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ABSTRACT 

In this paper we will address our efforts to design a 
neural control system that can control a simulated aircraft, 
which ultimately should lead to a realistic artificial pilot. 
The system we designed consists of a flight plan module, 
the actual neural controller module, and a graphic user 
interface. The goal of the flight plan module is to manage 
the global control of the whole system. For the neural 
controller we chose to use a Forward Modeling and Inverse 
Controller. The Jordan Network was used to construct the 
pre-trained identifier and the online learning controller. 
Our first experiments showed that improvements were 
necessary to make the aircraft fly more smoothly. Although 
the aircraft “wobbles”  a bit at the start of a new flight 
procedure, the controller is able to adapt to changing 
circumstances during flight. 

1. INTRODUCTION 

The Intelligent Cockpit Environment (ICE) project is a 
project of the Department of Media and Knowledge 
Engineering of Delft University of Technology. Originally, 
the main purpose of this project was to investigate 
techniques that can be used to create a situation-aware 
crew assistance system [Ehlert and Rothkrantz 2003] 1 . 
Basically, a crew assistance system functions as an 
electronic co-pilot looking over the shoulder of the crew of 
an aircraft and helping out when necessary. 

 
A secondary objective of the ICE project has been to 

create a realistic artificial pilot, also called flightbot, that 
can be used for simulations.  Such a pilot can increase the 
realism of flight simulators and enhance the training of real 
pilots as well as study the different ways different pilots are 
flying. 

 
In this paper we will address our efforts to design a 

neural control system that can control a simulated aircraft. 
The control structure we used for this application is called 

                                                           
1 More information on the ICE project can also be found via 
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/ 

Feed Forward and Inverse Control and consists of two 
neural networks. One is a pre-trained network and the other 
is an online learning network for inverse control. 

2. RELATED WORK 

2.1. Simulating pilots 
There are several projects that deal with the construction 

of artificial pilots. Here we will shortly mention two 
examples found in literature;  

 
 TacAir-Soar is a rule-based system that generates 

believable human-like pilot behaviour for fixed-wing 
aircraft in large-scale distributed military simulations 
[Jones et al 1999]. Each instance of TacAir-Soar is 
responsible for controlling one aircraft and consists of a 
Soar architecture [Laird, Newel and Rosenbloom 1987] 
linked to the ModSAF simulator [Ceranowicz 1994]. The 
advantage of using Soar is that the reasoning and decision-
making of the system is similar to the way humans are 
generally believed to reason.  

 
The Linköping University in collaboration with Saab 

Military Aircraft AB in Sweden developed an intelligent 
air-to-air combat agent [Coradeschi, Karlsson, and Törne 
1996]. The system is designed specifically for air-to-air 
combat experts and allows the experts to specify the 
behaviour and decision-making of the intelligent pilot 
agents, without the help of a system expert. The agents are 
modelled by decision trees. These trees contain production 
rules that describe the agent’s dynamic task priorities. 
During one decision cycle, several branches of the tree can 
be processed in parallel after which all selected actions are 
evaluated for priority and compatibility.  

 
Both TacAir-Soar and Linköping University’s agent try 

to simulate realistic pilot flight behaviour and both focus 
primarily on decision-making during flight. However, both 
systems use a rule-based approach for aircraft control. No 
project was found that uses a neural control approach.  

The possible advantage of neural control over a rule-
based approach is that there is no need to specify rules for 
pilot behaviour. Although rule-based approaches are very 



 

 

suitable to model normative pilot behaviour, it is much 
more difficult to model the different styles that different 
pilots use for flying. Secondly, using neural networks 
automated learning can be used to avoid the difficult 
process of explicating flight rules and finetuning rules and 
parameters. Thirdly, neural networks allow automatic 
adjustment to changing circumstances, such as different 
weather conditions, different aircraft, and malfunctioning 
controls. 

2.2. Neural networks and flight control 
The first Neural Network (NN) controller was developed 

by Widrow and Smith in 1963. Since then many 
applications have shown that NNs can be applied 
successfully to control unknown nonlinear systems. There 
have been a number of studies that investigated neural 
networks for flight control, for example [Calise 
1996],[Wyeth et al 2000],[Pesonen et al 2004]. However, 
all neural control studies try to improve (a particular part 
of) automated flight control and focus mainly on the 
control of Unmanned Aerial Vehicles (UAVs), helicopters, 
and missiles. Their goal is simply to create a controller that 
functions as good as possible. We did not find any studies 
that investigated neural networks for simulating realistic 
flight behaviour of real pilots. 

3. SYSTEM DESIGN 

3.1. General system scheme 
The essential element of a powerful and flexible neural 

control system is of course the controller itself. However, 
to create a flightbot we also need some assistant parts, for 
example a flight-planning system. 

 
Our system has been divided into three parts according 

to the different tasks and functions which are; the graphic 
user interface, the flight plan module, and the neural 
controller module. Figure 1 shows the general system 
scheme. The user interface sends orders from the user to 
the flight plan system. The flight plan system will analyse 
the order to determine whether it is reasonable or not.  If it 
is reasonable, the planning system will create a flight plan, 
which consists of at least one flight procedure. Then, the 
planning system will send different data (the desired plant 
output) to the controller module corresponding to each 
flight procedure. The controller will produce the necessary 
control data that will finally be applied to the plant 
(aircraft).  

 

Figure 1: general scheme of the neural flight control autopilot 
system 

3.2. Flight plan module 
The goal of the flight plan module is to manage the 

global control of the whole system. The flight plan module 
will keep an eye on the flight process and update its flight 
records to provide the proper plant output data. To be 
precise the duties of the flight plan module are:  

 
• Analyzing the reasonability of the current goal; 
• Deciding on the flight plan; 
• Providing the controller with the necessary data 

corresponding to each part of the flight plan; 
• Checking the current flight situation. 
 
Figure 2 shows a scheme of the flight plan system 

module. 
 

 

Figure 2: the flight plan system model 

The flight plan module choses one of more procedures 
based on the goal that is currently set by the user as well as 
on the state of the aircraft and the environment. Figure 3 
shows the (simplified) relationship between the goal of the 
flight plan module and the chosen flight procedures. With 
“default flying”  we mean straight and level flight. 



 

 

 

Figure 3: flight strategies 

3.3. Neural control module 
For the neural control module we have looked into 

several neural network control topologies. For our 
purposes we investigated three often-used neural network 
control topologies:. Direct Inverse Control, Neural 
Predictive Control and Forward Modeling and Inverse 
Control. 

Topology comparisons 

In the Direct Inverse Controller the structure will force 
the network to represent the inverse of the plant. However, 
there are drawbacks to this approach. First, if the nonlinear 
system mapping is not one-to-one then an incorrect inverse 
can be obtained. Second, inverse plant models are often 
instable, which may lead to the instability of the whole 
control-system.  

 
The Neural Predictive Controller consists of four 

components, a plant to be controlled, a reference model 
that specifies the desired performance of the plant, a neural 
network modelling the plant, and an optimisation model 
used to produce the plant input vector. The object is to 
have an input vector for which the value of the cost 
function is lower than a defined value. Then the first 
element of the plant input for current time will be applied 
to the plant. The Newton-Rhapson algorithm has been 
widely used for the optimisation model to determine the 
best-input vector. The main disadvantages of Neural 
Predictive Control are that numerical minimization 
algorithms are usually very time consuming (especially if a 
minimum of a multivariable function has to be found), 
what may make them unsuitable for real-time applications. 
When sampling intervals are small, there may be no time to 
perform minimum searching between sampling. 
Additionally, the prediction controller requires an 
accurately trained neural network model to simulate the 
plant, since the result of the whole controller system 
depends on the correct prediction value.  

 
The Forward Modeling and Inverse Control (see Figure 

4) has an additional NN plant model, compared to the 
Direct Inverse Control, which is used in the inverse neural 
network training process. The error signal is propagated 
back through the forward model and to the inverse model. 
However, only the inverse network model is adapted 
during this procedure.  

 

Figure 4: basic Forward Modeling and Inverse Control 

The error signal for the training algorithm in this case is 
the difference between the training signal and the system 
output (it may also be the difference between the training 
signal and the forward model output in the case of noisy 
systems, which is adopted when the real system is not 
viable). Jordan and Rumelhart [1992] have showed that 
using the real system output it can produce an exact inverse 
controller even when the forward model is inexact, which 
will not happen when the forward model output is used. 
Another plus is that since the controller neural network 
gets trained assuming the correct plant input is equal to the 
backpropagated error from the forward model plus 
controller output, the training process will be stable. 
 

All things considered, we have chosen the Forward 
Modeling and Inverse Control, mainly because we want 
our pilot controller to run in real-time alongside flight 
simulator software, so we do not have much CPU time 
available. In addition, as mentioned above Forward 
Modeling and Inverse Control is better in producing an 
inverse controller. 

Airplane system modeling 

Figure 5 shows the representation of the basic airplane 
model used for our application, which has four inputs 
(elevator, throttle, rudder and aileron control) and four 
outputs (airspeed, pitch, heading and bank).  

 

 

Figure 5: the basic airplane model 

The elevator and throttle directly influence the airspeed 
and pitch of an aircraft, whereas the rudder and aileron 
directly influence heading and bank. The ailerons control is 
used to bank the airplane in the direction the pilot wants to 
turn, and the rudder control is used to keep the nose of the 
airplane pointing to the direction of turn. 

 
If we only look at the relation between elevator/throttle and 
airspeed/pitch, we can represent this dynamical system as 
in Figure 6, which is used for the input and output analysis. 
 



 

 

 

Figure 6: input-output relationship for the elevator/throttle and 
airspeed/pitch model 

This interconnected dynamic system has (d1, d2) as input 
and (y1, y2) as output, in which d1 denotes the elevator 
input, d2 denotes the throttle input, y1 denotes the pitch 
output and y2 denotes the airspeed output. In the dynamic 
sub-system 

�
1, the input d1 + y2 produces the output y1, 

which means the current elevator input and current 
airspeed value determine the pitch value of the next cycle.  
In the dynamic sub-system 

�
2, the input d2 + y1 produces 

the output y2, which means the current throttle input and 
current pitch value determine the airspeed value of the next 
cycle.  
 

Besides airspeed and pitch, there are also some other 
parameters influenced by the throttle and the elevator 
controls, like altitude and vertical speed. Compared with 
airspeed and pitch, those parameters are the indirect results 
of the throttle and the elevator controls. For example, if the 
airplane is in the air and pitches up, then the altitude will 
increase and the vertical speed will be a positive value. 
Therefore, we regard the altitude value and the vertical 
speed value as the references, instead of the parameters 
that should be used in the system modelling. For example, 
when the user sets a flight order for the airplane, besides 
the flight action he (she) will also be asked to set the 
altitude the airplane should fly to and this value is checked 
by the system during flight to analyse the situation.  

 
For more details on how throttle and elevator influences 

airspeed and pitch, or on flying the Cessna aircraft in 
general, the interested reader is referred to the Microsoft 
Flight Simulator manual [2002]. 

4. IMPLEMENTATION 

All software was written using Visual C++ 6.0 
environment and in C language. For each module we tested 
the functions seperatly before I we did a full system’s test. 
The neural networks were implemented using a program 
that is called the Stuttgart Neural Network Simulator 
(SNNS). SNNS is an open source program, which not only 
provides the interface to construct the neural network and 
simulate its running, it also offers a variety of kernel 
functions for the creation and manipulation of networks 
that can be combined in the user’s own program [Zell et al 
1995]. The simulator we used to test our controller is the 
Microsoft Flight Simulator 2000. The default Cessna 172 
aircraft was chosen for all experiments described in this 
paper. 

 

For simplicity reasons, in our first implementation we 
only looked at elevator/throttle and airspeed/pitch. We did 
not implement turning. 

 
We first trained a neural network to model the airplane 

plant using SNNS. The topology we used to construct the 
identifier is the Jordan Network. From experiments we 
found that, due to its simplicity, the Jordan Network (see 
Figure 7) is better for on-line training than the other 
network we tried, a Non-linear AutoRegressive Moving 
Average (NARMA) network (see also [Liang 2004] for 
more details).  

 

 

Figure 7: topology of the Jordan Network and the structure of its 
context PE 

The difference between a common neural network and a 
recurrent neural network, such as the Jordan Network, is 
that in a recurrent neural network there is a context 
Processing Element (PE). In the right part of Figure 7 you 
can see, the one-step delay in the context PE. After this 
one-step delay, the output of the neuron is returned as an 
input. For the Jordan network, the context PEs only exists 
in the input layer, and there is no recurrency in the input-
output path.  

 
Based on early experiments, we came to the conclusion 

that for an identifier whose input-output relationship is not 
so complex, one hidden layer with around 20 neurons is 
enough. Of course, one can construct a multi hidden layer 
neural network with each hidden layer having around 12 
neurons. However, it will not improve results much and 
only waste time in training. Therefore, in our application 
we used only one hidden layer. 

 
After training the identifier was fixed. The controller was 

also constructed using the Jordan Network and trained in 
real-time. 

5. TESTING 

During the implementation phase of each module, we 
already tested each function separately. When the 
implementation was finished we performed a full system’s 
test.  During the full system’s test we encountered several 
problems in the current control system: 

 
• The airplane wobbled a lot at the start of each flight 

procedure (visible in Figure 8); 
• The airplane kept descending during the default 

flying procedure (see the lower picture in Figure 9); 



 

 

Taxiing Flying Up Default Flying 

• The airplane changed its behaviour dramatically 
when going from one flight procedure to another 
(see the upper picture in Figure 9); 

 

 

Figure 8: pitch error during the taxiing and flying up procedure 

 

 

Figure 9: pitch error (top) and altitude (bottom) during take-off 

6. IMPROVEMENTS AND EVALUATION 

Trying to solve the above-mentioned problems, we came 
to the following solutions; 

• Limit the controller’s output range of the elevator; 
• Change the desired pitch value for the default flying 

procedure, slightly above 0; 
• Modify the reference table used by the controller to 

make the desired pitch output change gradually. 
 

6.1. Results 
Figure 10 shows the pitch error during the taxiing and 

the flying up procedure. The pitch error shown in the right 
plot is taken from the airplane controlled by the improved 
controller and the data shown in the left plot is from the 
airplane controlled by the previous controller. From the 

comparison, you may see the pitching magnitude has 
decreased considerably. 

 

 

Figure 10: pitch error comparison between original (left) and 
improved controller (right) 

From the pitch signal, which is the lower plot in Figure 
11, you can see that at the start of the default flying 
procedure, the pitch is levelling off gradually, resulting in a 
slow increase of the altitude until it settles on a certain 
value. Compared to the altitude plot in Figure 9, it is clear 
that the improved reference model of the desired plant 
output makes the airplane fly much better.  
 

Figure 11: altitude (top) and pitch error (bottom) during the take-
off and fly to 2000 feet procedures 

 

 

Figure 12: altitude (top) and pitch error (bottom) during take-off, 
flying up and flying down procedures 

 



 

 

Figure 12 shows the altitude and pitch error during a 
flight were the aircraft flew up to 2000 feet, then up to 
4000 feet, and again down to 2500 feet. The red line in the 
lower part of Figure 12 shows the actual pitch output value 
while the blue line is used to visualize the desired pitch 
output value. From the comparison we can see that the 
neural controller can respond to changes of the desired 
pitch value immediately. In another words, the controller 
has fast reaction ability.  

6.2. Controller stability analysis 
There are several ways to analyse the stability of the 

controller. For example, we may characterize stability from 
an input-output viewpoint, or we can characterize stability 
by studying the asymptotic behaviour of the state of the 
system near steady-state solutions, like equilibrium points. 
We prefer to use the steady-state stability analysis, so we 
studied if the current system is asymptotic stable and 
characterized the attraction region. 
 

 

Figure 13: elevator (left) and throttle input (right) during the 
flying up procedure 

 

Figure 14: pitch (left) and the airspeed output (right) 
corresponding to Figure 13 

Figure 13 shows that at the start of the control phase both 
the elevator input and the throttle input start with an 
arbitrary value. As the process goes on, both slowly settle 
on a certain value to achieve the desired pitch and airspeed 
output. Figure 14 includes the corresponding pitch value 
and the airspeed value taken from the elevator control 
input and the throttle control input. 
 

With a smaller input the output will be smaller also, and 
the control inputs will finally settle on a certain value to 
achieve a certain desired output. These two characteristics 
indicate that this control system is asymptotic stable.  

7. CONCLUSIONS AND DISCUSSION 

7.1. Conclusions 
The results presented in the previous chapter 

demonstrate that the current neural flight controller system 
can: 

• Control the airplane to take off, fly up and fly down; 
• Run alongside the Microsoft Flight Simulator, which 

is a large CPU time consuming application; 
• Control the airplane so that it achieves a stable flight; 
• Respond to the changes of the desired plant output 

immediately; 
• Provide the current flight situation to the user and 

visualize the evaluation data in 2D coordinates in 
real time. 

 
The test results also show that the training of the 

controller neural network is affected by the pre-defined 
desired plant output. Therefore, setting the proper desired 
plant output for each flight procedure is very crucial for a 
good controller system. 

 
As mentioned before, one of our improvements was to 

limit the output range of the elevator control to decrease 
the “wobbling”  pitching magnitude, but this phenomenon 
still occurs (to a much smaller extent) at the beginning of 
each flight procedure. It does disappear as training 
progresses, as can be seen in Figure 15. 

  

 

Figure 15: normalized elevator input (left) and pitch value (right) 
during flying up procedure  

 

 Figure 16: altitude corresponding to Figure 15 
 

7.2. Discussion 
Unfortunately, the “wobbling”  pitch phenomena cannot 

be avoided if we stick to the continuous online training of 
the single neural controller system that we use. However, 
we feel that this is not a big problem, since this 
phenomenon can also be found in normal piloting 
behaviour, which we ultimately intend to simulate.  

 Figure 16 shows that the overall change in altitude 
progresses as normal and small variations are only visible 
on closer inspection. 



 

 

Because of its online training ability, the developped 
neural controller system can adapt itself to new situations 
as they arise. This makes our neural network controller 
more flexible than rule-based control technique, like fuzzy 
control. With fuzzy control one would define the control 
rules beforehand, based on the experience of the expert. 
The advantage of fuzzy control is that for some problems 
one may have an intuitive idea about how to achieve high 
performance control, but the consequent problem is that a 
human expert cannot predict all situations that can occur. 
Even if the expert is able to predict everything and write it 
into rules, the rule base will become large and complex, 
and might not balance the stability criteria and the 
performance objectives.  

 
Our neural flight control system is flexible and can be 

applied to different aircraft applications. The architecture 
will remain the same. Adapting to other aircraft only 
requires replacing the pre-trained neural network identifier 
by another suitable one and indicating the desired output of 
the airplane. 

8. FUTURE WORK 

As discussed in the last section, the neural control system 
will make the airplane fly not smoothly at the start of a 
flying procedure. Although it is not very troublesome we 
would like to be able to simulate pilots that do not try to 
correct the pitch. One possible solution we are thinking of 
is the following. The current neural network controller is 
trained at each time there is a training pattern available, 
which will make the controller quite “sensitive” . Instead of 
training the controller every time a training pattern is 
available, we could train it when, for example, 10 training 
patterns are available. Then the airplane could keep the 
current pitch for a while. 

 
Of course our current neural control autopilot system is 

still quite limited. It can only control the airplane to fly up 
and down in a straight line. For future’s work, we plan to 
incorporate more functions such as turning and landing. 

 
Once we have a fully functional controller we plan to 

compare the behaviour of the resulting controller with the 
flight behaviour of the pilot who delivered the training data. 
Additionally we plan to record flight data from different 
types of pilots, which would allow us to train different 
controllers with different flying behaviour. 
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