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Abstract. One of the goals of augmented cognition is creation of adaptive hu-
man-machine collaboration  that continually optimizes performance of the hu-
man-machine system. Augmented Cognition aims to compensate for temporal 
limitations in human information processing, for instance in the case 
of overload, cognitive lockup, and underload. Adaptive behavior, however, may 
also have undesirable side effects. The dynamics of adaptive support may be 
unpredictable and may lead to human factors problems such as mode errors, 
‘out-of-the-loop’ problems, and trust related issues. One of the most critical 
challenges in developing adaptive human-machine collaboration concerns sys-
tem mitigations. A combination of performance, effort and task information 
should be taken into account for mitigation strategies. This paper concludes 
with the presentation of an iterative cognitive engineering framework, which 
addresses the adaptation strategy of the human and machine in an appropriate 
manner carefully weighing the costs and benefits.    

1 Introduction 

Since the industrial revolution, when men and machine started to work together, peo-
ple aimed at an optimal performance of the human-machine system. Initially, during 
the first ages during and after the revolution, optimizing performance meant improv-
ing the machine or automated component. However, since the introduction of the per-
sonal computer and the turbulent developments in the decades afterwards, the human 
operators became the critical component in the human-computer system, leading to 
the comprehension that optimization of the interaction starts at design time. Literature 
describes different taxonomies which explain the static relation between an operator 
and a machine. For example, Fitts [1] was one of the first to acknowledge that both 
entities have different aptitudes. Fitts crafted a list describing where each entity ex-
cels. Following this approach, allocation is based on the aptitudes of each entity lead-



ing to categorized list of whether the human, machine, or a combination should im-
plement this function [2].  

The Fitts list provides an excelling insight into the aptitudes of each though it was 
not intended to incorporate dynamic situations and the list assumes the aptitudes to be 
static and other problems have been reported [3]. In reality the environment or context 
of the operator can change very rapidly creating a different demand for aptitudes. This 
leads the conception that function allocation should not be fixed at the design state, 
but should fluctuate over a continuum of levels. In the last couple of decades a num-
ber of different dynamic function allocation taxonomies have been proposed. Sheri-
dan & Verplank [4] presented a ten-level taxonomy that explained the division of 
work between the human and machine, and how they collaborate. Endsley, on the 
other hand, [5] suggested a taxonomy in the context of expert systems to supplement 
human decision-making. Endsley [6] redefined their taxonomy since they required a 
model that was “wider applicable to a range of cognitive and psychomotor tasks re-
quiring real-time control within numerous domains”. The latest and widely accepted 
taxonomy [7] suggests to apply automation to four broad classes of functions. Within 
each of these types, automation can be applied across a continuum of levels of auto-
mation (i.e. from fully manual to fully automatic) depending on the cognitive state of 
the operator. 

Adaptive automation (AA) takes the dynamic division of labor between man and 
machine as a starting point. The term adaptive automation [8], dynamic task alloca-
tion, dynamic function allocation, or adaptive aiding [9] all reflect the real-time dy-
namic reallocation of work in order to optimize performance. It is based on the con-
ception of actively aiding the operator only when human information processing 
limitations emerge and assistance is required in order overcome bottlenecks and to 
meet operational requirements. The concept of augmented cognition (AC) extends the 
AA paradigm by explicitly stating the symbolic integration of man and machines in a 
closed-loop system whereby the operator’s cognitive state and the operational context 
are to be detected by the system [10].  

Currently, a state-of-the-art document that highlights opportunities and possible 
pitfalls of AC lacks the scientific community. We strongly believe that it is important 
to evaluate the fast expanding ideas around the AC paradigm that compensates real-
time for temporal limitations in human information processing. This paper reviews 
past and present research on the topic of the symbiotic relationship between man and 
machines starting with the static Fitts list, explaining the latest mitigation strategies, 
and finalizing with an iterative engineering methodology that takes into account the 
benefits and costs of the adaptation behavior of man and machine.  

2 Potential benefits and risks of augmented cognition 

For an effective and resilient human-machine system it is not wise to automate as 
many tasks as possible. Although machine performance is superior in some aspects; 
software and hardware is not always reliable (e.g. [11] [12]). Because of this, the hu-
man is often allocated the role of supervisor that can intervene when automation fails. 
This because humans are thought to learn more quickly and to out-perform machines 



in performing tasks in novel or unforeseen situations, e.g. intervening when machines 
do not function as intended. Unfortunately, humans demonstrate a degraded ability to 
intervene when kept out-of-the-loop too long: problems with vigilance, complacency, 
situation awareness, knowledge and skills-degradation may be observed [13]. To 
overcome these out-of-the-loop performance problems, a system that augments cogni-
tion is required to take the human in-the-loop. The human can be taken in-the-loop in 
situations of underload; when the additional demand for human attention does not ex-
ceed the resources the human has left available. Alternating high levels of automation 
in which the operator becomes a passive monitor with active involvement has shown 
to improve situation awareness and response to errors [14] [15].  

Dynamically engaging humans may solve out-of-the-loop performance problems 
and may be useful in routine situations in which the demand for human attention is 
low. This solution is not desirable in all conditions: compared to alternating levels of 
automation, static automation of tasks frees-up more attention that can be allocated to 
concurrent tasks Kaber & Endsley [16]. Further, when multiple tasks demand human 
attention concurrently another problem becomes more urgent. In emergency situa-
tions, humans may become absorbed in some tasks, while ignoring others and per-
formance on these latter tasks may degrade. For an effective and resilient human-
machine system a decrease in human engagement needs to be compensated for by an 
increase in machine involvement. In the case of overload, when the demand for atten-
tion or speed exceeds the human ability, timely involvement of the machine in task 
execution is desirable. A number of studies [17] [18] [19] [20] or [21] have demon-
strated beneficial effects. 

The expected benefit of adaptive automation is that humans and machines can be 
taken in and out of the loop when needed. By dynamically allocating tasks to human 
or machine, the performance of the human-machine system is guaranteed despite dis-
turbances in the ability of its components and despite changes in environmental de-
mands. Unfortunately, there are also some risks associated with adaptive automation. 
A mayor risk is increased complexity combined with undesirable machine behavior. 
Although some of the complexity of adaptive automation may be hidden and not be a 
problem when the system always provides the right support at the right time in the 
right way, the potential benefits of adaptive automation turn into risks when the sys-
tem wrongly concludes that support is or is not needed or when the timing of support 
is wrong (e.g. [22]). Unwanted interruptions, mode errors, or automation surprises 
may disrupt performance and may lead to errors of omission or commission, frustra-
tion, distrust, disuse, and rejection of the adaptive system. When the adaptive system 
is not reliable and the human has an additional layer of automation it has to monitor 
we create rather than solve problems. Whether this risk becomes real depends on the 
context-dependent ability of adaptive automation to make the decision whether, when, 
and what to automate. This will depend on the specific application and domain. 

Another risk is that humans adapt to the new situation with adaptive automation in 
a way we do not expect or desire (e.g. [23]). Human may not use adaptive automation 
as intended. They may rely too much or too little on adaptive automation and for in-
stance fool the system such that it mistakenly thinks that the human operator needs to 
be taken out or in-the loop. Thus also when the human shows unreliable behavior the 
potential benefit of adaptive automation may turn into an additional source of risk. 



It is clear the potential benefits and risks of adaptive automation are context-
dependent. It will depend on the specific implementation and context of use whether a 
system of human plus adaptive automation will be more or less effective or resilient 
than a system of human plus non-adaptive automation. Although it is too early to 
draw general conclusions, it is worth to investigate the conditions under which the po-
tential benefits or risks of adaptive automation will be observed and to investigate 
how risks can be managed. One way to cope unreliable adaptive automation may be 
to make machine reasoning observable and adjustable. This would allow to human to 
understand the system and would enable him to give the system more or less room for 
intervention. 

3 Mitigation triggers 

The basis for the AC argument is the real-time aiding of man to compensate for 
temporal limitations in the human information processing capacity. The previous sec-
tion listed some studies that revealed beneficial effects of getting the operator out-of-
the-loop in case a system augments an overloaded operators and involving the opera-
tor in the operational process when a state of underload is augmented. Assuming that 
machine assistance should be kept at lower levels unless high workload precludes ef-
fective human performance, AC will optimize the symbiotic relation between man 
and machine in an environment where the workload is varying [24]. One of the chal-
lenging factors in the development of a successful AC concept concerns the question 
of when changes in level of automation must be effectuated. Workload generally is 
the key concept to invoke such a change of authority, but most researchers agree that 
“workload is a multidimensional, multifaceted concept that is difficult to define. It is 
generally agreed that attempts to measure workload relying on a single representa-
tive measure are unlikely to be of use” [25]. Mental workload can be defined as an in-
tervening variable similar to attention that modulates or indexes the tuning between 
the demands of the environment and the capacity of the operator [26]. This definition 
highlights the two main features of workload, which are the capacity of operators and 
the task demands made on them. Workload increases when the capacity decreases or 
the task demands increase. As stated, both the capacity and task demands are not 
fixed entities and are affected by many factors. Measurement workload is again much 
debated and we would like to elucidate the relationship between workload, task de-
mands and performance. According to Figure 1, an operator can experience different 
levels of workload dependent on the task-demands. It also shows that the performance 
does not necessarily decline as the operator experiences a high workload. One can 
keep performance on a maximum level by increasing effort. However, problems can 
arise when this effort is required for a prolonged period. 
 



 
Figure 1. The relation between task demands, performance, and workload (from [27]) 

AC techniques describe various ways to estimate workload. According to Figure 1, 
we should measure performance, effort and task demands to get to an optimal mitiga-
tion strategy.  

3.1 Operator Performance 

The operator’s own performance could be used as a trigger. Using the operator’s in-
teractions with the system allows us to determine performance measurement. Side-
stepping the discussion on how to create a performance model, which remains diffi-
cult, this candidate allows to trigger adaptive behavior in order to optimize human-
computer cooperation. For example, Geddes [28] and Rouse, Geddes & Curry [29] 
apply adaptive automation based on the operator’s intentions predicted from patterns 
of activity. Though successful, performance modeling have been criticized as being 
too information sensitive, requiring a massive database of operator performance [30]. 

3.2 Physiological Measurements 

Besides performance measures to determine the effort, (neuro)physiological data to 
understand the effort from the operator are used in various studies as well (e.g. [31]  
[32] [33]) . Physiological measures can be recorded without respect to overt responses 
and provide an indication of cognitive activities. Specifically, pupillometry, heart rate 
variablility [17], and electroencephalographs [34] have been studied and have yielded 
a reliable description of cognitive state. Differences in state were used as triggers and 
yielded reductions in effort and/or improvements in operator performance. Today, the 
brain based electroencephalographs [30] demonstrate a reliable engagement index 
from a ratio of EEG power bands that can be used for triggering mechanisms. 

Various studies clearly demonstrate that physiological measures can measure the 
state of the operator. Although promising, there lingers one potential pitfall involving 
the usage of physiological measures to estimate effort. An operator continuously 



adapts to changes in workload, and physiological reactions are a sign of this adaptive 
behavior. If a system uses this information to reduce the workload, there are two 
adaptive systems that might work counterproductive as is demonstrated by Wilson 
[35]. On the other hand, when one expects an increase in physiological indicators due 
to excessive task demands and this increase is not reflected in the physiological data, 
one could draw the conclusion with respect to the state of the operator (i.e., is the op-
erator still in command of the situation).  

3.3 Task demands  

Another possibility to vary the levels of automation is to use the flow of the mission 
itself. Here, the occurrence of critical events can be used to change to a new level of 
automation. Critical events are defined as incidents that could endanger the goals of 
the mission. Scerbo [8] describes a model where the system continuously monitors the 
situation for the appearance of critical events and the occurrence of such an event 
triggers the reallocation of tasks. Inagaki [19] published a number of studies where a 
probabilistic model was used to decide who should have authority in the case of a 
critical event. Inagaki suggests that different time periods during the acceleration of 
an airplane for takeoff make it more or less important for automation to assume re-
sponsibility for a reject takeoff decision, should such a decision be required following 
an engine failure.  

4 Cognitive Engineering for Adaptive Automation 

Effective, efficient, and easy-to-learn operation support is crucial for joint human ma-
chine performance in complex task environments, such as ship control centers and 
process control rooms. An important aim of AC is to accommodate user characteris-
tics, tasks, and contexts in order to provide the “right” information, services, and (sup-
port)functions at the right time and in the right way [36]. The previous sections pro-
vided an overview of both the opportunities and pitfalls of AC. Also different types of 
triggers were discussed including the difficulties that occur in identification, selection, 
and calibration of appropriate triggers. It turns out that due to the adaptive nature of 
both the human and machine, it is difficult to provide generic and detailed predictions 
on the overall human-machine performance at design time. Therefore, a new type of 
iterative methodology is needed that guides the development process. This method 
should enable us to address the mutual adaptation in an appropriate manner carefully 
weighing the costs and benefits at each iteration.  

Cognitive engineering (CE) approaches originated in the 1980s to improve com-
puter-supported task performance by increasing insight in the cognitive factors of 
human-machine interaction (e.g., [37] [38]). These approaches guide the iterative 
process of development in which an artefact is specified in detail, and specifications 
are regularly assessed to refine the specification. For adaptive systems, the “classical” 
methods have to be extended with an explicit technology input for two reasons. First, 
the technological design space sets a focus in the process of specification and genera-
tion of ideas. Second, the reciprocal effects of technology and human factors are made 



explicit and are integrated in the development process. Also, the technology might not 
be mature at design time which prevents accurate performance predictions, an effect 
which is leveraged by the reciprocal effects. Finally, not a single mode of operation is 
chosen but a range of  HMC modes. This range, its dynamics and triggers are guided 
by current en predicted technology. So, we propose a CE+ method, adding a technol-
ogy perspective into common human factors (HF) engineering practices [39]. In addi-
tion to the added focus on the technology we propose to develop practical theories 
and methods that are situated in the domain. This is important to be able to assure an 
accurate weighing of costs and benefits within a specific domain while designing and 
developing adaptive systems.  
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Figure 2. The situated CE+ method for optimizing human-machine co-operation using 
adaptive automation. The iteration stops if a suitable HMC definition is reached. 

 
The situated CE+ method is shown in Figure 2. Generic human factors knowledge is 
contextualized into situated HF-knowledge (instantiated practical theories, guidelines, 
and methods for the specification and assessment). Adaptive automation concepts, 
triggers and ranges are derived from the technological design space. An analysis of 
the domain provides operational constraints. During HMC specification of the situ-
ated HF knowledge, the AC concepts and the operational constraints must be ad-
dressed concurrently resulting in a preliminary HMC definition. During the assess-
ment it is checked whether the definition actually agrees with operational constraints 
and HF predictions. An assessment will provide qualitative or quantitative results in 
terms of effectiveness, efficiency, satisfaction, learnability, and trust which are used 
to refine, adjust or extend the specification. Eventually, the process of iteration stops 
when the assessment shows that the overall HMC system satisfies the requirements 
(as far as the resources and completion date allow). The situated CE+ framework has 



been developed and applied for the design of cognitive support that augments the ca-
pacities of teams and team-members during critical and complex operations (e.g., to 
improve task load management, trouble-shooting and situation awareness). It is based 
on experiences with previous and current (space, navy) missions and based on practi-
cal theories on the object of support (e.g. cognitive task load [40]). 

5 Conclusion 

This paper reviews past and present research on the topic of the symbiotic relationship 
between man and machines, explaining the latest mitigation strategies, and finalizing 
with an iterative engineering methodology that takes into account the benefits and 
costs of the adaptation behavior of man and machine.  

One way to make human-machine systems more effective and resilient is by dy-
namically engaging humans and machines in tasks. With augmented cognition it is the 
machine that adjusts the way activities are divided and shared between human and 
machine. Investigating ways to develop systems that reliably augment cognition in 
operational settings and allows one to cope with unreliability and knowledge about 
how humans use these systems should be high on the research agenda. 

Although all three mitigation strategies for adaptive behavior have been proven 
successfully in experimental environments, they all have their pros and cons. To date, 
no studies have attempted to combine various triggers, and we strongly believe that 
combination of techniques prove very valuable [41] [42] and that the combining in-
formation might assist in resolving ambiguous situations.  

The paper finalizes with the explanation of a framework for the design of cognitive 
support that augments the capacities of teams and team-members during critical and 
complex operations and we encourage people to utilize such a method in the design-
ing process of augmented cognition systems.  
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