providing the controller with the necessary data

corresponding to each part of the flight plan;
• Checking the current flight situation.

Figure 2 shows a scheme of the flight plan system

module.

Figure 2: the flight plan system model

The flight plan module choses one of more procedures
based on the goal that is currently set by the user as well as
on the state of the aircraft and the environment. Figure 3
shows the (simplified) relationship between the goal of the
flight plan module and the chosen flight procedures. With
“default flying” we mean straight and level flight.

Figure 3: flight strategies

3.3. Neural control module
For the neural control module we have looked into

several neural network control topologies. For our
purposes we investigated three often-used neural network
control topologies:. Direct Inverse Control, Neural
Predictive Control and Forward Modeling and Inverse
Control.

Topology comparisons

In the Direct Inverse Controller the structure will force
the network to represent the inverse of the plant. However,
there are drawbacks to this approach. First, if the nonlinear
system mapping is not one-to-one then an incorrect inverse
can be obtained. Second, inverse plant models are often
instable, which may lead to the instability of the whole
control-system.

The Neural Predictive Controller consists of four

components, a plant to be controlled, a reference model
that specifies the desired performance of the plant, a neural
network modelling the plant, and an optimisation model
used to produce the plant input vector. The object is to
have an input vector for which the value of the cost
function is lower than a defined value. Then the first
element of the plant input for current time will be applied
to the plant. The Newton-Rhapson algorithm has been
widely used for the optimisation model to determine the
best-input vector. The main disadvantages of Neural
Predictive Control are that numerical minimization
algorithms are usually very time consuming (especially if a
minimum of a multivariable function has to be found),
what may make them unsuitable for real-time applications.
When sampling intervals are small, there may be no time to
perform minimum searching between sampling.
Additionally, the prediction controller requires an
accurately trained neural network model to simulate the
plant, since the result of the whole controller system
depends on the correct prediction value.

The Forward Modeling and Inverse Control (see Figure

4) has an additional NN plant model, compared to the
Direct Inverse Control, which is used in the inverse neural
network training process. The error signal is propagated
back through the forward model and to the inverse model.
However, only the inverse network model is adapted
during this procedure.

Figure 4: basic Forward Modeling and Inverse Control

The error signal for the training algorithm in this case is
the difference between the training signal and the system
output (it may also be the difference between the training
signal and the forward model output in the case of noisy
systems, which is adopted when the real system is not
viable). Jordan and Rumelhart [1992] have showed that
using the real system output it can produce an exact inverse
controller even when the forward model is inexact, which
will not happen when the forward model output is used.
Another plus is that since the controller neural network
gets trained assuming the correct plant input is equal to the
backpropagated error from the forward model plus
controller output, the training process will be stable.

All things considered, we have chosen the Forward
Modeling and Inverse Control, mainly because we want
our pilot controller to run in real-time alongside flight
simulator software, so we do not have much CPU time
available. In addition, as mentioned above Forward
Modeling and Inverse Control is better in producing an
inverse controller.

Airplane system modeling

Figure 5 shows the representation of the basic airplane
model used for our application, which has four inputs
(elevator, throttle, rudder and aileron control) and four
outputs (airspeed, pitch, heading and bank).

Figure 5: the basic airplane model

The elevator and throttle directly influence the airspeed
and pitch of an aircraft, whereas the rudder and aileron
directly influence heading and bank. The ailerons control is
used to bank the airplane in the direction the pilot wants to
turn, and the rudder control is used to keep the nose of the
airplane pointing to the direction of turn.

If we only look at the relation between elevator/throttle and
airspeed/pitch, we can represent this dynamical system as
in Figure 6, which is used for the input and output analysis.

Figure 6: input-output relationship for the elevator/throttle and
airspeed/pitch model

This interconnected dynamic system has (d1, d2) as input
and (y1, y2) as output, in which d1 denotes the elevator
input, d2 denotes the throttle input, y1 denotes the pitch
output and y2 denotes the airspeed output. In the dynamic
sub-system

�
1, the input d1 + y2 produces the output y1,

which means the current elevator input and current
airspeed value determine the pitch value of the next cycle.
In the dynamic sub-system

�
2, the input d2 + y1 produces

the output y2, which means the current throttle input and
current pitch value determine the airspeed value of the next
cycle.

Besides airspeed and pitch, there are also some other
parameters influenced by the throttle and the elevator
controls, like altitude and vertical speed. Compared with
airspeed and pitch, those parameters are the indirect results
of the throttle and the elevator controls. For example, if the
airplane is in the air and pitches up, then the altitude will
increase and the vertical speed will be a positive value.
Therefore, we regard the altitude value and the vertical
speed value as the references, instead of the parameters
that should be used in the system modelling. For example,
when the user sets a flight order for the airplane, besides
the flight action he (she) will also be asked to set the
altitude the airplane should fly to and this value is checked
by the system during flight to analyse the situation.

For more details on how throttle and elevator influences

airspeed and pitch, or on flying the Cessna aircraft in
general, the interested reader is referred to the Microsoft
Flight Simulator manual [2002].

4. IMPLEMENTATION

All software was written using Visual C++ 6.0
environment and in C language. For each module we tested
the functions seperatly before I we did a full system’s test.
The neural networks were implemented using a program
that is called the Stuttgart Neural Network Simulator
(SNNS). SNNS is an open source program, which not only
provides the interface to construct the neural network and
simulate its running, it also offers a variety of kernel
functions for the creation and manipulation of networks
that can be combined in the user’s own program [Zell et al
1995]. The simulator we used to test our controller is the
Microsoft Flight Simulator 2000. The default Cessna 172
aircraft was chosen for all experiments described in this
paper.

For simplicity reasons, in our first implementation we
only looked at elevator/throttle and airspeed/pitch. We did
not implement turning.

We first trained a neural network to model the airplane

plant using SNNS. The topology we used to construct the
identifier is the Jordan Network. From experiments we
found that, due to its simplicity, the Jordan Network (see
Figure 7) is better for on-line training than the other
network we tried, a Non-linear AutoRegressive Moving
Average (NARMA) network (see also [Liang 2004] for
more details).

Figure 7: topology of the Jordan Network and the structure of its
context PE

The difference between a common neural network and a
recurrent neural network, such as the Jordan Network, is
that in a recurrent neural network there is a context
Processing Element (PE). In the right part of Figure 7 you
can see, the one-step delay in the context PE. After this
one-step delay, the output of the neuron is returned as an
input. For the Jordan network, the context PEs only exists
in the input layer, and there is no recurrency in the input-
output path.

Based on early experiments, we came to the conclusion

that for an identifier whose input-output relationship is not
so complex, one hidden layer with around 20 neurons is
enough. Of course, one can construct a multi hidden layer
neural network with each hidden layer having around 12
neurons. However, it will not improve results much and
only waste time in training. Therefore, in our application
we used only one hidden layer.

After training the identifier was fixed. The controller was

also constructed using the Jordan Network and trained in
real-time.

5. TESTING

During the implementation phase of each module, we
already tested each function separately. When the
implementation was finished we performed a full system’s
test. During the full system’s test we encountered several
problems in the current control system:

• The airplane wobbled a lot at the start of each flight

procedure (visible in Figure 8);
• The airplane kept descending during the default

flying procedure (see the lower picture in Figure 9);

Taxiing Flying Up Default Flying

• The airplane changed its behaviour dramatically
when going from one flight procedure to another
(see the upper picture in Figure 9);

Figure 8: pitch error during the taxiing and flying up procedure

Figure 9: pitch error (top) and altitude (bottom) during take-off

6. IMPROVEMENTS AND EVALUATION

Trying to solve the above-mentioned problems, we came
to the following solutions;

• Limit the controller’s output range of the elevator;
• Change the desired pitch value for the default flying

procedure, slightly above 0;
• Modify the reference table used by the controller to

make the desired pitch output change gradually.

6.1. Results
Figure 10 shows the pitch error during the taxiing and

the flying up procedure. The pitch error shown in the right
plot is taken from the airplane controlled by the improved
controller and the data shown in the left plot is from the
airplane controlled by the previous controller. From the

comparison, you may see the pitching magnitude has
decreased considerably.

Figure 10: pitch error comparison between original (left) and
improved controller (right)

From the pitch signal, which is the lower plot in Figure
11, you can see that at the start of the default flying
procedure, the pitch is levelling off gradually, resulting in a
slow increase of the altitude until it settles on a certain
value. Compared to the altitude plot in Figure 9, it is clear
that the improved reference model of the desired plant
output makes the airplane fly much better.

Figure 11: altitude (top) and pitch error (bottom) during the take-
off and fly to 2000 feet procedures

Figure 12: altitude (top) and pitch error (bottom) during take-off,
flying up and flying down procedures

Figure 12 shows the altitude and pitch error during a
flight were the aircraft flew up to 2000 feet, then up to
4000 feet, and again down to 2500 feet. The red line in the
lower part of Figure 12 shows the actual pitch output value
while the blue line is used to visualize the desired pitch
output value. From the comparison we can see that the
neural controller can respond to changes of the desired
pitch value immediately. In another words, the controller
has fast reaction ability.

6.2. Controller stability analysis
There are several ways to analyse the stability of the

controller. For example, we may characterize stability from
an input-output viewpoint, or we can characterize stability
by studying the asymptotic behaviour of the state of the
system near steady-state solutions, like equilibrium points.
We prefer to use the steady-state stability analysis, so we
studied if the current system is asymptotic stable and
characterized the attraction region.

Figure 13: elevator (left) and throttle input (right) during the
flying up procedure

Figure 14: pitch (left) and the airspeed output (right)
corresponding to Figure 13

Figure 13 shows that at the start of the control phase both
the elevator input and the throttle input start with an
arbitrary value. As the process goes on, both slowly settle
on a certain value to achieve the desired pitch and airspeed
output. Figure 14 includes the corresponding pitch value
and the airspeed value taken from the elevator control
input and the throttle control input.

With a smaller input the output will be smaller also, and
the control inputs will finally settle on a certain value to
achieve a certain desired output. These two characteristics
indicate that this control system is asymptotic stable.

7. CONCLUSIONS AND DISCUSSION

7.1. Conclusions
The results presented in the previous chapter

demonstrate that the current neural flight controller system
can:

• Control the airplane to take off, fly up and fly down;
• Run alongside the Microsoft Flight Simulator, which

is a large CPU time consuming application;
• Control the airplane so that it achieves a stable flight;
• Respond to the changes of the desired plant output

immediately;
• Provide the current flight situation to the user and

visualize the evaluation data in 2D coordinates in
real time.

The test results also show that the training of the

controller neural network is affected by the pre-defined
desired plant output. Therefore, setting the proper desired
plant output for each flight procedure is very crucial for a
good controller system.

As mentioned before, one of our improvements was to

limit the output range of the elevator control to decrease
the “wobbling” pitching magnitude, but this phenomenon
still occurs (to a much smaller extent) at the beginning of
each flight procedure. It does disappear as training
progresses, as can be seen in Figure 15.

Figure 15: normalized elevator input (left) and pitch value (right)
during flying up procedure

 Figure 16: altitude corresponding to Figure 15

7.2. Discussion
Unfortunately, the “wobbling” pitch phenomena cannot

be avoided if we stick to the continuous online training of
the single neural controller system that we use. However,
we feel that this is not a big problem, since this
phenomenon can also be found in normal piloting
behaviour, which we ultimately intend to simulate.

 Figure 16 shows that the overall change in altitude
progresses as normal and small variations are only visible
on closer inspection.

Because of its online training ability, the developped
neural controller system can adapt itself to new situations
as they arise. This makes our neural network controller
more flexible than rule-based control technique, like fuzzy
control. With fuzzy control one would define the control
rules beforehand, based on the experience of the expert.
The advantage of fuzzy control is that for some problems
one may have an intuitive idea about how to achieve high
performance control, but the consequent problem is that a
human expert cannot predict all situations that can occur.
Even if the expert is able to predict everything and write it
into rules, the rule base will become large and complex,
and might not balance the stability criteria and the
performance objectives.

Our neural flight control system is flexible and can be

applied to different aircraft applications. The architecture
will remain the same. Adapting to other aircraft only
requires replacing the pre-trained neural network identifier
by another suitable one and indicating the desired output of
the airplane.

8. FUTURE WORK

As discussed in the last section, the neural control system
will make the airplane fly not smoothly at the start of a
flying procedure. Although it is not very troublesome we
would like to be able to simulate pilots that do not try to
correct the pitch. One possible solution we are thinking of
is the following. The current neural network controller is
trained at each time there is a training pattern available,
which will make the controller quite “sensitive” . Instead of
training the controller every time a training pattern is
available, we could train it when, for example, 10 training
patterns are available. Then the airplane could keep the
current pitch for a while.

Of course our current neural control autopilot system is

still quite limited. It can only control the airplane to fly up
and down in a straight line. For future’s work, we plan to
incorporate more functions such as turning and landing.

Once we have a fully functional controller we plan to

compare the behaviour of the resulting controller with the
flight behaviour of the pilot who delivered the training data.
Additionally we plan to record flight data from different
types of pilots, which would allow us to train different
controllers with different flying behaviour.

REFERENCES
Calise, A.J (1996) “Neural networks in nonlinear aircraft flight

control” , IEEE Aerospace and Electronic Systems Magazine,
Vol. 11, Issue 7 (July), pp. 5-10

Ceranowicz, A (1994) “Modular semi-automated forces” , in
Proceedings of the 26th conference on Winter simulation,
Orlando, Florida, US, pp. 755-761

Coradeschi, S., Karlsson, L. and Törne, A. (1996) “ Intelligent
agents for aircraft combat simulation” , in Proceedings of the
6th Computer Generated Forces and Behavioral
Representation Conference, pp. 23-25, July 1996, Orlando,
Florida, US.

Ehlert, P.A.M. and Rothkrantz, L.J.M. (2003) “The Intelligent
Cockpit Environment Project” , Research Report DKS03-
04/ICE 04, Knowledge Based Systems Group, Delft
University of Technology, The Netherlands.

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P.
and Koss, F.V. (1999) “Automated intelligent pilots for
combat flight simulation” , in AI Magazine, Vol. 30, No.1,
pp. 27-41

Jordan, M.I. and Rumelhart, D.E. (1992) “Forward models:
Supervised learning with a distal teacher” , in Cognitive
Science, Vol. 16, No.3, pp. 307-354

Microsoft (2002) “Rod Machado’s Ground School” , Microsoft
Flight Simulator 2002 manual.

Laird, J.E., Newell, A. and Rosenbloom, P.S. (1987) “Soar: and
architecture for general intelligence” , in Artificial
Intelligence, Vol. 33, No.1 pp.1-64

Liang, Q, (2004) “Neural flight control autopilot system” , MSc
thesis, Research Report DKS04-04 / ICE 09, Delft University
of Technology, The Netherlands.

Pesonen, U.J., Steck, J.E. and Rokhsaz, K. (2004) “Adaptive
neural network inverse controller for general aviation safety” ,
in AIAA Journal of Guidance, Control, and Dynamics,
Vol.27, No.3 (May–June), pp. 434-443

Wyeth G.F., Buskey G. and Roberts J. (2000) “Flight control
using an artificial neural network” , in Proceedings of the
Australian Conference on Robotics and Automation (ACRA
2000), August 30 - September 1, Melbourne, pp. 65 -70.

Zell, A., Mamier, G., Vogt, M., Mach, N., Huebner, R.,
Herrmann, K.U., Soyez, T., Schmalzl, M., Sommer, T.,
Hatzigeogiou, A., Doering, S., Posselt, D (1995) “SNNS
Stuttgart Neural Network Simulator” , User Manual, version
4.1, Report No. 6/95, University of Stuttgart. See also
http://www-ra.informatik.uni-tuebingen.de/SNNS/

