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Abstract

Humans are capable of estimating speaker ages by only hearing them speak. It
is also well known from the �eld of phonetics that speaker age inuences the
speech signal. This has however not yet been researched for the Dutch language.
In this research, the inuence of age on speech is researched for both genders sep-
arately and compared with the gender di�erences, using Perceptual Minimum
Variance Distortionless Response features. The inuences of age are minimal
for these features but greater than the di�erences between speech from di�er-
ent genders. Di�erent spectral features are inuenced for di�erent phonemes.
It seems unlikely that adapting speech recognizers using Perceptual Minimum
Variance Distortionless Response features will lead to much improvement.

Furthermore, this thesis describes the process of creating a Dutch automated
speech recognition system, using the Sonic large vocabulary continuous speech
recognition system as a basis. The system achieves a recognition rate of 64.6%
on the broadcast news task from the N-Best project. The porting process is
described in detail and provides an accurate introduction to the practice of
porting speech recognition systems.
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Chapter 1

Introduction

\It is not easy to wreck a nice beach"

\It is not easy to recognize speech"

Homophonous sentences:

two sentences that have an almost identical

pronunciation and are hard to di�erentiate

between acoustically

This chapter gives a brief introduction into the �eld of asr and some relevant
knowledge on the Dutch language. It also includes the problem statement and
goals of this research.

In the legendary movie \2001: A Space Odyssey" from the year 1968, we
saw an intelligent computer named Hal that, on top of being highly intelligent
and cunning, was able to understand human speech perfectly, even better than
a human could. This level of speech understanding by computers has ever since
been the dream of automated speech recognition (asr) researchers. Would it
not be far more convenient to be able to tell a computer what you want it
to do instead of using a more arti�cial input device such as a keyboard or
number pad? Especially for people who are not very comfortable with new
technological products and computers, it could be far easier if the interface were
voice-oriented. There also are situations where it is even dangerous to interface
with a computer through a keyboard, for example when using a navigation
system while driving a car. Unfortunately, 40 years later we still have not
managed to accomplish asr at a human level. As it turns out it is in fact not
easy to recognize speech.

1.1 Automated Speech Recognition

Why is asr hard to accomplish? There are various reasons why this is a com-
plicated task. Speech, captured in speech signals, has a rich variation between
di�erent speakers. Physiological aspects such as length of the vocal cords, shape
of the mouth cavity, position of the teeth all inuence the speech signal that a
speaker produces. Other factors that di�erentiate speech include social aspects.
Native speakers can hear di�erences between standard Dutch pronounced by
speakers from di�erent provinces in the Netherlands and even between speakers
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from certain cities. An acquaintance from the city of Zoetermeer went to the
US and surprisingly was recognized there as originating from Zoetermeer sim-
ply by his speci�c pronunciation of the letter r. Humans can also distinguish
between male and female speech and even between speech from di�erent age
categories [Sch�otz, 2007]. For example, when we answer the phone, we can tell
whether it is a child or an elderly person calling. All these aspects inuence the
speech signal and complicate matters for a computer. An asr system should be
able to recognize all these di�erent pronunciations of the same sounds and then
conclude that they are in fact the same sounds.

But even when one speaker pronounces the same word twice, there will be
di�erences in the speech signal. If a speaker has a cold, he sounds di�erent.
His emotions also inuence the pronunciation. Speech from a certain speaker is
even di�erent at di�erent times of the day [A.C.M. Rietveld, V.J. van Heuven,
1997], although it is not mentioned why. The duration of the di�erent sounds
that constitute the word in question, will also vary slightly. Because speaking
involves a continuous motion of the articulators |tongue, teeth, lips| the
sounds themselves even di�er depending on which sounds precede and follow it.
This e�ect is known as coarticulation.

Besides the inuence of the speaker, there also are external factors that
complicate matters. There will be di�erent amounts of noise that obscure the
speech signal and di�erent input devices and encoding schemes that inuence
the speech signal. This is known as channel variability.

Apart from these more acoustical problems, there also are other complica-
tions. When looking at a transcript of spontaneous speech, it can readily be seen
that there are many repetitions, �ller words, mispronunciations, errors that are
being corrected and other mistakes that complicate matters. Very often, spon-
taneous sentences will not be grammatically correct. An example sentence from
a Dutch speech collection: \ja [incomprehensible] je hebt uh je heb hier in de
tuinkamer heb je d'r eentje..", which in a translated form would resemble \yes
[incomprehensible] there's uh there is here in the garden room there's one".
When we look at the example of a dictation task, human transcribers are able
to �lter out most of the previously named errors. With software, it is a di�er-
ent story. A tester from a newspaper gave the leading voice detection software
package a try and came to the following conclusion [Rob Pegoraro, 2006]:

With a program such as Dragon, you must reprogram yourself
to think in complete sentences, avoiding \ers" and \ums" and main-
taining a steady volume and cadence. You have to let the software
train you before it will work to its fullest.

Another di�culty is the vocabulary. The vocabulary of a modern language
changes continuously, with new words entering, old ones becoming obsolete
and fashion words occur and disappear sometimes so fast that they do not
even become an entry in the dictionary. And current speech recognizers rely
on dictionaries to determine which sound sequences form a word in a speci�c
language and which do not. Certain languages, such as Dutch, also allow the
formation of a new word by combining two existing words, following certain
rules. This makes it hard to capture a vocabulary of a language even without
the constant changes.

Many of these problems can be categorized under the header of `too much
variation', on very di�erent areas. During this research, we will not try to tackle
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all these problems simultaneously but focus on the acoustic variation between
speakers. Currently, the acoustic variation between between speakers of di�er-
ent characteristics is mostly ignored. Speech recognizers are trained on corpora
of speech from a balanced group of speakers, using statistical averages calcu-
lated over the group as a whole to tune the acoustic speech models to. These
models can then be used to recognize speech from all speakers. Limiting this
variation by creating specialized acoustic speech models for di�erent speaker
groups could improve the performance of asr systems. Most current asr sys-
tems already include provisions for di�erent genders. However, it is indicated in
the literature of phonetics that age also inuences the speech production organs
and thus leads to di�erences in speech acoustics [A.C.M. Rietveld, V.J. van
Heuven, 1997], [Sch�otz, 2007]. Indeed, human listeners are able to di�erentiate
between speech from speakers with di�erent genders and even ages [Harry Hol-
lien, 1987], [Sch�otz, 2007]. A special asr system was also created for Swedish
children [Daniel Elenius and Mats Blomberg, 2004]. However, the e�ects of
these biological factors have not yet been researched for Dutch speakers. We
will thus look at the acoustical di�erences between di�erent age categories and
genders speci�cally for the Dutch language, using the speech data from the re-
cently �nished Corpus Gesproken Nederlands (cgn, the spoken Dutch corpus).
This will allow us to conclude whether di�erent models for di�erent age groups
could be helpful for asr of the Dutch language.

1.2 The Dutch Language

Before starting asr research on the Dutch language, some basic knowledge of
this language is indispensable. Dutch is not one homogeneous language: there
are two distinct main dialects. In the Netherlands people speak Northern Dutch
and in Flanders, the Dutch-speaking part of Belgium, people speak Southern
Dutch, also known as Flemish. The most important di�erences between these
two versions of the language can be found in the pronunciation.

There are some di�erences in the pronunciation of consonants, vowels and
diphthongs [V�eronique Hoste, Walter Daelemans, Steven Gillis, 2004]. For ex-
ample, Dutch speakers sometimes use unvoiced consonants where Flemish speak-
ers use voiced consonants. This occurs in the word `gelijkaardig' (similar), which
starts with an initial voiceless fricative (x) in Dutch and with a voiced velar
fricative (G) in Flemish.

The di�erences between the two vocabularies are small: native Dutch speak-
ers use the same dictionaries in which some words have the annotation `Northern
Dutch' or `Southern Dutch'. In fact the well-known dictionary `Van Dale' men-
tions only 2332 Flemish words in a collection of 311245 Dutch words [Prof. dr.
Dirk Geeraerts, 2000]. However, the usage of some of these words di�ers: in
Northern Dutch, the personal pronoun `ge' (thou) is archaic and rarely used,
mostly in a solemn context. In Southern Dutch however, it is used very often
as the standard personal pronoun for the second person singular and lacks the
formal connotation, similar to the usage of `you' in English.

Unlike American and British English, there are no di�erences in gram-
mar or spelling customs, but there are however some occasional di�erences in
style [William Z Shetter, 2002]. Overall Dutch and Flemish speaking people are
able to understand each other without too much added e�ort. However, when
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television stations in Flanders and the Netherlands broadcast each other's �c-
tional television series, subtitles are often added to bridge the di�erences in
pronunciation.

These di�erences require special attention when constructing a speech rec-
ognizer. It has been shown that adaptation of acoustic speech models to a
dialect or accent will greatly improve the recognition results. It was indicated
that for English pronounced with a Spanish accent, retraining results in a far
higher recognition rate than with normal English pronunciation models [Ayako
Ikeno, Bryan Pellom, Dan Cer, Ashley Thornton, Jason Brenier, Dan Jurafsky,
Wayne Ward, William Byrne, 2003]. Retraining should thus also prove to be
very useful for the Northern and Southern Dutch models.

1.3 N-Best and TU Delft

At this moment, it remains unclear how well automated recognition of Dutch
speech works. This would require a standardized task and standardized data
to base the asr system on. There has been research on Dutch asr but using
di�erent asr systems for solving di�erent tasks, which prohibits comparison of
the results. So it would be useful to have a benchmark test to compare with:
agree on one speci�c task using the same speech data as a basis to compare
results with. For this reason, a project is started named `N-Best': a joint
Dutch-Flemish project with the goal to \evaluate the performance of present-day
large vocabulary continuous speech recognition (lvcsr) systems for the Dutch
language". During this project, all participating universities and companies
create their own automated speech recognition (asr) system, after which a
benchmark is conducted. This research is conducted as a part of the N-Best
project, which is discussed in more detail in section chapter 3. During this
speci�c research, a Dutch lvcsr system is created that can be used as a basic
system for asr research as well as during the N-Best project.

Delft University of Technology has conducted multiple research projects in
the �eld of asr, such as [Pascal Wiggers, Leon J.M. Rothkrantz, 2006] and [Leon
J.M. Rothkrantz, Pascal Wiggers, Jan-Willem A. van Wees, and Robert J. van
Vark, 2004]. However there is no standard asr system available to use in these
di�erent projects at the TU Delft. An asr system to be used as the basic
system across di�erent projects would eliminate the need to start each project
by choosing an appropriate asr system and training it. This would give more
time to the researchers to actually spend on the research. It would make it
easier to test out new ideas and would thus give an extra boost to the asr
research. It is also necessary for the N-Best benchmark test to have a lvcsr
ready in time, one that can recognize broadcast news and one for the recognition
of spontaneous speech, which is the hardest asr task there is. Since TU Delft
has not yet �nished an asr system of their own and has never built a separate
speech recognizer for Flemish or for spontaneous speech, an existing speech
recognizer is needed to enter the project with.

1.4 Research Objectives

There are two main objectives in this research project:
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� to prepare a Dutch lvcsr system for the TU Delft to use as a basic system
for asr research and during the N-Best project, for the recognition of
broadcast news as well as for spontaneous speech.

The TU Delft needs a Dutch lvcsr in time to apply to the test data from the
N-Best project. A new lvcsr system is currently under development at the TU
Delft but it might not be ready in time for this project. Out of two popular
lvcsr systems, Sonic [SonicWeb] was chosen to be ported to the Dutch language
and be used by Delft during this project [Clerx, 2007], if the new system from
Delft is not ready in time.

� to research whether the acoustic di�erences between Dutch speakers from
di�erent age categories, for male and female speakers separately, are suf-
�ciently large to potentially be useful in the �eld of asr.

Therefore, we investigate the acoustic di�erences between di�erent Dutch speak-
ers; more exactly the di�erences between speakers of di�erent age and/or ed-
ucation level. If the acoustic di�erences are large enough, these speaker cate-
gories could improve lvcsr systems' recognition rate by incorporating special-
ized acoustic models for each category.

1.5 Thesis Structure

This thesis is written as a partial ful�llment of the requirements for obtaining
a Master of Science degree. After this introductory chapter, the thesis contin-
ues with a chapter on the theories behind this research, chapter 2. Next, the
N-Best project is introduced in chapter 3. Chapter 4 presents the tools that are
used during this project. The process of porting the Sonic lvcsr to the Dutch
language, is described in chapter 5. Chapter 6 describes the research on the
acoustical di�erences between di�erent age categories. The last chapter, chap-
ter 7, presents the conclusions from this research and gives recommendations
for further research.
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Chapter 2

Theory

A language is a dialect with an army and navy

Aphorism

This research uses concepts from the speech recognition �eld combined with
knowledge from the phonetics domain. This chapter will introduce the key
concepts from these domains in two separate sections.

2.1 Basic Concepts of Speech Recognition

This introduction into the �eld of asr is based on the book by [Jurafsky and
Martin, 2000]. Currently, speech recognition is commonly done by calculating
which phrase W has the highest probability of having been uttered, given the
recorded utterance O. The probability of each phrase is calculated separately
and the phrase with the highest probability is chosen to be the correct one. So
we want to calculate the following probability:cW = max

W
P (W jO): (2.1)

Unfortunately, it is not clear how this probability distribution, over two variables
that both have a potentially in�nite number of states, should be de�ned. For-
tunately, this formula can be rewritten as follows, using the well known theory
of Bayes. cW = max

W
P (W jO) = max

W

P (OjW )P (W )

P (O)
: (2.2)

Since we are only interested in �nding the phrase W that has the highest prob-
ability and the term P (O) is the same for all phrases, we can leave this term
P (O) out of the equation. This is very convenient since we do not know how
to calculate the probability of a speci�c `utterance' or `observation sequence'
P (O). We now only have to solve

cW = max
W

P (W jO) � max
W

P (OjW )P (W ): (2.3)

On �rst sight, not much has changed: we still have to de�ne two distributions
over an in�nite number of states, but now compact models can be de�ned that
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calculate these probabilities on the y. The probability that each word has
of having been uttered, is determined by multiplying two factors: the prior
probability

P (W ) (2.4)

and the observation likelihood
P (W jO): (2.5)

The prior probability is the probability that a speci�c phrase has been uttered,
regardless of what was heard. More commonly used phrases thus have a higher
prior probability then rarely used phrases. The other term, the observation
likelihood, represents the probability that a pronouncing a certain phrase was
said, sounds like the observations. The prior probability is better known as the
language model while the observation likelihood is called the acoustic model.
The speech recognition process is represented in �gure 2.1 and will be explained
in more detail in the following sections.

Figure 2.1: Schematic architecture for a simpli�ed speech recognizer. The
speech waveform �rst undergoes a signal processing step which produces a rep-
resentation in spectral feature vectors. Phone likelihoods are subsequently esti-
mated, after which a decoding step can �nish the recognition process.

2.1.1 Feature Extraction and Phonemes

When performing speech recognition, the �rst step is to analyze the given sound
wave and extract relevant data from it [Jurafsky and Martin, 2000]. This signal
processing starts by dividing the sound wave in time slices from which spectral
features are extracted. Spectral features indicate how much energy is present in
the signal at di�erent frequencies. Later on, these features are used to determine
which sounds were uttered. Instead of the general word `sound' we talk about
a `phoneme'. A phoneme is, according to [Huang, 2001], de�ned as:

any of the minimal units of speech sound in a language that can
serve to distinguish one word from another.
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For example, /p/ is a phoneme in the English language, distinguishing tap from
tag. These spectral features are used in combination with hidden Markov mod-
els(hmms) to determine the probabilities for the di�erent phonemes of having
been uttered, while taking the speech waveform into consideration. This prob-
ability was introduced before as the observation likelihood P (W jO). These
calculations are explained in more detail in the next section.

2.1.2 Hidden Markov Models

Now we can introduce the application of hmms in the �eld of asr. The hmms are
used for phone likelihood estimation, as indicated in �gure 2.1. It was mentioned
above that the �rst step in the speech recognition process is the extraction
of spectral features for each time frame. Now, for each two consecutive time
frames, t and t + 1, the hmm-based recognizer is assumed to transition from
state i to state j with probability aij , or stay in state i with probability aii, and
emit an observation symbol ot with probability density bj(ot). The observation
symbol ot is a 39-dimensional feature vector with real values. Each phoneme is
typically modeled using anywhere between 3 to 12 hmm states, depending on
the recognizer implementation. We will give an example of a very simple hmm
in �gure 2.2 from [van Dalen, 2006].

Figure 2.2: An hmm example state diagram. Three states with corresponding
output distributions are interconnected by transitions with transitional proba-
bilities.

This particular hmm has 3 states. This hmm starts in state 1 with a prob-
ability of 1, meaning that the corresponding phoneme always starts in state 1.
From here the hmm can continue, after one time slice, to state 2 with a transi-
tional probability of 0.8 or stay in state 1 with a transitional probability of 0.2.
After the last state of this phoneme, state 3, the next hmm is entered. A spe-
ci�c output distribution b1 corresponds with state 1. This output distribution
is Gaussian and is thus de�ned by its mean � and standard deviation �.

The feature vectors that were extracted from the audio time slices, are used
as input for the output probability distributions b1, b2 and b3 to calculate the
observation likelihood P (OjW ). This is done as follows: suppose that we know
that either only the phoneme /p/ or the phoneme /b/ has been pronounced
in our input speech waveform. For each of these phonemes, we have a hmm
with three states, representing the acoustics of three di�erent stages in the
pronunciation of the phoneme in question (the onglide, the pure state and the
o�glide). We now want to determine the probability of each of these phonemes
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matching with the speech signal. Then we can simply pick the phoneme with
the highest probability. This probability is calculated as follows. We use the
well-known Gaussian probability density function:

1

�
p
2�

e�
(x��)2

2�2 : (2.6)

As the feature vectors are 39-dimensional, a multivariate Gaussian density func-
tion has to be used. In practice however, the individual dimensions of the vectors
are considered independent, i.e. the covariance matrix of the distribution is di-
agonal. As a consequence, each phoneme state can be represented by a set of
Gaussians, one for each feature vector element. In other words, every state of
every hmm has its own Gaussian distribution. The Gaussian density function
is then applied to every feature dimension of every feature vector in combina-
tion with the corresponding hmm state. Multiplying these probabilities results
in the observation probability for the current phoneme state given the current
feature vector (i.e. the probability that pronouncing this phoneme state would
lead to the feature vector under consideration). When we have a hypothetical
phoneme state sequence, we can calculate a list of individual phoneme state
observation likelihoods. To obtain the actual phoneme sequence probability, we
�rst multiply the probability of starting in the starting state of the sequence
with the transition probabilities corresponding with the state transitions pro-
ducing the state sequence. Now we can multiply these individual phoneme state
observation likelihoods with the transition probabilities corresponding with the
consecutive phoneme states to obtain the sequence observation likelihood.

Not all phoneme sequences are allowed: only phoneme sequences constituting
actual words are allowed. A phonetic lexicon is used by the asr system to look
up which phoneme sequences correspond with actual words. The corresponding
phoneme hmms can then be combined into one bigger word hmm by simply
linking the hmms together with new transitions.

But how do we know for which sequences the probability should be calcu-
lated? To try out all legitimate word sequences from scratch would be ine�cient
to say the least. This is where the Viterbi algorithm proves its worth. This al-
gorithm will be explained in section 2.1.4, but �rst we need to introduce the
notion of the language model.

2.1.3 The Language Model

The language model from equation 2.4, tells the asr system what the likelihood
is of a certain word being spoken, regardless of the audio signal. It basically
tells us which word sequences are more likely than others to occur in a speci�c
language. The probability of a word sequence is de�ned to be equation 2.7:

p(W ) = p(w1w2 : : : wn): (2.7)

The probability of this word sequence can be calculated by multiplying a
sequence of probabilities for shorter word sequences, as can be seen in equa-
tion 2.8:

p(W ) = p(w1)p(w2jw1)p(w3jw1w2) : : : p(wnjwn�1wn�2 : : : w1): (2.8)
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To calculate the probability for the last word in equation 2.8, the complete
word history has to be taken into account. For longer word sequences, it is
practically impossible to �nd good estimates for these probabilities. Reliably
estimating them would require larger amounts of training texts than can be
collected in practice. This is why we have to limit the amount of preceding
words we take into consideration and assume that only the N preceding words
inuence the probability of the next word. When N equals 2, this results in the
following formula:

p(W ) = p(w1)p(w2jw1)p(w3jw1w2) : : : p(wnjwn�1wn�2): (2.9)

This independence assumption results in N-grams, more speci�cally uni-
grams when N = 0, bigrams when N = 1 and so on. Unigrams contain prob-
abilities for each separate word, indicating how probable it is that this word
occurs, regardless of the rest of the phrase. Bigrams consider the probability of
a certain word occurring while taking the previous word under consideration, as
was done in equation 2.9. In order to use unigrams, we need to know the proba-
bilities for the occurrences of each word in the dictionary. These unigram counts
are calculated by taking a large text to use as training data, and then simply
counting how often each word in the vocabulary occurs in the training text.
Dividing these totals by the total number of words in the training text, gives
us estimates for the probabilities we need. Using these relative frequencies to
estimate probabilities is an application of maximum likelihood estimation since
the likelihood of the training set is maximized given the model. This approach
can be expressed as equation 2.10:

P (wi) =
C(wi)P
n C(wn)

; (2.10)

where C(wi) is the number of times word wi occurs in the corpus.
When we decide to use bigrams |and unigrams, for the �rst word of a

sentence| we look at how probable a certain word is to occur following the
previous word. For this we count how often each two-word sequence occurs in
the training text and divide this by the total number of two-word sequences
available, see equation 2.11. This provides us with a more accurate estimate
of the prior probabilities than unigrams do. This approach can be expanded
to trigrams, fourgrams and so on. This results in the general formula in equa-
tion 2.12. Theoretically, it would be best to look back at as many words as
possible and to take the whole of the preceding text into account. It would
however be impossible to collect su�cient training data to make a reliable esti-
mate of these probabilities. So a trade-o� must be made and currently, trigrams
are most commonly used.

P (wijwi�1) = C(wi�1wi)

C(wi�1)
: (2.11)

P (wnjwn�1n�N+1) =
C(wn�1n�N+1wn)

C(wn�1n�N+1)
: (2.12)

When using a training text for estimating these probabilities as described
above, the words in the vocabulary that do not occur in the training text get

11



a probability of 0. With them, all sentences in which these words occur also
have a probability of 0. With a probability of 0, these words would thus never
be recognized by the asr system; they would in practice be removed from the
vocabulary. But since these words are in fact existing words, they should be
viable to be recognized by an asr system and should have a small probability
higher than 0. The techniques that are used to assign them a small, non-zero
probability are called smoothing. This involves slightly reducing the probabil-
ities of the words that do occur and augmenting the probabilities of the other
words slightly so now all words in the vocabulary qualify for recognition. As
a result, a portion of the probability density has been redistributed to these
words. As an estimate, these words often receive a probability of about the
probability words get that only occur once in the training text.

The remarkable thing is that these N-grams can also be seen as a Markov
model, as illustrated in �gure 2.3. The structure is as follows: after a dummy
starting state, we have a set of nodes, one for each word in the dictionary. The
probability of transitioning to such a word, is its unigram probability. After
these �rst words, a second layer of nodes follows, once again one for each word
in the dictionary. Each node w1 in the �rst layer can have a connection with
each node w2 in the second layer; the corresponding probabilities are the corre-
sponding bigram probabilities p(w2jw1). This structure can easily be extracted
to trigram or fourgram structures. A sentence now consists of a sequence of
words while each word consists of a sequence of phonemes, which themselves
consist of multiple states. In this light, a sentence can be regarded as one big
hmm, containing smaller word hmms built up from phoneme state hmms. Now
we use the Viterbi algorithm to �nd the most likely sequence through this giant
hmm.

Figure 2.3: The language lodel can be regarded as a Markov model, using N-
gram probabilities as the transitional probabilities.

2.1.4 The Viterbi Algorithm

The Viterbi algorithm calculates the most likely sequence through a hmm, given
a sequence of observations. It can be found in �gure 2.1 as the decoding stage.
This algorithm needs multiple inputs:

1. a sequence of feature vectors,
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2. a set of acoustic hmms, along with state transitions and the corresponding
transitional probabilities,

3. a language model, for the prior probabilities and the transitional proba-
bilities from one word to the next,

4. a pronunciation dictionary, containing the possible words and their pro-
nunciation as a sequence of phonemes.

The algorithm then �lls a matrix with the likelihoods of all possible subse-
quences. They are calculated using the transitional probabilities, from the
hmms, and the language model, and observation likelihoods of single phoneme
state and feature vector combinations, using equation 2.6. The algorithm also
keeps track of back-pointers, which are an e�cient way to store sequences.
When it is �nished, the Viterbi-matrix contains the probabilities of all pos-
sible sequences. Now retrieving the most probable sequence is simply a matter
of looking up the highest probability a sequence has and reconstructing the se-
quence via the back-pointers. We have now �nished the process of calculating
most probable sequence as far as the observation likelihood from equation 2.5
is concerned.

Using the most likely sequence is in fact an approximation since di�erent
phoneme state sequences correspond with the same sentence. If one pronounces
the same sentence two times, it is next to impossible to pronounce it in exactly
the same way. Some phonemes will most likely be pronounced a bit shorter and
others slightly longer. A better estimate of the sentence's probability would be
achieved by adding up these sequence probabilities that correspond with the
same sentence, which is done by the forward algorithm. However, the forward
algorithm has to be run separately on each di�erent sentence, which makes it
very ine�cient. Furthermore, the Viterbi algorithm typically comes up with the
same answer.

But how do we obtain the correct hmm values? All the hmm parameters
|transition probabilities, Gaussians| need to be trained to make the hmms
accurately model the speech training data. This is done with an annotated data
set through a procedure similar to the language model training procedure. How-
ever, unlike the language model, the acoustic models are hidden Markov models,
which prohibits the use of a simple maximum likelihood approach. With hmm
training, a form of expectation maximization (em) is needed. This technique it-
eratively applies the forward algorithm to adjust the di�erent hmm parameters.

The reader who is interested in a more detailed introduction in this subject is
advised to consult [Jurafsky and Martin, 2000] or, more briey, [Spaans, 2004].

2.1.5 Language Porting of Acoustic Models

When porting an hmm-based asr system to another language, a few changes
have to be made. Firstly, the acoustic models need to be adapted to the
phonemes in the new language. Therefore, a mapping is made de�ning which
phonemes in the original language resemble which phonemes in the new lan-
guage. Then the hmms are retrained using speech data from the new language
to re-estimate the hmm values. Of course a vocabulary has to provided for the
new language and also a new language model matching this vocabulary. Af-
ter the retraining process, extra training steps can be performed to make the

13



hmms even more accurate for the new language. After each retraining step, a
test should be conducted to see how well the hmms perform and the retraining
should continue until the models no longer improve.

2.2 Basic Concepts of Phonetics

Let's look at the de�nition of phonetics according to [PhoneticsWiki]:

Phonetics is the study of the sounds of human speech. It is con-
cerned with the actual properties of speech sounds (phones), and
their production, audition and perception, as opposed to phonol-
ogy, which is the study of sound systems and abstract sound units,
such as phonemes and distinctive features. Phonetics deals with the
sounds themselves rather than the contexts in which they are used
in languages. Discussions of meaning (semantics) do not enter at
this level of linguistic analysis [A.C.M. Rietveld, V.J. van Heuven,
1997].

Phonetics has three main branches:

� articulatory phonetics, concerned with the positions and move-
ments of the lips, tongue, vocal tract and folds and other speech
organs in producing speech;

� acoustic phonetics, concerned with the properties of the sound
waves and how they are received by the inner ear; and

� auditory phonetics, concerned with speech perception, princi-
pally how the brain forms perceptual representations of the
input it receives.

This research belongs to the domain of acoustic phonetics and is limited
to the research of the sound waves. It is noted in [A.C.M. Rietveld, V.J.
van Heuven, 1997] that phonetics is an experimental science and is conducted
through experiments on actual speech samples. This can also be seen in this
research, which owes its weight to the big amount of speech data available to
be studied. We take a closer look at the di�erent phonemes of the Dutch lan-
guage and the inuence of gender and age on their realizations, which are called
`allophones'. This allows us to draw conclusions on the potential usefulness of
these criteria for asr systems for the Dutch language. The common notation
for phonemes is: /r/, while allophones have the following notation: [r]. These
phonemes may seem discrete, but they are not pronounced in isolation. Con-
secutive phonemes inuence each other since our speech organs do not instantly
jump from sound to sound. Speakers pronounce text in uent motions, allowing
the consecutive phonemes to inuence each other.

Speech is produced by the speech organs. In general, speech is the result
from air being exhaled, inuenced by the vocal cords or changes in position of
the tongue and the opening of the jaw or lips. Here we encounter some phys-
iological di�erences between di�erent genders and ages: the vocal cord length
depends on these factors. Women have shorter vocal cords than men. There
are also di�erences in size between the mouth-throat channel in men, women

14



0

50

100

150

200

250

300

350

400

450

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Age (years)

A
ve

ra
g

e 
b

as
e 

fr
eq

en
cy

 (
H

z)

American children Dutch girls/women Dutch boys/men
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Rietveld, V.J. van Heuven, 1997]
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and children. It has been known from physics that the vocal cord length inu-
ences the base frequency. This results in di�erences in fundamental frequency
for di�erent genders and ages, as can be seen in �gure 2.4.

Vibrating vocal cords produce a voiced phoneme while non-vibrating vocal
cords produce a voiceless phoneme. But the physiology is not the only factor
inuencing frequency: every vowel also has its own intrinsic frequency.

The speech organs also change with age. The di�erences are most apparent
in the fundamental frequency, especially below 18 years and above 62 years.
Young children from both genders have a very high fundamental frequency,
but only for boys there is big increase in vocal cord length and volume during
puberty. Another point where age inuences speech is the articulation speed.
This di�erence is currently covered for the most part by the use of hmms.

Besides gender and age, other speaker characteristics also inuence the
speech. There are regional di�erences [Verhoeven and Van Bael, 2002] and
speech from people speaking or being raised with di�erent dialects di�ers acous-
tically. An example of this is the devoicing of the phoneme /z/ around the city
of Amsterdam in the Netherlands. There also are inuences on word usage:
dialects often use words that do not occur in the standard language. Sometimes
there even are subtle di�erences at the syntactic level: in Dutch the order of
the verbs in a relative clause is swapped in the Northern part of the Nether-
lands [Wiggers, To appear in 2008].

Another inuence is the social group speakers belong to. Lower social
classes use more dialect than the higher social classes do. Inuences can, once
again, most readily be seen in the pronunciation. Non-native speakers often
keep inuences from their native language, even for a long time after migrat-
ing [Ikeno et al., 2003]. On the grammatical level, higher classes do not use
longer sentences; they do however vary their language more, known as `lexical
richness' [Wiggers, To appear in 2008]. There are also clear di�erences in word
usage for di�erent age categories and genders.

Other inuences on speaker groups include speaking style, which can be
formal or informal, and interaction type: people tend to speak di�erently to
humans than they do to machines. Sometimes people over-articulate when
talking to a speech recognizer.

Another peculiar acoustical phenomenon is the development of the so-called
`polder-Dutch', in which the pronunciation of diphtongs changes. An example is
the change of pronunciation of /ei/ to `ai'. This development seems to have been
initiated by young, highly educated women; it is thus a pronunciation di�erence
related to a combination of gender and social class [Wiggers, To appear in 2008].

In this research, the acoustical di�erences between di�erent age categories
for men and women will be investigated. This research is done in the context
of the N-Best project, which will be introduced in detail in the next chapter.

2.3 Related Work

Only this year, Susanne Sch�otz summarized the related work in her paper on the
Acoustic Analysis of Speaker Age [Sch�otz, 2007]. She mentions that \features re-
lated to speech rate, sound pressure level (SPL) and fundamental frequency (F0)
have been studied extensively, and appear to be important correlates of speaker
age". She also mentions the substantial di�erences between the genders when
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looking at the aging process: males experience big changes to their speech during
puberty while female speech changes more around the menopause. Moreover,
\age-related changes in adults are generally greater in men than in women". It
was found that human listeners are able to di�erentiate between speech from
speakers with di�erent genders and even ages [Harry Hollien, 1987], [Sch�otz,
2007].

In [Daniel Elenius and Mats Blomberg, 2004], the recognition of children's
speech was investigated using models for di�erent age classes and a strong cor-
relation between age and accuracy was found.

When it comes to the di�erences between Northern and Southern Dutch, the
author of [Ayako Ikeno, Bryan Pellom, Dan Cer, Ashley Thornton, Jason Bre-
nier, Dan Jurafsky, Wayne Ward, William Byrne, 2003] came to the important
conclusion that even for English pronounced with a Spanish accent, acoustical
retraining of the models to better �t the Spanish accented pronunciation results
in much higher recognition rates. This indicates that a similar approach would
bene�t our Northern and Southern Dutch asr tasks.

The Sonic speech recognition system was ported to Dutch before, as was
noted in [Huijbregts, M.A.H., Ordelman, R.J.F., de Jong, F.M.G., 2005]. The
bn task that was performed here, performed at a recognition rate of 70%.

The N-Best project itself has been described most recently in [Judith Kessens
and David van Leeuwen, 2007]. Additional speech data for the Dutch language
is being collected, according to [Catia Cucchiarini, Hugo Van hamme, Felix
Smits, 2006].
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Chapter 3

The N-Best Project

Most conversations are simply monologues

delivered in the presence of a witness

Margaret Millar

In this chapter the N-Best project, of which this research is a part, will be
discussed in detail. First the project will be presented and the remainder of the
chapter explains the details of the project. These details provide the basis for
the comparison of the two speech recognizers under consideration.

3.1 Introduction

The N-Best project was started with the goal to \evaluate the performance of
present-day large vocabulary continuous speech recognition (lvcsr) systems for
the Dutch language" [David van Leeuwen, Judith Kessens, 2006]. In order to
achieve this, a common evaluation method is required. During this project a
special evaluation framework will be developed that will help compare current
lvcsr systems. It will also help track the progress made in this �eld by allowing
future lvcsr systems to be compared using the same framework. The full
name of the N-Best project is \Evaluation plan for the North-and South-Dutch
Benchmark Evaluation of Speech recognition Technology (N-Best 2008)". The
evaluation method chosen is inspired by past nist evaluations in the US [Fiscus,
2005], [Fiscus, 2006] and the ester evaluation in France [ESTER].

This project is a cooperation of research groups in Flanders and the Nether-
lands. They have all committed themselves to participating in the evaluation
performed by tno Human Factors in the Netherlands in 2008. The evaluation
will commence with an optional `dry-run', during which tno will send data in
the evaluation format to the participants who can then rehearse the evaluation.
Their results will then be sent back to tno in order to allow tno to rehearse
their side of the evaluation. This dry-run will then be evaluated so that some
changes can be made to the evaluation process, if necessary.

In 2008 the actual run will take place following the same procedure as the
dry-run. tno will evaluate the results it received from each participant and
score them. An adjudication period will follow during which the participants
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can comment on the evaluation results. The evaluation will be concluded with
a workshop during which tno and the participants will present their �ndings
and exchange papers describing their systems in more detail.

3.2 Task and Materials

The task is to recognize all spoken words in a set of given excerpts of audio.
This task is commonly known as automatic speech recognition or speech-to-text
(stt). The audio material will be limited to speci�c domains and languages:

� Speech in the audio excerpts will be in the Dutch language.

� The global accent of the speakers will be Northern Dutch or Southern
Dutch (also known as Dutch and Flemish).

� The audio excerpts will be obtained from radio and television news shows
(Broadcast News, bn) and telephone conversations (conversational tele-
phone speech, cts).

There is no limit on the processing time used for the asr but the results
should be delivered to tno within a month. Participants are obligated to provide
a system description clarifying the technologies, training databases and training
details used, allowing others to learn from their approach.

3.2.1 Conditions

Boundaries will be added to several aspects of this asr task. For some aspects
primary tasks will be stated that each participant must ful�ll. For other aspects
there will be a primary condition, which is compulsory, and contrastive condi-
tions, which may optionally be performed in addition to the primary condition.
Participants are allowed to add their own contrastive conditions of choice, to
highlight their speci�c strengths and specialties.

Accent and Speech Domain

The two accents (Northern and Southern Dutch) combined with two speech
domains result in four di�erent primary tasks, see Table 3.1. This information
may be used to condition parts of the asr system on. The results will be
analyzed separately for the four tasks so a participant can decide to focus on
some of the tasks. However all tasks must be performed in order to make a valid
submission.

Table 3.1: Tasks evaluated in N-Best 2008 with approximate durations of the
evaluation data

bn cts

Northern Dutch 2 hours 2 hours
Southern Dutch 2 hours 2 hours
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Audio Material

The audio material will be recorded starting from 1 January 2007. The partic-
ipants may not use training data collected in the same period in order to avoid
that their asr systems are trained with the same data they will be tested with.
This would lead to better results than the asr systems can achieve on normal,
unseen data and would thus be misleading. The bn will be recorded from public
or commercial television and radio broadcast in the Netherlands and in Flan-
ders. For the cts data will be used that is similar to the data in the well-known
cgn (Corpus Gesproken Nederlands). The bn domain will primarily cover news
and a�airs shows. Each 2 hour bn material will consist of about 10 excerpts
from a single show, where `broad segments', the periods under evaluation, are
indicated by an index �le, totaling to about 12 minutes of speech per show.
Each 2 hour cts recording will originate from 12 dialogs of about 10 minutes,
where each conversation side will speak roughly 5 minutes.

The cts evaluation material will roughly be balanced for important speaker
characteristics such as sex and geographical location. Similarly, the bn material
will be chosen from a wide range of news shows and broadcast channels, some
of which will not be included in the training material.

For the bn tasks, broad segments will be chosen that will contain mainly
speech. Hence, segmentation of the bn audio �le in speech, music, jingles and
other audio types is not an item under evaluation. However, the broad segments
will be much larger in size than the typical `chunk size' found in cgn, and may
include some non-lexical audible events, such as coughs, hesitations, slams, etc.

The cts task will consist of 2-channel �les, for with both sides of the conver-
sation have to be processed. The broad segments will include the `silent' parts
of conversation sides.

Processing Time

It was decided that there should not be constrictions on run time during the �rst
edition of this project. However participants are allowed to admit contrastive
results that were obtained under run time restrictions. The run time restrictions
are expressed in rts, which stands for `times real time' and is de�ned as follows:
rt = processing time/duration of the audio material
An overview of the primary and contrastive conditions on run-time can be seen
in Table 3.2.

Table 3.2: Primary and contrastive processing time conditions de�ned in N-Best

Name Real-time factor Condition
unlimited <1 primary
ten-times rt < 10 contrastive
real-time < 1 contrastive

Training

The participants will receive the training material from tno, consisting of acous-
tical and language modeling training data. The acoustical training data will be
a selection of cgn. The text resources will be a selection from the Twente News
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Corpus (TwNC) for Northern Dutch and from Mediargus for Southern Dutch.
In the primary condition only this training data can be used but as a con-
trastive condition other training data may also be used, as long as it originates
from before 1 January 2007.

3.2.2 Evaluation Measure

Primary Evalution Measure

The primary evaluation measure will be the Word Error Rate (wer), as calcu-
lated by nist sclite tools. asr systems are often compared using this measure
which corresponds to the percentage of incorrect words, as de�ned in equa-
tion 3.1 from [Jurafsky and Martin, 2000]. Alignment between the reference
transcription and asr word hypothesis will be carried out in a way that mini-
mizes the wer. The wer values will be reported for each of the four primary
acoustic/domain conditions separately.

WordErrorRate = 100� Insertions+ Substitutions+Deletions

TotalWordsinCorrectTranscript
(3.1)

For the calculation of the word error rate only lexical entries in the reference
and hypothesis �les are accounted. Non-lexical events (coughs, hesitations, �lled
pauses) will not be included in the primary wer scores but may be analyzed
separately.

In Dutch, proper names should be capitalized (e.g. \de Tweede Kamer" vs.
\een blauwe kamer"), this is di�erent from evaluation in English. The �rst word
of a sentence should not be capitalized, unless it would have to be capitalized
for being a proper name or similar reasons.

Words should be accented in cases where leaving the accents out could lead
to (written) ambiguities in Dutch (e.g., een blauwe loge vs. niet �e�en log�e).
Punctuation will not be considered.

Alternative Evaluation Measure

The wer will also be calculated in a time-mediated way, and reported sepa-
rately. For sites that include word-based con�dence measures, this con�dence
measure will be evaluated along similar lines as nist Normalized Cross En-
tropy [Entropy].

3.2.3 Training Data

The training data in the evaluation will be standardized as much as possible,
in order to make the results of the evaluation meaningful to future researchers,
and concentrate on technological and training approaches for this evaluation.

The acoustic training material will be obtained entirely from cgn (Corpus
Gesproken Nederlands, Spoken Dutch Corpus), version 2.0. The corpus is sepa-
rated in Dutch and Flemish parts, and consists of several components. For the
speech domains bn and cts we have speci�ed the components that can be used
for training in Table 3.3. Note that the durations indicated are calculated from
the raw audio �les, and may include a signi�cant amount of silence.
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Table 3.3: Speci�cation of the acoustic training components of cgn

Speech domain Component Duration (hours)
Dutch Flemish

Broadcast News f: broadcast interviews 42.9 20.9
i: live commentaries 30.7 12.9
j: news/reports 8.3 9.1
k: broadcast news 27.5 8.2
l: broadcast commentaries 7.9 6.8
Total 99.4 52.9

Conversational c: switchboard 55.3 36.5
Telephone d: local minidisc 36.7 27.5
Speech Total 92.0 64.0

The training data for the language model is obtained from two resources: the
Dutch publisher pcm (via the Twente News Corpus) and the Flemish Mediargus
(via esat Leuven). From both sources a collection of newspapers over a �xed
period will be chosen to form the training material for the language model.

Other text resources available within the N-Best evaluation can also be used
in the primary condition, such as the transcripts of the acoustic training material
and transcripts of other cgn components. In the contrastive training condition
other text resources than speci�ed here can be used, as long as the original
creation date pre-dates 1 January 2007.

Vocabulary, Dictionary, and Questions

The pronunciation dictionary that may be necessary for building an lvcsr sys-
tem for Dutch will not be distributed or speci�ed, even though it can be con-
sidered a data resource that strongly inuences the recognition performance.
`Derived' consequences of the dictionary, such as the phone set and the vocab-
ulary, are considered design choices and are part of the di�erence between the
various systems under evaluation. However, note that the cgn is delivered with
a pronunciation dictionary that covers most of the words in the cgn. Similarly,
if the lvcsr technology needs phonological questions for decision trees used in
a state-clustering process, sites must provide these themselves.

3.2.4 Development Test Data

A part of the acoustic training data will be split o� as development test data.
It will be formatted in the same way as the evaluation material will be dis-
tributed. The splitting will be performed based on recording date, such that
the development test data will originate from a more recent period than the
training data.

3.3 Formats

The data formats will be similar to other asr evaluations, mostly performed by
nist, as to minimize the e�ort for the asr sites to run the evaluation.
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3.3.1 Audio Format

The audio format of development test and evaluation data will be distributed
in nist sphere format. The technical encoding parameters are tabulated in
table. Other audio resources, such as the acoustic training database, will be
distributed in the format of the original supplier.

Each bn excerpt and each telephone conversation will be distributed as a
single audio �le, even though not all parts of the audio will be part of the
evaluation.

3.3.2 Evaluation Control Files

Along with all audio �les an index �le will be distributed indicating the segments
within the audio �les that are part of the evaluation. The format of these �les
will be nist Unpartitioned Evaluation Map (uem) �les [Fiscus, 2006]. These
ascii text �les consist of 4 �elds, the semantics are in table 3.4. Each line in the
uem indicates a segment in an audio �le that must be processed by the speech
recognition system.

Table 3.4: Sphere encoding parameters for evaluation and development test

Parameter bn cts

Encoding pcm A-law
Resolution 16-bit 8-bit
Sample frequency 16 kHz 8 kHz
No. Channels 1 2

Several segments within the same audio �le can be referenced, as well as one
or two channels for cts data. Note that uem segments will be generally larger
in duration than the typical `chunk' size in the cgn training material. There
will be one uem �le for each of the four primary tasks in this evaluation.

3.3.3 Result Format

The asr-sites are required to produce the word hypothesis in time-marked con-
versation (ctm) format [Fiscus, 2006]. This text �le consists of records each
having 8 �elds, for which the meaning is indicated in Table 3.5. The ctm for-
mat can also be used for other kinds of information, such as speaker identity or
non-lexical acoustical events. This can appreciated from �elds 7 and 8, where
for �eld 7 the alternative token types frag (word fragment), fp (�lled pause) are
among the types that may occur in the reference transcription [Fiscus, 2005].

However, for the purpose of this evaluation, only tokens of the type lex (i.e.,
words) will be scored for calculating the wer. Similarly, �eld 6, the words con-
�dence, is optional and the value na may be given, in which case no con�dence
scoring is performed.

For every uem �le one ctm result �le should be generated for the primary
system and primary condition. For contrastive systems and contrastive condi-
tions, a subset of uem �les can be processed.
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Table 3.5: Fields in the ctm format

Field Meaning Example
1 source ID cn01345
2 channel (1 or 2) 1
3 start time (sec) 17.354
4 duration (sec) 0.786
5 token (i.e., word) minister
6 con�dence (<0-1>) 0.9983
7 token type lex
8 speaker unknown

3.3.4 Training Files

Acoustical and language modeling training �les will be distributed in the formats
that the original supplier uses.

3.4 Evaluation Rules

There are a number of rules in order to make the outcome of the evaluation more
meaningful and to make it possible to evaluate the merits of di�erent approaches
the di�erent participants have taken. In this section we will tabulate the rules
indicated elsewhere in this document, as well as introduce some new ones.

� Any form of human interaction with the evaluation data is not allowed.
In particular, listening to the evaluation data, or inspection of the asr
results, either though manual browsing or statistical reports of the results,
is not allowed until the primary system results have been submitted to
tno.

� All audio �les should be processed independently. It is not allowed to
adapt models to one audio �le and used the adapted models for processing
other �les. Within one audio �le, all available information may be used,
and in an o�-line way, so that for instance speaker clustering/adaptation
within one bn news show is possible.

� For the primary condition, the acoustical material for training Dutch
acoustic models is limited to the cgn database (any component). The
acoustical models may be `seeded' from acoustical models trained in a
di�erent language, or from a di�erent Dutch database. Here we mean by
seeding that acoustic models trained using other databases can be used
for the initial segmentation of new acoustic models.

� For the primary condition, the text resources for training the language
models is limited to the databases indicated in section 3.2.3, including the
transcripts of cgn.

� Any form of training data obtained from sources after 1 January 2007
is not allowed, for any evaluation condition. This applies in particular
to acoustical and language modeling or vocabulary choice. Even in con-
trastive submissions, data originating from sources produced after this
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date is not allowed. If a site wishes to use acoustical or textual resources
from the web in an purely automatic fashion, care should be taken that
the date of origin stems from before 1 January 2007.

� All evaluation data must be processed and results �le should be generated
for all four primary tasks.

� Knowledge of the primary task (domain and accent) is allowed. Any form
of other meta-data that can be useful to the asr system must be obtained
by automatic means. This means, for instance, that for the bn tasks it is
allowed to try to recognize the speaker and used special models for this
speaker. However, there is no guarantee that the bn material will contain
the same speakers as in the primary training material.

� The ctm �les should be sent to the evaluator before the end of the eval-
uation deadline. Later results will be marked as such. Results received
after the reference transcriptions have been released will not be accounted
as primary results.

The time table of this project is added as Appendix A.
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Chapter 4

Tools and Resources

The tongue is but three inches long, yet it can

kill a man six feet high

Japanese Proverb

This chapter will describe the tools and resources that were used during this
project. The most important resource is the Spoken Dutch Corpus, containing
the speech data needed to train Sonic. These large speech data �les were divided
into more convenient segments using a tool named `shntool'. These speech
fragments were then converted to the appropriate �le format with the `sox'-
tool.

4.1 The Spoken Dutch Corpus

The resource that will be used for the audio data is the Corpus Gesproken Neder-
lands, or Spoken Dutch Corpus. The Corpus Gesproken Nederlands (cgn) was
collected through a joint Flemish-Dutch project, carried out between 1998 and
2003, and can be ordered from this website [The Spoken Dutch Corpus Home-
page]. The intended result of this project was `a database of contemporary
standard Dutch as spoken by adults in the Netherlands and Flanders' [Corpus-
GesprokenNederlandsDocumentation]. In the end, a total of 9 million words
was collected. This was divided into two parts: over 5.6 million words were
collected in the Netherlands and 3.3 million words in Flanders. The cgn con-
sists of a collection of audio data along with several kinds of transcriptions and
annotations. This includes an orthographic transcription, a phonetic transcrip-
tion, part-of-speech tagging and word segmentation. Background noises are not
represented in the transcript. The cgn also includes frequency lists for the data
in the corpus. Furthermore, the data is divided into several categories, as can
be seen in table 4.1.

4.1.1 Preprocessing of the Data

During transcription, the audio �les were divided into small chunks of about 2
or 3 seconds. The chunks are separated by time markers which serve as anchor
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Table 4.1: Categories in cgn

Category Flemish words Dutch words

a. Spontaneous conversations (`face-to-face') 878,383 1,747,789
b. Interviews with teachers of Dutch 315,554 249,879
c. Spontaneous telephone dialogs (recorded via

a switchboard)
465,096 743,537

d. Spontaneous telephone dialogs (recorded on
md with local interface)

343,167 510,204

e. Simulated business negotiations 0 136,461
f. Interviews/discussions/debates (broadcast) 250,708 539,561
g. (political) Discussions/debates/meetings

(non-broadcast)
138,819 221,509

h. Lessons recorded in the classroom 105,436 299,973
i. Live (e.g. sports) commentaries (broadcast) 78,022 130,377
j. News reports/documentaries (broadcast) 95,206 90,866
k. News (broadcast) 82,855 285,298
l. Commentaries/columns/reviews (broadcast) 65,386 80,167
m. Ceremonious speeches/sermons 12,510 5,565
n. Lectures/seminars 79,067 61,834
o. Read out speeches 351,419 551,624

Total 3,261,628 5,564,644

points for the alignment of the speech �le and the transcript. The cgn also
contains a lexicon.

The Sonic speech recognition system requires the orthographic transcriptions
accompanying the sound fragments for the acoustic training process. These
transcriptions are added to the cgn in the following ShortTextGrid format:

Below non-literal text is indicated by means of curly brackets:
[. . . ]. The numbering of the lines has been used for the purpose of
reference and is not part of the format.

The �rst three lines are always the same.
1. File type = "ooTextFile short"
2. "TextGrid"
3. empty line

On lines 4 and 5 a description is given of the timespan involved.
Time is expressed in terms of the number of seconds, using three
decimals.
4. begin time
5. end time

Lines 6 and 7 describe the number of tiers that occur in the �le.
6. <exists>
7. number of tiers
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Lines 8 up to and including 12 contain information about the �rst
tier.
8. "IntervalTier"
9. "speaker name"
10. begin time
11. end time
12. number of intervals in this tier

Lines 13 up to and including 15 describe the very �rst interval.
13. begin time
14. end time
15. "orthographic transcript"

Then all further intervals of the �rst tier occur in chronological
order as in lines 13 up to and including 15. Every next tier after that
follows all intervals of the preceding tier. The structure is identical
to that of the �rst tier from line 8 onwards.

4.2 The Wav-Splitter: Shntool

During this graduation project, it was necessary to split many audio �les in
the wav-format into smaller audio �les. These audio �les should be split at the
anchor points from the cgn annotation data in order to comply with the asr
system's requirements. For this task, a tool named `shntool' was used, version
3.0.2 [Jordan, 2007b].

The shntool is a `a multi-purpose wave data processing and reporting util-
ity' [Jordan, 2007a]. It allows the user to get information on and perform
di�erent operations on sound �les in various formats. Shntool does not come
with a graphical user interface but works from the command line, which makes
it easy to call this tool from dos batch-�les, for example.

The shntool is an open source tool and has a modular build, which makes it
easier to adapt speci�c parts of the source code. This tool is a combination of
three di�erent parts:

1. the core program,

2. the mode modules,

3. the format modules.

The core program is a mere wrapper around the di�erent mode modules, which
implement the actual program functions. All these di�erent mode modules each
add di�erent functionality to the tool. There are modules to display properties
of the wav-�le, to compute a hash-�ngerprint, to join multiple wav-�les, to
generate a cue-�le, to trim the silence from the end of wav-�les and many more.
Calling these di�erent modules is done by typing `shntool' followed by the name
of the desired module. For example, the split tool is invoked using the command
shntool split . . . . This module is the relevant part of the shntool for this
project. The format modules make it possible to use audio �le types other than
wav. For each format supported by shntool, a di�erent format module exists.
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Once again, it is possible for users to add their own format modules and thus
expand the range of supported audio format types. This functionality is not
required for this graduation project.

Each module has several usage options. Since only the split module was
used, the options for the other modules will not be discussed here. The split
program splits audio �les at speci�c points. There are various formats in which
these split points can be o�ered. They can be input via a �le or via the terminal.
The split points can be speci�ed in bytes, cue sheets or in notation involving
minutes, seconds, milliseconds and/or frames. The splitting program also allows
the user to specify how the new and smaller audio �les should be named.

While using this tool to split large audio �les, it became clear that there
was a limited number of parts a single audio �le can be split in. Since the
shntool is open source software, it was possible to alter the code and recompile
the program so that this limit no longer posed a problem.

4.3 The Wav-to-Raw Converter: Sox

During the project it was necessary to convert wav-�les to raw-�les, i.e. 16-bit
linear pcm format. This was done using a tool named `sox': `Sound eXchange:
universal sound sample translator'. This is also a command line tool and it can,
among other things, convert audio �les from one format to another, including
wav and raw. It can even add e�ects to the sound �les, but that was not
necessary in the context of this project. To quote the `README' �le:

SoX is intended as the Swiss Army knife of sound processing tools.
It doesn't do anything very well, but sooner or later it comes in very
handy.

It was mentioned in the Sonic manual [Pellom, 2001] that:

If you are working with Microsoft wav-�les, you can strip the header
from the �le using the \sox" program for Windows or Unix:
sox infile.wav -w -s infile.raw

So that was what was done.

4.4 The CMU-Cambridge Statistical Language

Modeling Toolkit

During the creation of the Dutch asr system, a language model needed to be
created. The widely used CMU-CSL language modeling toolkit was used, see
also [CMU]. This toolkit takes a large training text as its input and then allows
the users to train a language model based on this training text. It is possible
to use context cues to indicate the beginning and ending of sentences and other
things that the user �nds relevant. There are also multiple ways to let the
tool back-o� from certain things; such as sentence boundaries. The language
model can then, for example, disregard the words from the end of the previous
sentence when predicting the probability of the �rst word of a new sentence.
There are several options for handling out-of-vocabulary words and discounting
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strategies, used for smoothing. The toolkit can output models in the arpa-
format in readable ascii-format, which is the way Sonic needs its language
models. It is also possible to calculate the new language model's perplexity,
which is an information measure indicating how well a language model predicts
a certain test text.

4.5 The Sonic Speech Recognition System

In my literature study [Clerx, 2007], I compared two popular state of the
art asr systems named Sonic [SonicWeb] and Julius [Julius Homepage]. They
are in fact basic systems providing core speech recognition functionality. These
systems are not complete speech recognizers but they provide a large collection
of functions that are currently used during research projects. These systems
need to be adapted and trained for new asr tasks using speci�c speech and
language data. They o�er a large collection of speci�c features and functions
that researchers may or may not use for their task. Using such an asr system is
similar to solving a puzzle, with the asr system's collection of functions and the
di�erent kinds of training data as the pieces of the puzzle. And it was decided
that Sonic provides the most convenient pieces for this speci�c puzzle.

Sonic is a toolkit for enabling research and development of new algorithms
for continuous speech recognition. Although it is not a general hmm modeling
toolkit, it enables researchers to conduct speech recognition experiments or to
prototype live voice-enabled applications. The system originates from the Cen-
ter for Spoken Language Research at the University of Colorado, Boulder. The
recognizer can run in batch-mode to process many audio �les sequentially, or in
live-mode to speak into the microphone and see output in real-time. Provided
with the software are tools for retraining the speech recognizer on new data,
tools for integrating new language models, both statistical N-gram and gram-
mars, and port the recognizer to a new language. Speaker and environment
adaptation routines are also provided in addition to example applications to
run experiments in either batch or live-mode.

Sonic has already been ported to French, German, Italian, and Spanish
(Mexican and Chilean) during a workshop [Pellom and Cole, 2003]. It has
also been ported to Turkish [ �O. Sal�or, B. Pellom, T. Ciloglu, K. Hacioglu,
M. Demirekler, 2002] and Croatian, Arabic, Russian, Portuguese, Korean, and
Japanese [SonicWeb]. This indicates that porting it to Dutch should be feasible.

Sonic is speci�cally designed for speech recognition research with careful
attention applied for speed and e�ciency needed for real-time use in live appli-
cations. The system can work in real-time for modern pcs (Intel Pentium 4, 2.2
ghz) for vocabularies up to approximately 40k words. Performance gains can
be further obtained using speaker adaptation, which can provide improved hy-
pothesis pruning. The long-term goal is to provide real-time speech recognition
up to 64k words to the research community.
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4.5.1 Performance

Sonic has already been benchmarked on tasks that are similar to the tasks that
have to be performed during the N-Best project. The Wall Street Journal task
is comparable with the bn task in the sense that both contain news content.
The Wall Street Journal task however consists of read speech while the bn task
also contains sport commentaries, which is spontaneous speech. So it can be
expected that the results for the bn task will be less good than those for the
Wall Street Journal task. The Switchboard task is very similar to the cts task
in the N-Best project: spontaneous large vocabulary speech. The results are
listed in table 4.2.

Table 4.2: Sonic benchmark [Sonic Homepage]

Speech Recognition Vocabulary Word Error Rate Word Error Rate
Task Description Size without adaptation with adaptation

Wall Street Journal 5k 3.9% 3.0%
Wall Street Journal 20k 10.0% 8.6%

Switchboard 40k 41.9% 31.0%

In comparison, with sphinx-ii, a word error rate of 6.7% is attained on the
speaker-independent 5000-word Wall Street Journal continuous-speech recogni-
tion task [Mei Hwang, 2001]. And with the Microsoft Whisper recognizer, a
wer of 4.87% was achieved, unfortunately without mentioning the vocabulary
size. [Hagai Attias, Li Deng, Alex Acero, John C. Platt, 2001]. Sonic's perfor-
mance on this task is thus comparable to these other two well-known systems.
In [A. Morgan, N. Chen, B.Y. Zhu, Q. Stolcke, 2004] from 2004 it is mentioned
that

\...current systems giving incorrect output for 20-40% of the words,
depending on the system complexity and test set."

This indicates that Sonic's performance on these tasks is average.

4.5.2 Features

We will now list some features indicating Sonic's capabilities. For a detailed
explanation of these features, we refer to [Clerx, 2007].

Phonetic Aligner

� Provides word, phone, and hmm state-level boundaries for acoustic train-
ing.

� Decision-tree based trainable letter-to-sound prediction module.

� Multilingual lexicon support.

Phonetic Decision Tree Acoustic Trainer

� Estimates parameters of state-clustered continuous density Hidden Markov
Models.
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� Incorporates phonetic position and context questions.

� Distributed/parallel acoustic trainer (multiple machines, operating sys-
tems, cpus).

Core Recognizer

� Token-passing based recognition using a lexical-pre�x tree search.

� Cross-word triphone models & up to 4-gram language model in �rst-pass.

� hmm state durations modeled using Gamma distributions.

� N-best list output; Lattice dumping, and second-pass rescoring function-
ality.

� Word con�dence computed from word-posteriors of word-graph.

� Class-based, word-based, and concept-based N-gram language models.

� Dynamically switched statistical language models (dialog state-conditioned
language models).

� Keyword & regular expression based grammar spotting with con�dence.

� Phonetic fast-match constrained asr search for improved decoding speed.

� pmvdr and mfcc feature representation.

Speaker Adaptation

� (Con�dence Weighted) Maximum Likelihood Linear Regression (mllr).

� Constrained Maximum Likelihood Linear Regression (cmllr).

� Lattice-based mllr (Lattice-mllr).

� Maximum a Posterior Linear Regression (maplr).

� Vocal Tract Length Normalization (vtln).

� Cepstral mean and variance normalization.

Language Portability

� Aligner, trainer, recognizer designed to incorporate new phone sets and
foreign vocabularies.

4.5.3 Core Technology

In this section, we will explain some of these terms that are considered part of
the main technology. Explaining all possible options would lead us to far but
they are all explained in [Clerx, 2007].
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Feature Extraction

When performing speech recognition, the �rst step is to analyze the given sound
wave and extract relevant data from it. This signal processing starts by dividing
the the sound wave in time slices from which spectral features are extracted.
Spectral features give information about how much energy is present in the
signal at di�erent frequencies. Later on, these features are used to determine
which sounds were uttered. Sonic o�ers the choice between the most widely used
feature representation named Mel-frequency cepstral coe�cients (mfcc) and
the newer Minimum Variance Distortionless Response approach named pmvdr.
mfcc has proven to be one of the most e�ective sets of features for speech recog-
nition. It consists of a transform on the signal spectrum followed by a speci�c
�ltering procedure. This approach however is not perfect: it has a limited abil-
ity to remove undesired harmonic structures, especially for high pitched speech.
Furthermore for high pitched voiced speech the bandwidths are mis-estimated.
Moreover mfcc is expected to carry a good deal of speaker dependent informa-
tion. The evidence of this is that the same feature representation is commonly
used in speaker recognition systems. It is also widely accepted that mfcc is
quite fragile in noise and additional compensation such as feature enhancement.
As a result, model adaptation is needed for acceptable performance in realis-
tic environments. The mvdr methodology, on the other hand, can e�ectively
model medium and high-pitch speech and excellently smooth undesired excita-
tion information. This yields a performance gain in noisy conditions:

\The wer is shown to decrease by 27.3% with respect to the mfccs
and 18.8% with respect to recently proposed pmccs on an extended
digit recognition task in real car environments."

mvdr also better suppresses speaker dependent information yielding more ac-
curate recognition and faster decoding in both clean and noisy conditions. This
approach is however not yet widely adopted among asr researchers. It was
shown in Padmanabhan and Dharanipragada [2005] that another implementa-
tion of mvdr outperformed mfcc and another recent feature extraction tech-
nique for noisy conditions named plp in terms of the wer. However in the
same paper a new technique was proposed that can be combined with mfcc,
mvdr and plp. It is called penalized Mutual Information Projection and was
shown to result in a relative improved wer of 0.9% for mfcc, 16.5% for plp
and 10.5% for pmcc.

Acoustic Models

Many speech recognizers use acoustic models based on hmms. The acoustic
models used in Sonic are a special form of these hmms called decision-tree state-
clustered continuous density hmms with associated gamma probability density
functions to model state durations. Each state is modeled by a weighted set
of M Gaussian distributions, which represent physical aspects of the sound
that is being analyzed. Acoustic modeling in Sonic makes the assumption that
the feature elements are independent and can therefore be modeled using a
diagonal covariance matrix rather than a full-covariance matrix. The emission
probability, bj(ot), therefore becomes,
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th feature dimension (D=39) for the tth frame
of data. Each Gaussian is weighted by a factor, wm, such that the weights sum
to unity. The state durations are modeled using another type of distributions:
gamma distributions. The discrete parametric gamma distribution is de�ned as

p(�) = K exp f���g �p�1; � = 0; 1; 2; : : :

where a>0 and p>0. K is a normalizing term. The discrete parametric
Gaussian distribution is denoted as

p(�) = K exp� (� � �)2

2�2

In Burshtein [1996] the gamma distribution was found to produce a high-
quality �t to the empirical state and word duration distributions. On the other
hand, the discrete parametric Gaussian distribution produces high-quality ap-
proximations for word durations, but is inferior in its ability to describe cer-
tain state durations. In addition, unlike the Gaussian distribution, the gamma
distribution is one-sided: it assigns zero probability to negative � 's, which is
appropriate for duration distributions. Finally, the slower decay of the gamma
distribution compared to the Gaussian distribution is more appropriate for du-
ration modeling. Careful examination showed that the gamma �t is almost
always closer to the empirical distribution than the other parametric approx-
imations examined, although the di�erence from the Gaussian distribution is
small for word durations. Gamma distributions are thus an appropriate choice
for modeling state durations.

In order to model speech accurately, hmm states are clustered in various
ways depending on their triphone context i.e. the immediate phoneme to the
left and immediate phoneme to the right of the current phonetic unit. The
reason behind this is that subsequent phonemes are not spoken in isolation but
overlap in continuous speech. Phonemes are thus realized di�erently depending
upon the neighboring sounds. This e�ect is known as co-articulation. For a
language such as English there are 453 possible triphone units. Many of these
contexts never appear in the training data and therefore most modern recog-
nition systems use some sort of unsupervised clustering method to obtain a
primitive set of about 5000-6000 clustered states. Each clustered state models
a unique phonetic quality in the speech data. Each hmm state can be modeled
with a variable number of multivariate mixture Gaussian distributions. This
means that a mixture of di�erent Gaussian distributions is used to model each
hmm state. These di�erent Gaussian distributions are weighted in order to
better approach the actual distribution of this state. The triphone models are
also shared between all words to avoid excessive memory requirements. Special
cross-word triphone models are added to speci�cally model the co-articulation
e�ects between neighboring words [G. Boulianne, J. Brousseau, P. Ouellet, P.
Dumouchel, 2000]. The decision trees are used to determine contextually equiv-
alent sets of hmm states. A phonetic decision tree is a binary tree in which a
question is attached to each node. One tree is constructed for each state of each
phone to cluster all of the corresponding states of all of the associated triphones.
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The states in each subset are tied to form a single state. They are built using
splitting questions which are automatically derived to maximize the likelihood
of the training data. In the case of a phonetic decision tree, these questions are
related to the phonetic context as illustrated in �gure 4.1 from [Young et al.,
1994].

Figure 4.1: Phonetic decision tree example

When building a speech recognizer based on hmms, a procedure is needed to
train the hmms. This is often a time consuming process that requires complex al-
gorithms known as forward-backward algorithms. Sonic's acoustic model trainer
instead uses the Viterbi algorithm for model estimation. This is an approxima-
tion of forward-backward algorithms which substantially reduces the amount of
cpu e�ort needed to train acoustic models compared with forward-backward
training methods [Bimbot, 1995]. The forward-backward training methods are
well-known and can be reviewed in most text books, including [Jurafsky and
Martin, 2000]. Viterbi training makes the simplifying assumption that each
observation has resulted from the single most likely state sequence that might
have caused it [Jia Li, Amir Najmi and Robert M. Gray, 2000]. Another way
to view the Viterbi training is that the state sequence with the maximum a
posteriori probability is assumed to be the real state sequence. While more ef-
�cient computationally, Viterbi training does not in general result in maximum
likelihood estimates. However the training process is described in [Pellom, 2001]
as follows:

\The training process consists of �rst performing state-based align-
ment of the training audio followed by an expectation-maximization
step in which decision tree state-clustered hmms are estimated. Acous-
tic model parameters, i.e. the means, covariances, and mixture
weights, are estimated in the maximum likelihood sense. The train-
ing process can be iterated between alignment of data and model es-
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timation to gradually achieve adequate parameter estimation. The
�nal model parameters are quantized for acoustic model storage."

However it was stated in [Jurafsky and Martin, 2000] that the forward-backward
algorithm is actually a special case of the expectation-maximization algorithm.
Unfortunately it remains unclear how Sonic can make good on the claim that
there is an expectation-maximization step in the training process, using only the
Viterbi algorithm and no type of forward-backward algorithm. As far as we can
see, the training approach using Viterbi is much faster than traditional forward-
backward algorithms but also much less accurate. Nevertheless the benchmark
results in table 4.2 indicate a high recognition rate so the training process does
not seem to degrade the performance.

Language Models

Sonic can work with class-based, word-based and concept-based models. We
will only need the \standard" word-based models: each word in the vocabulary
his its own N-grams associated with it, regardless of its class or concept. The
other models are explained in [Clerx, 2007]. uses `backo�' N-grams. Backo� is
a tactic that can be used to �ll in certain blanks in the statistical N-gram data.
When there are no examples available of a particular trigram wn�2wn�1wn to
compute P (wnjwn�1wn�2), we can estimate its probability by using the bigram
probability P (wnjwn�1). Similarly the unigram P (wn) can be used to compute
P (wnjwn�1).

Two Pass Recognition

Sonic is executed in two steps: the �rst pass and the second pass. Unigram,
bigram, trigram, and fourgram models can be applied during the �rst pass of
recognition. Using a unigram model is the fastest choice but leads to inferior
estimations in the �rst pass compared with the other options. Fourgram models
make the best estimations but are slow. During the second pass of recognition
rough results can be rescored using a longer span language model. This rescoring
selects the best result(s) out of all the possibilities that were found during the
�rst pass.

In more detail, the �rst pass recognizer performs a quick and simple analysis
to determine the N possible phrases with the highest probability. This N-best
list can also be output by Sonic. Word con�dences can now be calculated
for each of these possible phrases. These con�dence scores indicate how much
con�dence the algorithm has in this result. If the con�dence in the most probable
phrase after the �rst pass is low, these possibilities are then passed on to the
second pass recognizer. This recognizer is more complex than the �rst pass
recognizer and it uses better, i.e. longer span, language models to rescore the
possibilities to provide a more accurate decision. During the second pass it
is also possible to compute word-posterior probabilities to provide word-level
con�dence scores. Using this two pass strategy reduces the average complexity
compared to a single pass recognizer incorporating both the �rst and second
pass recognizer: the search space for the complex recognizer has been reduced by
adding a low complexity �rst pass recognizer [Naveen Srinivasamurthy, Antonio
Ortega and Shrikanth Narayanan, 2003].
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The possibilities that are found during the �rst pass can be passed on in
di�erent formats. The �rst option is to use the N-best hypothesis: a simple list
summing up the N possible phrases with the highest probability. This N-best
list can contain sentences that only di�er in one word. This means that a lot
of redundancy is present in this notation. To avoid this redundancy, the second
possible notation can be used: a word lattice. In this notation the separate
possible sentences are combined into one lattice1 structure, sharing words that
appear in multiple sentences. This is a more e�cient representation but slightly
more di�cult to read for humans. If arcs between the words are added to this
lattice structure, we can turn this format into a word graph. Temporal con-
straints are implicitly embedded in this graph [Huang, 2001]. The di�erence
between a word graph and a word lattice is illustrated in �gure 4.2 from [Helz-
erman and Harper, 1994]. The posterior probabilities in the word graph are
also used to compute the word con�dence [Woodland, 2000]. Another possible
format in Sonic is the progressive search lattice. This technique is useful for de-
veloping and implementing speech recognition systems with high computational
requirements. The scheme iteratively uses more and more complex recognition
schemes, where each iteration constrains the search space of the next [Murveit
et al., 1993].

Figure 4.2: Word lattice and word graph with time stamps

Token-Pass Search Algorithm

Search within Sonic is based on the token passing model for speech recognition.
Statistical N-gram decoding is accomplished using a tree-structured lexicon.
Many two pass decoding algorithms require the use of a fast match for quickly
�nding when words in the lexicon are likely candidates for matching some por-
tion of the acoustic input. Many fast algorithms are based on the use of a
tree-structured lexicon, which stores the pronunciation of all the words in such
a way that the computation of the forward probability can be shared for words
which start with the same sequence of phones.

1A regular, periodic con�guration of points, particles, or objects throughout an area or a

space
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In Sonic's implementation, tokens are propagated through a static lexical
tree. As a result Sonic does not perform tree copying. The tokens themselves
contain links to word history information so that long-span N-gram models can
be used. To improve search e�ciency, Sonic merges hypotheses that share the
same two-word histories. When a token enters the root node of a lexical tree,
Sonic predicts the best-case value for the trigram probability, by considering the
previous two words and all possible follower words that are possible given the
tree's root node. Upon exiting a leaf in the tree, Sonic inserts the word hypoth-
esis into a lattice and recovers the true trigram probability by subtracting the
logprobability estimate, from entrance at the root node, with the corrected tri-
gram probability, considering the exact 3 or 4 word sequence of the propagated
token. The search utilizes cross-word acoustic models in the �rst pass. E�-
ciency is further improved by applying beam pruning. Low-probability paths
are then pruned at each step and are no longer extended. For each time step,
the algorithm maintains a short list of high-probability words whose path prob-
abilities are within some percentage, called beam width, of the most probable
word path. Only transitions from these words are extended when moving to the
next time step. Since the words are ranked by the probability of the path so far,
which words are within the beam will change from time step to time step. This
approach allows for a signi�cant speed-up at the cost of less accurate results.
Specialized search beams are associated with the entrance into the root nodes
of the tree, nodes located within the tree itself, as well as for states near the
leaf of the tree.

Histogram pruning is also applied to limit the maximum number of tokens
propagated at word-ends, associated with the leaf nodes, or globally during
search. The idea behind this is to apply vector quantization to the feature
vectors. Now the feature vectors are divided into similar feature vectors, all
matched to the same codebook vector. By counting the feature vectors matched
to each codebook vector, we obtain a histogram. Now we know that similar
feature vectors can be found only within the same bin and maybe its neighboring
bins. The other bins can be pruned to increase the speed of the search, for
example [Kunio Kashino, Takayuki Kurozumi and Hiroshi Murase, 2003].

The result of the �rst-pass of N-gram decoding is a word lattice. The word
lattice can be converted into a word graph, illustrated in �gure 4.2, and rescored
using alternative, more sophisticated and time-consuming language models.

Phonetic Aligner

At the heart of the acoustic model training process is the Viterbi-based phonetic
aligner called `align'. This program takes raw audio �les with associated text
transcriptions as input and produces a time-aligned representation of the data:
an association between frames of input audio to words, phonemes, and hmm
states.

Accurate alignment of the audio data is key to training high-quality acoustic
models. The phonetic aligner is user con�gurable and extensible while providing
support for multiple languages. Phonetic alignment requires two knowledge
sources: an acoustic model and a pronunciation lexicon. The aligner is designed
to be user de�nable and con�gurable.
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4.5.4 Usage

In order to use the batch recognizer the following items are required:

� One or more audio �les to process

� A phoneme con�guration �le which de�nes the phoneme units in the de-
sired language

� A language & acoustic model

� A lexicon containing word pronunciations for words contained in the lan-
guage model

A single con�guration �le is used to setup the recognition job. The Sonic
con�guration �le provides the listings of the decoder settings, phoneme set,
language model, acoustic model, and pronunciation lexicon. They are used
jointly as illustrated in �gure 4.3.

Figure 4.3: Inputs required to perform batch-mode recognition in Sonic

4.5.5 Why Sonic?

In the preceding literature study [Clerx, 2007], a detailed comparison was made
between Sonic and Julius. Eventually Sonic was chosen for this project for a
number of reasons, explained in this section.

Sonic o�ers the possibility to use mfcc or mvdr feature parameters, without
the need for an external feature extraction tool. Furthermore it has better state
duration modeling and an e�cient acoustic model with decision tree clustering.
It also o�ers faster training using an internal training algorithm and the possi-
bility of lattice dumping. Sonic comes with a porting manual to facilitate the
porting process and is explicitly built to be ported. Finally Sonic o�ers extra
speed-up as a result of more pruning methods and increased precision through
a large variety of speaker adaptation techniques, which are absent in Julius.

Considering the limited time available in the N-Best project, the faster train-
ing algorithm of Sonic is a big plus. On top of that the many speaker adaptation
techniques that are implemented in Sonic and absent in Julius, should result in
a higher recognition rate. Therefore, we recommend to use Sonic for the N-Best
project.
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Chapter 5

Porting Sonic to the Dutch

Language

It's not what you tell them . . . , it's what they

hear

Red Auerbach

The �rst step toward using Sonic as a speech recognizer for the N-Best
project, is to port this speech recognizer to the Dutch language. This chapter
will describe in detail how Sonic was ported from American English to Dutch.

5.1 Introduction

During the preceding literature study [Clerx, 2007], it was concluded that Sonic
was a better choice for this project since it o�ers multiple speaker adaptation
techniques and a faster training algorithm. As a result, we will port it to the
Dutch language in this chapter.

In order to use Sonic as a speech recognizer for the Dutch language, some
adaptations have to be made. Originally Sonic was built to recognize American
English [Pellom, 2001] but it can be retrained to recognize other languages.
This has already been done successfully with French, German, Italian, and
Spanish (Mexican and Chilean) during a workshop [Pellom and Cole, 2003].
Sonic has also been ported to Turkish [ �O. Sal�or, B. Pellom, T. Ciloglu, K.
Hacioglu, M. Demirekler, 2002], Croatian, Arabic, Russian, Portuguese, Korean,
and Japanese [SonicWeb]. In order to help users with the porting process, a
manual is available on porting Sonic to another language [Pellom, 2004]. The
porting process involves retraining the Hidden Markov Models(hmms). This
retraining requires the use of di�erent kinds of training data. This will be
described in more detail in the next section.

5.2 Training Data

Porting Sonic requires several types of training data [Pellom, 2004]. Firstly,
we need a mapping of phonemes in the target language to the most similar
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phonemes in the source language, American English. Secondly, a knowledge
base of the target language is needed, containing audio data along with word-
level transcriptions and a pronunciation lexicon.

5.2.1 Dutch Phonemes

In order to port Sonic to Dutch, we need a phone set and phone mapping from
Dutch phones to US English phones. Since we will use the audio data and
phonetic transcriptions from the Corpus Gesproken Nederlands1 (cgn), it is
necessary to map the phoneme set from cgn to the English phonemes used
in Sonic. The Dutch vowels from the cgn are displayed in table 5.1 and the
Dutch consonants can be found in table 5.3. The Dutch language also uses some
foreign vowels in loan words. They are much less frequent and the ones that are
used in cgn can be seen in table 5.2.

Table 5.1: Dutch vowels with example words

ipa sym-

bol

cgn sym-

bol

ipa exam-

ple word

word or-

thography

English

translation

I I bIt bit bit
E E bEt bed bed
A A bAt bad bath
O O bOt bot bone
Y Y hYt hut cabin
i i bit biet beetroot
y y fyt fuut grebe
e: e be:t beet bite
ø: 2 nø:s neus nose
a: a za:t zaad seed
o: o bo:t boot boat
u u hut hoed hat
Ei E+ Ei, VEin ei, wijn egg, wine
÷y Y+ ÷y ui onion
2u A+ z2ut, f2un zout, faun salt, faun
@ @ d@ de the

The English phonemes that are used by Sonic, are added in table 5.4. The
manual on porting Sonic to other languages speci�cally states that this phoneme
mapping does not have to be perfect. The reason for this is that the hmms will
be retrained, which will correct mismatches in the initial phoneme mapping.
The porting manual describes this step as follows: \Just pick the closest one".
The closest one was thus selected for each Dutch phoneme by the author, by
pronouncing each Dutch and English phoneme and by evaluating the resem-
blance between them based on pronunciation and audio di�erences. The result
of this process can be found in table 5.5.

1Spoken Dutch Corpus
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Table 5.2: Foreign vowels with example words

ipa symbol cgn symbol word orthog-

raphy

English trans-

lation

E: E: sc�ene stage
÷ Y: freule milady
O: O: zone zone
i: i analyse analysis
y: y centrifuge centrifuge
u: u rouge rouge
E~ E~ vaccin vaccine
O~ O~ cong�e leave
A~ A~ croissant croissant
Y~ Y~ parfum perfume

Table 5.3: Dutch consonants with example words

ipa sym-

bol

cgn sym-

bol

ipa exam-

ple word

word or-

thography

English

translation

p p pEn pen pen
b b bit biet beetroot
t t tAk tak branch
d d dAk dak roof
k k kAt kat cat
g g go:l goal goal (in sports)
f f fits �ets bicycle
v v o:v@n oven oven
s s sOk sok sock
z z zep zeep soap
S S SEf chef boss, chief
Z Z ZyKi jury jury
x x Axt acht eight
G G Ga :n gaan to go
H h Hut hoed hat
m m mEns mens human being
n n nEk nek neck
N N EN eng scary
ñ J orAñ@ oranje orange
l l lAnt land land/country
K r KAt rat rat
j j jAs jas coat
V w VAN wang cheek
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Table 5.4: Sonic phoneme set

Phone Example Phone Example Phone Example Phone Example

AA father DX butter KD talk GD mug
AE mad DH them JH Jerry SH show
AH but EH bed K kitten T tot
AO for ER bird L listen TH thread
AW frown EY state M manager UH hood
AX alone F friend N nancy UW moon
AXR butter G grown NG �shing V very
AY hire HH had OW cone W weather
B bob IH bitter OY boy Y yellow
CH church IX roses P pop Z bees
D don't IY beat R red ZH measure
PD top BD tab S sonic SIL silence
TD lot DD had TS bits br breathe

ls lipsmack lg laughter ga garbage

Table 5.5: Dutch-American English phone mapping

Dutch English Dutch English Dutch English Dutch English

I IH Y+ ER d D n N
E EH A+ OW k K N NG
A AA @ AX g G J NG
O OY E: AE f F l L
Y AH Y: ER v V r R
i IY O: AO s S j JH
y UH E~ AY z Z w W
e EH O~ OW S SH SIL SIL
2 ER A~ OW Z ZH br br
a AY Y~ AH x HH ga ga
o OW p P G G ls ls
u UW b B h HH lg lg
E+ EY t T m M
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5.2.2 Dutch Knowledge Base

The Dutch knowledge base is a subset of the cgn. This corpus contains all the
data needed to retrain the hmms in Sonic:

1. Audio Data

2. Word-level Transcriptions

3. Pronunciation Lexicon

We will explain these resources in more detail in separate sections.

Audio Data

We need to train Sonic to recognize telephone speech and broadcast news, see
also chapter 3. Training hmms is an intensive process which often su�ers from
a lack of training data. The more audio data is used, the better the acoustic
models can be trained. So it is best to use all available data from the cgn
for the hmm training process. In the N-Best project description [David van
Leeuwen, Judith Kessens, 2006], an indication was given of the categories that
are exemplary for the two tasks. In order to obtain enough training data for
the hmms we will use the other categories as well. The cgn categories which
were not mentioned in the N-Best project description are assigned to the task or
tasks they resemble, as indicated in table 4.1. We use all the categories because
a well-known aphorism in speech recognition states that \there is no data like
more data". Out of all the data, 70% is used as training data and 3 times 10%
of the data is used for testing. This allows for multiple tests.

Table 5.6: Categories in cgn

Category Broadcast Telephone

news speech

a. Spontaneous conversations (`face-to-face') X X
b. Interviews with teachers of Dutch X X
c. Spontaneous telephone dialogs (recorded via

a switchboard)
X

d. Spontaneous telephone dialogs (recorded on
md with local interface)

X

e. Simulated business negotiations X
f. Interviews/discussions/debates (broadcast) X
g. (political) Discussions/debates/meetings

(non-broadcast)
X

h. Lessons recorded in the classroom X
i. Live (e.g. sports) commentaries (broadcast) X
j. News reports/documentaries (broadcast) X
k. News (broadcast) X
l. Commentaries/columns/reviews (broadcast) X
m. Ceremonious speeches/sermons X
n. Lectures/seminars X
o. Read out speeches X
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We decided to train the hmms for Dutch and Flemish separately since there
are signi�cant di�erences in pronunciation between these two standards. The
cgn pronunciation lexicon even contains di�erent pronunciations for words in
Dutch and Flemish. There are also two di�erent pronunciations for `formal' and
`informal' Flemish. Furthermore cgn category e does not contain any Flemish
data: it is only available for Dutch.

We start out with the standard version of Sonic which is built to recognize
American English. By retraining the hmms using the Dutch audio data for the
bn task, Sonic will be able to recognize the Dutch data from this category far
better. This will constitute the basic bn speech recognizer for Dutch. After-
wards, these new, retrained hmms will be retrained once again for the cts task,
using the cts data categories from table 4.1. This will result in the basic cts
recognizer for Dutch. The same process should then be repeated for Flemish.
In order to speed up the training process for Flemish, it is possible to start out
with the Dutch recognizer and not with the original US English recognizer.

Sonic expects the training data to be put in a speci�c directory structure:

� speaker1/

{ �le1.raw (headerless PCM audio)

{ �le1.txt (text transcription)

{ . . .

{ �leN.raw

{ �leN.txt

{ gender (MALE | FEMALE)

� speaker2/

� speakerN/

In order to achieve this with the cgn data, I created several Java programs:

1. collectSpeakerSexes

2. createSpeakerDirs

3. prepareForShntool

The collectSpeakerSexes Java program extracts the names and genders of
each speaker from the cgn text �le describing the project's speakers. The result
is a text �le consisting of rows with a single speaker name and the corresponding
gender. The createSpeakerDirs program takes the text �le that was built by
collectSpeakerSexes as its input and creates a batch-�le. This batch-�le creates
a directory for each speaker with the speaker's name as the directory name, and
also adds a text �le named `gender', containing the word `MALE' or `FEMALE'.
The third and last Java program, prepareForShntool, is the largest and most
important one of the three. It has multiple tasks:

1. Convert the speech �le transcriptions to the appropriate format.

2. Create a �le with split points, to be used by the wav-splitter.
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3. Create a batch �le which:

(a) invokes the wav-splitter `shntool',

(b) deletes the �le with split points that was used by the wav-splitter,

(c) invokes the `sox'-program which converts the wav-�les into raw-�les.

(d) deletes the wav-�les.

4. Create a batch �le which deletes the audio �les and text �les which do not
contain any speech.

Transcriptions

The Sonic speech recognition system requires orthographic transcriptions of all
the chunks of sound data. The cgn contains di�erent kinds of transcriptions
for the audio data, including the orthographic and phonetic transcription, part-
of-speech tagging and word segmentation. The orthographic transcriptions re-
quired by Sonic, can be found in the `ort'-category. Sonic requires orthographic
transcriptions without punctuation marks so the punctuation marks are stripped
by the prepareForShntool-program when they are converted into smaller text
�les. The cgn documentation [CorpusGesprokenNederlandsDocumentation] de-
scribes the transcriptions as follows:

All the recorded material was transcribed orthographically. The
orthographic transcription is a verbatim record of what was actually
said. In the transcription process repetitions, hesitations, false starts
and such were transcribed. Background noise, on the other hand,
was seldom represented in the transcriptions. [. . . ] the transcription
has been checked manually. [. . . ] While the transcription was being
produced anchor points were introduced to mark o� brief stretches
of speech (approx. 3 seconds). Thus it became possible to identify
words or phrases in the speech signal.

Pronunciation lexicon

To create an appropriate lexicon for Dutch, we import the elaborate database
of the cgn and use only the two tables with the orthography of the words in the
lexicon and their pronunciation in phonemes in Dutch. First, we only take the
pronunciation from the Netherlands and eliminate the words that do not have
such a pronunciation. These 330 records include some typically Flemish words
such as \d'rhene" (meaning: \to there").

Sonic requires a pronunciation lexicon in the following format:
accidental ae k s ax d eh n ax l
accidental(2) ae k s ax d eh n t ax l

It is thus possible to include alternative pronunciations for a certain word,
but a sequence number in brackets must be added to the orthographic word
form. It is also possible to add normalized log probabilities to these alternative
pronunciations. The most likely pronunciation has a log probability normal-
ized to 0 while the less likely alternatives have a negative log probability. For
example:

[0.00000] accidental ae k s ax d eh n ax l
[-0.22185] accidental(2) ae k s ax d eh n t ax l
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The cgn o�ers an elaborate lexicon containing information on the token
(word form), part of speech, lemma, syntax orthographic status, pronunciation,
morphology and nature (continuous/discontinuous) of a multi-word expression.
This is an example lines from the lexicon for the word `dotatie':

75488ndotatienN(soort,ev,basis,zijd,stan)ndotatien24120n[DET:<de>]
[HD:<dotatie>]nndotatsindotasindotatsindo-'ta-
tsin((doteer)[V],(atie)[N|V.])[N]nVnn

The only information we need from this is the word form and its three pronun-
ciations. Firstly, the n-symbol is replaced automatically with tabs, using a basic
text editor. Secondly, the lexicon text �le is imported in a database and queries
are performed on this database to �lter out duplicate entries, i.e. entries which
di�er only in �elds that are not needed for our lexicon. We now obtain a text
�le with comma-separated values in two columns: one with a word form and a
second one with the word's pronunciation, without spaces. In order to add the
spaces, a php-program is constructed. Spaces need to be inserted between two
di�erent phonemes, which include combined symbols such as A, A+ and A~. A
regular expression was used in the php-program to determine where to insert
the spaces. Now the lexicon is ready.

Alternatively, one could also use the frequency counts in the cgn to calculate
an estimate of the normalized log probabilities for the alternative pronunciations
but it would be better to use a larger text source for this goal. The text re-
sources where however not available in time for this and taking into account
that acoustic training costs lots of calculation time, we decide to go ahead with
the construction of a lexicon without these probabilities.

5.3 Language Model

This section describes how the language model needed for the retraining of Sonic,
was created. For the N-Best project, it is necessary to create a Dutch language
model. To achieve the best results with the di�erent acoustic models, we decide
to train di�erent language models for the di�erent tasks. The base line Dutch
asr models are tested with a speci�c language model for this collection of data.
This language model is trained using the transcripts from this speech data. For
this we use the CMU-Cambridge Statistical Language Modeling Toolkit, which
was introduced in section 4.4. Sonic accepts language model in the arpa-format,
which this toolkit can create.

A large training text is needed for this process. We thus create a Java pro-
gram to collect 90% of the transcripts from the cgn in one text �le, with phrase
breaks inserted between phrases. The remaining 10% was used for a test of the
language model. The phrase breaks are indicated by two tags: <s> to indicate
the start of a sentence and </s> to indicate the end. The language model
for a cgn recognition task would best be trained using actual cgn transcripts
since this is the most representative data available. For the N-Best tasks, tno
was supposed to provide a language model training text in the form of a news
corpus but did not deliver before this research was �nished. This would have
been especially useful for the bn recognition task. The language model training
task is performed according to the guidelines from the web site [CMU].
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The training process is done in a number of steps. First we let the tool count
the frequencies with which the di�erent words occur in the training text.

cat lm4_train.text | text2wfreq > lm4.wfreq

Next we generate a vocabulary containing the most frequent 65535 words,
which is the maximum number of words allowed by the tool. This forces us to
leave out ten thousands of words that are less frequent but just because they
are less frequent, this is not a big problem. Using too big a vocabulary can even
deteriorate the performance of an asr system since this increases the chance of
mistaking one word for another.

cat lm4.wfreq | wfreq2vocab -top 65535 > lm4.vocab

Now we can use this vocabulary and the training text together to create the
N-grams.

cat lm4_train.text | text2idngram -vocab lm4.vocab > lm4bin.idngram

In the last step, we construct a language model from these N-grams. Many
options are available for this step. We supply the �le with N-grams, the vocab-
ulary, an output �le in the arpa-format, a �le listing the context cues <s> and
</s>, an option to let the tool �nd out for itself how much memory to use. We
also choose to use an open vocabulary model, which allows for out-of-vocabulary
words to occur in the test text, since we are not sure that every word from the
training text occurs in the vocabulary. These oovs are treated as any other
word in the vocabulary, following the example language model that comes with
Sonic. This example also uses a Witten-Bell discounting strategy, which we also
select. This discounting strategy is described in [Ian H. Witten and Timothy
C. Bell, 1991]. The manual describes this discounting strategy as follows:

The discounting ratio is not dependent on the event's count, but
on t, the number of types which followed the particular context. It
de�nes d(r,t) = n/(n + t), where n is the size of the training set in
words. This is equivalent to setting P(w | h) = c / (n + t) (where
w is a word, h is the history and c is the number of occurrences of
w in the context h), for events that have been seen, and P(w | h)
= t / (n + t) for unseen events.

idngram2lm -idngram lm4bin.idngram -vocab lm4.vocab

-arpa lm4.arpa -context context_cues2.ccs -calc_mem

-vocab_type 1 -witten_bell -bin_input

Now we can even evaluate the performance of this new language model on
a training text. This is done with the following commands:

evallm -arpa lm4.arpa -context context_cues2.ccs

perplexity -text lm4_test.text -backoff_from_ccs_inc

We choose to back o� from the context cues inclusively. This means that we
use the sentence boundaries as boundaries for the trigrams. For the probability
of the �rst word of a new sentence, we do not take the previous words into
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consideration, since they are a part of the previous sentence. The same strategy
can also applied to the oovs but that did not inuence the test results much.
This test resulted in a perplexity of 272.70, which corresponds with an entropy
of 8.09 bits. Now what does this mean? The perplexity is a unit from the
information theory indicating how well the language model predicts the test
text. The language model is in fact a probability distribution over the training
text. It is described at as follows [Perplexity]:

The perplexity for a probability distribution p is de�ned by the
following formula:

2H(p) = 2�
P

x
p(x) log2 p(x) (5.1)

where H(p) is the entropy of the distribution and x ranges over
events. [...] Often one tries to model an unknown probability distri-
bution p, based on a training sample that was drawn from p. Given
a proposed probability model q, one may evaluate q by asking how
well it predicts a separate test sample x1, x2, . . . , xN also drawn
from p. The perplexity of the model q is de�ned as

2�
P

N

i=1
1=N log2 q(xi) (5.2)

Better models q of the unknown distribution p will tend to assign
higher probabilities q(xi) to the test events. Thus, they have lower
perplexity: they are less surprised by the test sample. [. . . ]

The lowest perplexity that has been published on the Brown Cor-
pus (1 million words of American English of varying topics and gen-
res) is indeed about 247 per word, corresponding to a cross-entropy
of log2247 = 7.95 bits per word or 1.75 bits per letter.

When the N-Best organization provides us with the news corpus, we will be
able to train a new language model for the bn task and can then compare the
perplexity of the new language model with the current perplexity, to conclude
which language model is better suited for this task.

5.4 Acoustic Retraining of Sonic

Now all resources are available, the acoustic retraining process can commence.
In section 5.4.1 we will explain how this process is executed and in section 5.4.2
the practice will be discussed.

5.4.1 Approach

This process's structure is illustrated in �gure 5.2. This process can be auto-
matically executed via a collection of C-shell scripts. The port-sonic.csh script
is the main script that calls the other scripts and thus guides the porting pro-
cess. In order to let Sonic know where all the training data is located, the
path-setup.csh script needs to be adjusted by the user. This script contains
references to the lexicon, the phone list, the phone map, the sample rate, the
letter-to-sound rules and a �le containing decision tree questions. Below we will
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look at the di�erent scripts, named step0 to step4, in more detail. The steps
are executed in the order depicted in �gure 5.1:

port-sonic.csh main script
path-setup.csh setup of input/output
step0-kb.csh lexicon compression / letter-to-sound
step1-align.csh initial alignment (English)
step2-mlf.csh generate master label �les
step3-train.csh gender-dependent hmm training
step4-realign.csh realign �les

Figure 5.1: Sonic's acoustic retraining process. The path setup �le de�nes
where the input �les are located and is used by the other scripts. The process
is directed by port-sonic.csh (not depicted to improve clarity).

Steps 2 to 4 are repeated to improve the training results.
The C-shell scripts that come with Sonic, can not cope with speaker direc-

tories containing many audio �les. The scripts thus were adapted by the author
to circumvent this problem.

Step0 The �rst step in Sonic's acoustic retraining process prepares two re-
quired inputs: the pronunciation lexicon and the letter-to-sound rules. It all
commences with a utility to construct a binary version of the lexicon: lex encode.
The binary version is a compressed form of the lexicon which improves the rec-
ognizer access speed. The binary version of the lexicon is also used throughout
the training process. Consecutively we train the letter-to-sound module using
the command line tools t2p fea and t2p train. The letter-to-sound module is
used to generate the pronunciation of words that do no not appear in the lex-
icon. This is done with decision trees: trees with acoustic splitting questions.
These decision trees split on the basis of letter context. This will be described
in more detail in section 5.4.1. The tool t2p fea automatically aligns letters and
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Figure 5.2: Sonic's acoustic model training process

phonemes on the basis of the input lexicon. This alignment is performed as
shown in this example:

Letter Context Desired Phoneme
R o a d r

r O a d w ow
r o A d w a

r o a D w a y d
o a d W a y w
a d w A y ey
d w a Y

Step1 During this step, the initial alignment of the data takes place. The
data is initially aligned using the American English models and is realigned
using the new acoustic models during step4. But before the alignment can take
place, features have to be extracted from the audio data with the Sonic-tool
named fea. This tool extracts mfcc features by default, in the form of 39-
dimensional oating point vectors containing the 12 mfccs and the normalized
frame energy, along with their �rst and second derivatives. For every second of
audio, 100 feature vectors are extracted.

Step2 The second step creates the master label �les for each speaker. They
are simple �les containing the training feature �le name followed by the state-
level alignments of the phonemes. Whether the phoneme is at the beginning,
middle or end of a word is also indicated. To give an example:

/home/rec/segment/com/cu/read_speech/20010621/000/sls-20010621-000-003.fea

0 14 15 15 16 16 SIL b

17 22 23 23 24 28 F b

29 29 30 32 33 35 R m

36 43 44 47 48 51 AE m

52 53 54 54 55 58 N m

59 64 65 73 74 76 S e

77 98 99 123 124 128 SIL b
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Step3 The training of the gender-dependent hmms starts by calling the mlf2bin-
tool from Sonic. This tool extracts the relevant data from the master label �les.
The state-based alignments of the training data are �rst converted into binary
feature �les for training. One temp �le is created for each state of each base
phone. These temp �les are then used to train the acoustic models. The training
process is described in the manual:

During the training process, single-mixture triphones are esti-
mated for each triphone occurrence in the training data. The data
is then placed at the root node of the decision tree and splitting
questions are evaluated. The question that results in the largest in-
crease in likelihood for the training data is used to split the node.
The splitting process continues until the likelihood change falls be-
low a threshold or the number of frames assigned to the clustered
state becomes too small. Finally, the data assigned to each leaf
node in the tree is then used to estimate the mixture-Gaussian dis-
tributions. The hmm parameters (mean vectors, variances, mixture
weights, and clustering information) are then written to disk. The
decision tree rules can be speci�ed in an ascii-�le. Rules are de-
noted by a rule-name (a `$' is put before each rule name) followed
by a list of phonemes or rules that are included. For example,

$nasal M N NG
$voiced stop B D G
$unvoiced stop P T K
$stop $voiced stop $unvoiced stop

An example comprehensive set of decision tree questions for US
English are found in, sonic/2.0-beta5/doc/examples/dt.rules. Note
that every phoneme speci�ed in the phoneme set con�guration �le
should appear at least once in the decision tree question set.

A splitting tree question set was derived from the English and German ques-
tion set, added as appendix B and appendix C. The required information on the
Dutch phonemes was derived from [f�ur Deutsche und Niederl�andische Philologie
FU Berlin, 2004b] and [f�ur Deutsche und Niederl�andische Philologie FU Berlin,
2004a]. First we added the questions from the German and English question set
that are also applicable to Dutch, with the appropriate phonemes from the cgn
phoneme set. Some rules that are not present in the English and German set
were added, for example the rule $foreign-vowel, derived from the cgn phoneme
set. This resulted in the following rule set:

$silence SIL br ls lg ga
$aspiration x h
$schwa @
$s z s z S Z
$nasal m n N J
$liquid l r
$glide w j
$diphtong E+ Y+ A+
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$dental plosive t d
$dental t d s z n l r
$labial plosive p b
$labial p f b v m w
$palatal S J j
$velar k x G N r
$voiced plosive b d
$voiceless plosive p t k
$plosive p b t d k
$voiced fric v z G Z
$voiceless fric f s S x h
$fricative f v s z S x G h Z
$foreign vowel E: Y: O: E O A Y
$short vowel I E A O Y
$long vowel i y e 2 a o u
$nasal vowel E O A Y
$high-vowel i y u
$mid-vowel e I 2 Y: @ o O
$low-vowel E A a
$front-vowel i y e I 2 Y: E Y E: E+
$central-vowel $schwa
$back-vowel u o O A a O: A+
$rounded-vowel y 2 Y: u o O Y
$unrounded-vowel i e I E @ a A E: E+
$vowel I E A O Y i y e 2 a o u E+ Y+ A+ @ E: Y: O: E O A Y
$consonant p b t d k g f v s z S Z x G h m n N J l r j w
$obstruent p f b v t s d z S k x G h
$sonorant m w n l r J j N $vowel
$voiced b v m w d z n l r J j G N $vowel
$voiceless p f t s S k x h

Step4 The last step in the porting process is the realignment of the audio �les
using the newly trained models.

The approach chosen to create the models for the bn and the cts tasks, is
the following: �rst we train basic Dutch speech models for Sonic using a large
amount of training data from all available categories from the cgn and, when a
reasonable recognition rate is reached, retrain these models speci�cally for the
bn and cts task. The same process could then be undertaken for the Flemish
data.

5.4.2 Results

The training process of the basic Dutch speech models results in the following
recognition rates for complete audio �les shown in table 5.7.

Sentence Level Input

I now try to improve this recognition rate. Firstly, we decided to input only
sentences to the asr system instead of whole audio �les. Recognizing only one
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Table 5.7: Test Results: Standard Recognition After Three Training Steps

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 1101 358594 9.3 22.7 68.0 7.5 98.2 100.0
Mean 3.7 1211.5 13.1 38.0 48.9 95.2 182.1 100.0
Standard
Deviation

11.0 2212.2 10.9 26.7 32.1 312.0 307.9 0.0

Median 1.0 348.5 10.1 31.8 52.5 1.0 95.9 100.0

sentence at a time signi�cantly simpli�es the asr task: it gives important infor-
mation to the asr system. When supplying complete audio �les with multiple
sentences to the asr system, it has to determine by itself where the sentence
boundaries are located and with an average of 3.7 sentences for 1211.5 words, we
see that Sonic inserts very few sentence boundaries. Too few sentence bound-
aries hinder correct usage of the language model since probabilities of words at
the beginning of sentences are then wrongfully based on words from the previ-
ous sentence. The manual however mentions nothing about sentence boundaries
being inserted but it is often the case that asr systems expect the input �les
to contain only one sentence. A preprocessing step is usually done to split the
audio �les at long silences, since people tend to pause longer between sentences
than between words. For the training data, we can insert sentence boundaries,
and split the audio and text �les, based on the sentence boundaries in the tran-
scripts. This requires adapted Java programs to enable the splitting at di�erent
points and to create new transcript �les. When I �nish these adaptations, it
results in the improved recognition rate in table 5.8:

Table 5.8: Test results: standard recognition for sentences

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 41657 358380 18.9 41.9 39.2 5.0 86.1 95.7
Mean 140.7 1210.7 20.2 39.6 40.2 3.5 83.3 97.0
Standard
Deviation

329.3 2211.4 12.6 11.3 15.3 10.4 16.8 4.8

Median 39.5 348.5 18.8 39.2 38.8 1.6 83.5 98.7

Grammar Scale Factor

Secondly, I experiment with the grammar scale factor. This scaling factor ad-
justs the weight the language model has in the decoding process, at the expense
of the acoustic model's weight. There is a separate scaling factor for the �rst
pass, which typically ranges from 20 to 30, and one for the second pass, typi-
cally between 10 and 30. This adaptation improves the recognition rate some
more, see table 5.9. The standard grammar scale factors are not mentioned in
the manual so we do not know whether they have been increased or decreased.
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Other grammar scale factors could be tried and could improve the recognition
rate with a few extra percentages. However, since this is just a base system that
will be retrained and not used as is, and every test takes two days to complete
and the time available is limited, we decide not to do this at this time. More
elaborate experimentation with the grammar scale factor will be done with the
�nal models for the bn task in section 5.5.3. We now continue by retraining the
models.

Table 5.9: Test results: recognition for sentences with a di�erent scaling factor

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 41637 358262 24.3 47.1 28.5 8.2 83.9 95.6
Mean 140.7 1210.3 26.6 44.9 28.5 6.1 79.5 96.6
Standard
Deviation

329.3 2211.6 16.2 12.7 15.6 16.0 23.2 5.6

Median 39.5 348.5 25.5 44.0 25.7 3.1 77.8 98.0

Iterative Retraining

Finally, we look at the e�ects of extra training steps. After one extra training
round, the recognition rate improves again to the results in table 5.10.

Table 5.10: Test results: recognition for sentences after retraining

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 41657 358380 24.9 47.1 28.1 8.7 83.9 95.7
Mean 140.7 1210.7 27.5 44.2 28.4 6.8 79.4 96.8
Standard
Deviation

329.3 2211.4 16.6 13.4 16.0 20.0 26.3 4.3

Median 39.5 348.5 25.9 43.2 25.7 3.2 77.3 98.0

However, another extra training round results in a recognition rate of 24.8%
instead of the 24.9% we already had achieved and another training step again
makes the recognition rate a bit worse: 24.5%. The recognition rate no longer
improves with extra training steps so this apparently is the highest recognition
rate that can be achieved with the bare Sonic asr system for this very broad
task, leaving aside potential, probably small, gains from other grammar scale
factors.

Sonic's Distributed Training Sonic also features distributed training using
multiple servers, to speed up the training process. One central client application
with the training data then sends jobs for separate phonemes to the servers.
However, these server applications often crashed and then it was necessary to
restart the whole training process or manually select the erroneous phonemes
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and restart the training process speci�cally for them. This took more time then
using only one server for the calculations so we stopped using this feature.

Discussion

We should keep in mind that all categories except for the broadcast news and
telephone conversations are being used for this test, for the training of the
acoustic models as well as for the tests. These categories together form a broad
collection of speech with di�erent subjects and various acoustic circumstances.
These categories must share one general language model and acoustic model
when they are combined in one recognition task. This makes it a very hard asr
task to ful�ll. This is also the reason that the N-Best project only focuses on
two more limited tasks: the broadcast news and conversational telephone speech
task. But at this moment, we are only training a Dutch base asr system, which
does not have to be perfect since the acoustic models will still be retrained for
the speci�c tasks. These tasks are narrower and thus easier to create specialized
acoustic models for. Therefore, we can expect a much better recognition rate
for specialized models for these tasks. At this point, we thus decide to leave
these models as they are and move forward to retrain them for the bn task,
which is easier than the cts task for numerous reasons. The bn task contains
read speech as opposed to the very spontaneous speech in the cts task. Read
speech is always much easier to recognize since it contains mainly grammatically
correct sentences, for which it is easier to create a language model. Only for an
occasional misread, the sentences contain some replacements and maybe some
repeated word groups. Spontaneous speech, on the other hand, contains many
�ller words and sounds which may di�er from speaker to speaker. Spontaneous
speech also contains many ill-formed phrases, since speakers do not write and
correct the sentences before they start speaking but simply begin talking and
�nish the sentence as they go along. This results in errors, restarts and inter-
jections, which all complicate the asr process. This is described in section 5.5.

5.5 The Broadcast News Task

Now we have a baseline system to recognize the Dutch language, we can spe-
cialize it for a more speci�c task: the bn task. This is done by retraining
the baseline system using the cgn data from the corresponding categories and
creating a new language model.

5.5.1 Retraining

For the bn task, we use acoustic training data from the cgn categories f , i,
j, k and l, as speci�ed by the N-Best project in table 3.3. Firstly, this data is
split up in small chunks. Then the acoustic retraining process of Sonic can be
repeated, using this data as the training data. The �rst retraining step then
results in the statistics in table 5.11, when tested with the cgn language model.
We see the total number of sentences and words and the percentage of correctly
recognized words and the types of errors: words that have been substituted by
other words and words that have been deleted or inserted. This sums up to a
percentage of errors and the last column gives the percentage of sentences that
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contain an error. The mean, standard deviation and median are also calculated.
The most important �gure in these results is the percentage of errors, which we
want to minimize. This is the main indicator of the asr system's performance.

Table 5.11: Test results: recognition of bn sentences after one retraining step

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 46.6 34.2 19.2 10.1 63.5 91.8
Mean 59.6 665.3 44.1 36.8 19.1 7.6 63.5 93.9
Standard
Deviation

75.8 898.8 14.2 10.7 14.4 15.4 21.4 8.1

Median 29.5 309.0 44.3 37.0 16.3 5.4 61.2 96.1

To see whether this recognition rate can be approved upon, we try a second
retraining step. The extracted features are realigned with the transcriptions,
using the newly trained models as the acoustic model. The acoustic model is
then retrained. The results are shown in table 5.12.

Table 5.12: Test results: recognition of bn sentences after two retraining steps

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 47.0 34.1 18.8 10.4 63.4 91.9
Mean 59.6 665.3 44.4 37.0 18.5 8.0 63.6 93.9
Standard
Deviation

75.8 898.8 14.7 11.3 14.6 14.6 21.2 8.1

Median 29.5 309.0 45.1 37.5 15.3 6.2 61.2 95.8

Since the recognition rate is still improving, we perform a third retraining
step, resulting in table 5.13. The models are no longer improving so we stop
retraining them and continue with other measures of improving the recognition
rate.

Table 5.13: Test results: recognition of bn sentences after two retraining steps

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 47.0 34.1 18.8 10.4 63.4 91.9
Mean 59.6 665.3 44.4 37.0 18.5 8.0 63.6 93.9
Standard
Deviation

75.8 898.8 14.7 11.3 14.6 14.6 21.2 8.1

Median 29.5 309.0 45.1 37.5 15.3 6.2 61.2 95.8
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5.5.2 The Language Model

For the bn task, we �rst use the same language model as we did for the complete
cgn task. We would have preferred to use a new language model, trained on
the training data that would be provided by tno. However, this data was not
provided to us in time so instead, we create a new language model based on the
transcripts from the cgn categories that are included in the bn task. This new
language model is created according to the process described in section 5.3. It
achieves a perplexity of 304.63 on the test set, which corresponds to an entropy
of 8.25 bits. This measure is most useful for comparing two language models so
we also calculate the perplexity for this task using the old language model, based
on the transcripts from the complete cgn. This model, surprisingly, achieves a
perplexity of 155.09, corresponding with an entropy of 7.28 bits. This seems to
indicate that the old language model, based on all the cgn transcripts, better
predicts the bn test data. This is highly unlikely and it was already noted
by [Clarkson and Robinson, 1999] that \There are many examples of cases in
which a language model has a much lower perplexity than the baseline model,
but does not result in a reduction in wer, and often results in a degradation
in recognition accuracy". So the best test is to use the new language model for
the bn test data and this gives us the much better test results in table 5.14.

Table 5.14: Test results: recognition of bn sentences using a new bn language
model

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 19.0 16.4 7.5 42.9 76.7
Mean 59.6 665.3 62.0 21.7 16.3 5.5 43.6 81.0
Standard
Deviation

75.8 898.8 18.0 10.8 15.3 14.1 24.2 15.5

Median 29.5 309.0 63.3 20.9 12.2 3.2 39.6 83.1

The new language model improved the recognition rate with an astonish-
ing 17.6%! This approaches the recognition rate for the Dutch bn task using
Sonic as achieved by tno during the course of the N-Best project: 70% [Judith
Kessens and David van Leeuwen, 2007]. Furthermore, the system that achieved
this recognition rate of 70%, used a language model trained \a large Dutch news
related text corpus of in total some 400M words" [Huijbregts, M.A.H., Ordel-
man, R.J.F., de Jong, F.M.G., 2005]. During the N-Best project, such a corpus
will also be provided but this research was �nished before this training data was
provided by tno. This could explain the small gap in recognition rates. But
there is another factor that can still improve on the current score: the grammar
scale factor.

5.5.3 The Grammar Scale Factor

We remind the reader that this scaling factor adjusts the weights the language
model and the acoustic model have in the decoding process. Tuning this factor
already improved the recognition rate of the baseline system to the results in
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table 5.9 and we now investigate the e�ects this scale factor has on the bn
system.

There are two grammar scale factors that can be tuned: one for the �rst pass
and one for the second pass. The previous results for the bn task were achieved
with a grammar scale factor of 20 for the �rst pass and 10 for the second
pass. These are the lowest typical values, according to the Sonic manual. They
typically can go up to 30.

First we adapt the �rst pass grammar scale factor and keep the other one
stable at 10. With a grammar scale factor of 25, we achieve the results in
table 5.15.

Table 5.15: Test results: recognition of bn sentences using grammar scale factors
25 and 10

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 17.9 17.5 6.5 41.9 75.0
Mean 59.6 665.3 62.0 20.4 17.5 4.5 42.5 79.8
Standard
Deviation

75.8 898.8 18.3 9.6 15.5 12.8 23.7 14.7

Median 29.5 309.0 65.7 20.0 14.3 2.4 37.3 81.6

This does not change much so we increase the �rst grammar scale factor to
30, the results are in table 5.16.

Table 5.16: Test results: recognition of bn sentences using grammar scale factors
30 and 10

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 62.2 18.0 19.8 5.3 43.2 74.8
Mean 59.4 665.3 59.4 20.1 20.4 3.8 44.3 79.6
Standard
Deviation

75.8 898.8 18.6 8.9 15.8 11.2 22.8 15.1

Median 29.5 309.0 63.5 19.6 16.9 2.0 38.9 80.2

This leads to less performance so we decide to keep the �rst grammar scale
factor at 25. Now we experiment with the second grammar scale factor. Chang-
ing this to 20 results in table 5.17.

Again there is little e�ect. We decide to try a value right in between to see
whether there is a peek in performance or the performance is steady for this
range. The results for the test with grammar scale factors 25 and 15 are listed
in table 5.18.

To cover all the bases, we will again try a higher grammar scale factor for
the second pass: 30. We see in table 5.19 that this has no inuence whatsoever
on the test results.

The last test I did, used an even higher grammar scale factor for the second
pass: 35. This again changes completely nothing for the test results. The
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Table 5.17: Test results: recognition of bn sentences using grammar scale factors
25 and 20

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 17.9 17.5 6.5 41.9 75.0
Mean 59.6 665.3 62.0 20.4 17.5 4.5 42.5 79.8
Standard
Deviation

75.8 898.8 18.3 9.6 15.5 12.8 23.7 14.7

Median 29.5 309.0 65.7 20.0 14.3 2.4 37.3 81.6

Table 5.18: Test results: recognition of bn sentences using grammar scale factors
25 and 20

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 17.9 17.5 6.5 41.9 75.0
Mean 59.6 665.3 62.0 20.4 17.5 4.5 42.5 79.8
Standard
Deviation

75.8 898.8 18.3 9.6 15.5 12.8 23.7 14.7

Median 29.5 309.0 65.7 20.0 14.3 2.4 37.3 81.6

Table 5.19: Test results: recognition of bn sentences using grammar scale factors
25 and 30

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 17.9 17.5 6.5 41.9 75.0
Mean 59.6 665.3 62.0 20.4 17.5 4.5 42.5 79.8
Standard
Deviation

75.8 898.8 18.3 9.6 15.5 12.8 23.7 14.7

Median 29.5 309.0 65.7 20.0 14.3 2.4 37.3 81.6

grammar scale factor for the second pass seems to have no e�ect at all on the
recognition results. We now stop experimenting, concluding with the recognition
rate of 64.6%.

5.5.4 Calculation Time

The N-Best project allows participants to draw attention to their speci�c strong
points by sending in supplementary test results achieved under a contrastive
condition. The Sonic manual already mentioned that the system was built
\with careful attention applied for speed and e�ciency" and this clearly had
e�ect: the �nal models for the bn task recognized the test data at a calculation
time of 0.83 rts. This means that this system can be used as is to enter under
the strictest contrastive condition, namely real-time.
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Table 5.20: Test results: recognition of bn sentences using grammar scale factors
25 and 30

Sen-
tences

Words Correct Substi-
tu-
tions

Dele-
tions

Inser-
tions

Errors Sen-
tence
Errors

Sum/Avg 9777 109108 64.6 17.9 17.5 6.5 41.9 75.0
Mean 59.6 665.3 62.0 20.4 17.5 4.5 42.5 79.8
Standard
Deviation

75.8 898.8 18.3 9.6 15.5 12.8 23.7 14.7

Median 29.5 309.0 65.7 20.0 14.3 2.4 37.3 81.6

5.5.5 Conclusions

Porting speech recognizers is a process of trial and error. It takes much prepara-
tory work to mold all the data in the right format. When this is �nished, a lot of
experimenting needs to be done to optimize the performance of the asr system.
Using specialized language models is clearly crucial for the performance of any
asr task; the language model had the most inuence on the test results. Acous-
tic retraining of the models to make them more specialized for the speci�c task,
is also very important. Another aspect of the asr system that are of inuence
and that needs to be experimented with, is the grammar scale factor, especially
for the �rst pass, when using a multi-pass asr system.

There are still some parameters left that one can experiment with and that
could have a minor inuence on the results. Especially for spontaneous speech,
the usage of a �le with �ller words and tweaking the associated �ller word
penalty, can potentially be very useful. One could also employ on of the many
speaker and environment adaptation algorithms that are included in the Sonic
asr system. I focused the available time on the factors that are commonly
believed by experienced asr researchers to be the most inuential.
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Chapter 6

The Inuence of Gender

and Age

Everything becomes a little di�erent as soon as it

is spoken out loud

Hermann Hesse

In this chapter, we investigate the inuence of gender and age on acoustic
features of speech from the cgn. The speakers are classi�ed into di�erent age
groups and their properties are then compared to see whether there are signi�-
cant di�erences. Then we can conclude whether asr systems can bene�t from
taking speaker age into account, or not.

The �rst section explains the choice of the di�erent age categories. Sec-
tion 6.2 describes how the data for the di�erent groups was collected and pro-
cessed.

6.1 Age Category Selection

The speech data used for this research, is a portion of the cgn. This corpus
already contains annotations for the di�erent audio �les with speci�c age cate-
gories. These are the di�erent categories used in the cgn:

� age0 = under 18 years of age,

� age1 = 18-24 years of age,

� age2 = 25-34 years of age,

� age3 = 35-44 years of age,

� age4 = 45-55 years of age,

� age5 = over 55 years of age,

� ageX = age unknown.
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Category age0 unfortunately does not contain enough data with a phonetic
annotation for this research. It will thus be excluded from the results. An addi-
tion to the cgn is however being developed containing speech data speci�cally
from younger and elderly people [Catia Cucchiarini, Hugo Van hamme, Felix
Smits, 2006] as well as from non-native speakers and speech data collected in
a human-machine interaction setting. This new corpus will allow for more de-
tailed research on this speci�c groups. Categories age1 to age5 contain balanced
amounts of speech data which is convenient for this research. So we go ahead
and use these cgn age categories.

6.2 Data Collection

In order to research the speech data on acoustic di�erences between ages, we
need phonetic transcriptions to determine which phonemes are pronounced in
the speech data. The speech data can then be aligned with these transcriptions
so we know which feature vectors correspond with which phonemes. So �rst we
look at the phonetic transcriptions.

6.2.1 Phonetic Transcriptions and Wav-Splitting

The cgn contains broad phonetic transcriptions for a part of the audio data.
These phonetic transcriptions are spread across most categories. They were
created by �rst automatic generating a phonetic transcription and then check-
ing and correcting this transcription manually, in two steps by two di�erent
transcribers. The term `broad' indicates that there was no allophonic variation
or diacritics1 in the prede�ned phoneme set [CorpusGesprokenNederlandsDoc-
umentation].

Table 6.1 lists the amounts of phonetically transcribed words available in
the cgn.

The phonetic transcriptions are available in the cgn in text �les with the
extension .fon. They are split up in chunks of a few words, using the same
time markers as the .ort-�les. The .fon-�les are in the ShortTextGrid-format,
which was already described in section 4.1. Sonic requires the transcriptions
to be in plain text-format containing words from the vocabulary or with actual
phonemes. In order to use the phonetic transcripts with Sonic, we have to
convert the ShortTextGrid-format from the cgn to a text �les with sequences of
phonemes, with spaces in between and each phoneme proceeded by a `!'-symbol.
There also are some special symbols in the .fon-annotations that require a special
treatment during the data processing:

1A mark, such as the cedilla of fa�cade or the acute accent of resum�e, added to a letter to

indicate a special phonetic value or distinguish words that are otherwise graphically identical.

- The American Heritage Dictionary of the English Language
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Table 6.1: Categories in cgn

Category Flemish

words

Dutch

words

a. Spontaneous conversations (`face-to-face') 70,945 106,182
b. Interviews with teachers of Dutch 34,064 25,687
c. Spontaneous telephone dialogs (recorded via

a switchboard)
68,886 201,141

d. Spontaneous telephone dialogs (recorded on
md with local interface)

6,257 0

e. Simulated business negotiations 0 25,485
f. Interviews/discussions/debates (broadcast) 25,144 75,106
g. (political) Discussions/debates/meetings

(non-broadcast)
9,009 25,117

h. Lessons recorded in the classroom 10,103 25,961
i. Live (e.g. sports) commentaries (broadcast) 10,130 24,986
j. News reports/documentaries (broadcast) 7,679 25,065
k. News (broadcast) 7,305 25,296
l. Commentaries/columns/reviews (broadcast) 7,431 25,071
m. Ceremonious speeches/sermons 1,893 5,184
n. Lectures/seminars 8,143 14,913
o. Read out speeches 64,848 70,223

Total 331,837 675,417

[] Not transcribable (garbage). This chunk should be removed
since it does not correspond with a phoneme.

] Speaker sound(ggg). This chunk should be annotated with
the symbol `ggg' so Sonic understands it is a speaker sound.
Shared phoneme(s) (dAn nu /lE+st stan). From a phonetic
point of view, these double phonemes are redundant so we
remove the as well as the double phoneme(s).

- A phoneme placed in between of the normal phonemes (nu-w-
Is). The fact that this sounds should not be there according to
the orthography, is irrelevant for the phonetics so we remove
the `-'-symbols.

A new Java-program, PrepareForShntool, is created to build phonetic tran-
scription �les for Sonic and prepare a batch-�le for the splitting of wav-�les in
smaller wav-�les at the time markers that also split the annotation �les. This
batch-�le is then executed and calls the splitting tool, shntool, for the separate
wav-�les. PrepareForShntool also makes sure that the �le parts from di�erent
age categories are saved in separate folders and afterwards are converted to
the raw-format using the Sox-tool. A �le with speaker-age combinations in the
cgn was generated by Pascal Wiggers' software, to facilitate the spreading of
data across folders according to speaker age. Afterwards, empty directories are
removed by another Java program named AfterShntool.java. All the software
created for the age-related research is contained in a separate package from the
Java programs used for the porting of sonic in chapter 5.
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6.2.2 Feature Extraction

Now we have folders containing small wav-�les with corresponding phonetic
transcriptions, we can extract feature vectors from them. For this goal, a csh-
script is created that calls the fea-tool from Sonic for each of the �les. This tool
is used for this research with the following options:

-f 16000 Input audio sampling rate in Hz (default is 8000 Hz)

-a Output feature vectors in ASCII format

-l Batch-mode feature extraction. The file input argument

is an ASCII file containing an input/output pair on each line

separated by space or tabs. The feature extraction module will

read each audio file listed and output the corresponding

features to the output file. This option can be used with the

-b flag to simulate live-mode feature extraction. If this

option is used, the final fea arguments of an input and output

mfc file can be ignored.

Curiously the options -a and -l turn out to work just �ne separately but
result in an error when used jointly. So we create a csh-program to create
another csh-program with on each line one call of the fea-tool for one audio �le.
Now we are ready to extract the features for the phonetically transcribed audio
�les. The feature vectors have a length of 39 and consist of:

Outputs 39 dimensional feature:

- 12 static

- 12 Delta

- 12 Delta-Delta

- 1 Normalized Power

- 1 Normalized Delta Power

- 1 Normalized Delta-Delta Power

The manual mentions that, for mfcc features, the power is normalized to
lie between -0.5 and +1.0. The command line information indicates that the
power of the pmvdr features is also normalized but it is not mentioned to what
boundaries, not even in the paper on pmvdr to which the manual refers [Umit
H. Yapanel, John H.L.Hansen, 2003]. This leaves us in the dark about which
feature is the normalized power.

6.2.3 Alignment

Now we have the feature vectors needed for this research, we still need to align
the audio �les with the phonemes. Sonic also provides a tool for this means
called `align'. The manual describes many options for this tool:

Input Options

-bat <file> N

Batch-mode alignment. Batch-mode input file should contain

command-line options (one complete command-line per line of

the file). The aligner will read this file and process one

file at a time as specified in the command-line parameters.
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-t File containing text-transcription to align. Can contain

embedded phoneme sequences using the "!" character followed

by the phoneme name.

User-defined Model Selection Options

-phone_config <file> File Specify a user defined phone set

configuration file.

-phone_map <file> File Specify a phoneme mapping file. This

file is used to map phonemes in a new language to phonemes

in an existing language.

-model <file> N User defined binary acoustic model as built

from the model training process.

-model_rate <float> N Set the sampling rate of the input

acoustic models (used in conjunction with the -mod option to

specify the acoustic models and the model's sampling rate).

This option allows the aligner to operate on 22kHz sampled

audio while utilizing acoustic models trained at a lower

sampling rate (e.g., 8kHz, 16kHz, etc.)

-feature_type N Sets the internal feature type. Current valid

feature types include MFCC, and MFCC_C0. Default is MFCC

feature type.

-lex_file N User specified lexicon

-lts_file N User specified letter-to-sound model

Output Options

-ow <file> N File for output word-level alignments. Contains

begin & end sample, word

-op <file> N File for output phone-level alignments. Contains

begin & sample, and phoneme

-os <file> N File for output state-level alignments. Contains

begin/end frame for each state followed by phoneme. This file

is used during acoustic model training.

An example of its usage is given in the manual:

align -mod comm-male.mod -model_rate 8000 -feature_type PMVDR

-con -t example.txt -ow example.wrd -op example.phn -os

example.sta -v -sil -f 8000 example.raw

As it turns out, the manual is incorrect when stating that the mfcc-features
are the standard feature set. Segmentation faults occur when the newly trained
Dutch models for Sonic are applied. The command-line help surprisingly states
that the `feature type (def. is pmvdr)'. It was the intention to do to the research
on mfcc-features since they are still the most widely used feature type in the
�eld of asr but with this discovery at a late stage in the research, it was decided
to continue with the pmvdr features. So all features in this research are of the
pmvdr-type. Unfortunately, this type of acoustic features is claimed to contain
less speaker-dependent information. We will be able to verify this statement.

Another di�culty is the use of the mod-option of the align-tool. Although it
was not mentioned in the list of options, this option turns out to be necessary for
the alignment using context-dependent models, which we trained in chapter 5.
The align-tool accepts bath �les as its input, to prevent having to call the
tool for each �le separately. This option turns out to work well so we use it.
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After testing what speci�c combination of options is needed for the research and
does not generate any segmentation faults, the alignment can commence. The
alignment is done via two csh-scripts adapted from the scripts that came with
Sonic, named step1-align.csh and step1b-align.csh. These scripts pass through
all categories and align each speaker separately. For each speaker, the gender
is read to choose the appropriate acoustic model and then all �les are added to
a batch-�le, which was then given to the alignment tool for batch processing.
The alignment was done with the following options, that were explained above:

-v

-model $model

-model_rate $samprate

-phone_config $phone_config

-lex_file $lexicon

-lts_file $let2snd

-sil

-con

-f $samprate

-t $txt

-ow $wrd

-op $phn

-os $sta

$rawfile

We use the best Dutch acoustic models we have previously trained for the
alignment. This results in a set of state-based alignments. They have the
extension .sta and look like this:

0 14 15 15 16 16 SIL b

17 22 23 23 24 28 F b

29 29 30 32 33 35 R m

36 43 44 47 48 51 AE m

52 53 54 54 55 58 N m

59 64 65 73 74 76 S e

In this example, the �rst state of the phoneme /F/ lasts from frame 17 till
frame 22. The second state of this phoneme is aligned with only one frame:
number 23.

6.2.4 Feature Collection

Now we can collect the feature vectors belonging to each separate phoneme state.
A new Java program is created for this task, called PrepareForMatlab.java. This
program reads in every .sta-�le which frame of the current audio �le belongs
to which phoneme state. Then it reads the feature vectors belonging to this
phoneme state from the .fea-�le and adds them to a text �le speci�c to this age
group and this phoneme state. Now we have a number of text-�les containing
feature vectors, one �le for each phoneme state in one age category. Now we
can read these text �les with Matlab and research the data.
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6.3 Data Analysis

When comparing this feature data, not all phonemes can be investigated: some
of the phonemes simply occur not often enough in the audio data to base any
conclusions on, for example the phoneme /A~/ as in \croissant". To obtain the
most reliable results, we use the phonemes for which we have the most feature
data. Since these phonemes occur the most, they should have the most inuence
on the recognition process anyway.

First, we write a Matlab-function ReadFeaFile.m to read in the feature data
available for a speci�c phoneme, for speakers of one age category and one gender.
This function is used by the other functions, that will plot the data.

6.3.1 Feature Averages

In the research on lexical stress [Rogier van Dalen, 2005], acoustic di�erences
where measured between stressed and unstressed syllables. This resulted in
di�erences in the speech signal's energy, including di�erent average values for
the energy factor in the feature vectors. To observe whether there are signi�cant
di�erences between the di�erent age categories, we plot the average values per
phoneme state for speech data from one gender and two di�erent age categories.
We then observe this plot to see which feature averages di�er the most, if any.
This gives us plots like in �gure 6.1. The di�erences are not signi�cant for this
particular phoneme state and gender and these two age categories.

Figure 6.1: Averages for 39 features for the /@/, state 2 for female speakers
from age category 1 (solid line) and category 2 (dashed line).

Other phonemes do have di�erent average values for speakers from one gen-
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der and two di�erent age categories, for example the phoneme /d/ state 2 in
�gure 6.2.

Figure 6.2: Averages for 39 features for the /d/, state 2 for female speakers
from age category 1 (solid line) and category 3 (dashed line).

The average values range from roughly -6 to +2.5. In order to get a rough
idea of where the important di�erences can be found, we decide to use a thresh-
old for the average di�erence: 0.5 is su�cient to be noticed. Afterwards, we can
take a closer look at these speci�c phoneme state's feature value distributions.
Indexing which phoneme states have a di�erence above the threshold, results in
table 6.2 for female speakers and table 6.4 for male speakers. Some observations
can already be made from these graphs.

We see that for speech from female speakers, more phonemes di�er and
more features per phoneme di�er. This is surprising since phonetics indicate
that there are larger age di�erences between speech from male speakers. How-
ever, it is indicated that there is a di�erence in performance when applying
pmvdr features for speech from female speakers, compared with male speakers.
A much higher relative improvement was achieved for female speech than for
male speech, compared with mfcc features: 35.5% compared with 19.0%, re-
spectively [Umit H. Yapanel, John H.L.Hansen, 2003]. It is suggested that this
is a result from the suitability of pmvdr features to high-pitch speech.

The �rst feature di�ers most often. For male as well as female speakers,
the most di�erences can be found between speakers from age categories 1 and
3, and secondly between categories 2 and 3. This suggests that the changes
occurring around the transition from category 2 to category 3, 35 years, already
take a slow start in category 1 and then speed up during category 2. They
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diminish before category 4. There are hardly any di�erences between female
speakers from age categories 1 and 2, 3 and 4 (also between 2 and 4, 3 and 5).
Di�erences between age categories 4 and 5 do occur, but rarely.

For one phoneme, we often see the age inuences recurring for the same
feature(s), for example feature 4 for /l/ and feature 2 for the /r/. These features
probably stem from a range in the spectrum that is primordial for this phoneme.
This relationship was also observed by [Rogier van Dalen, 2005].

Usually, asr systems do incorporate provisions for di�erent genders. Com-
paring the di�erences between the two genders, can provide us with a reference
on these age di�erences. The di�erences between male and female speech, in
these pmvdr features, are added in table 6.4. Surprisingly, there are almost no
di�erences between the phonemes originating from male and female speakers. It
was mentioned in the paper on Sonic's pmvdr features [Umit H. Yapanel, John
H.L.Hansen, 2003] that these features remove much more speaker dependent
information than mfcc features do. Apparently, the pmvdr features contain
less gender-speci�c information than age-speci�c information. Clearly, not all
speaker-dependent information is �ltered out. Now we shall compare the feature
vectors in more detail by looking at their distributions.

Figure 6.3: Averages for 39 features for the /t/, state 2 for female speakers
(solid line) and male speakers (dashed line).

6.3.2 Feature Distributions

To get a more detailed view on the feature qualities, we will compare their
distributions, following the approach used by [Rogier van Dalen, 2005]. We
start with the gender-speci�c feature vectors. As said in the previous section,
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Table 6.2: Female speakers: features with averages above the threshold

Phoneme Age1

Age2

Age2

Age3

Age3

Age4

Age4

Age5

Age1

Age3

Age2

Age4

Age3

Age5

@1 - - - - 13 - -
@2 - - - 37 - - -
@3 - - - - 1 - -
n1 - 1 - - 1 - -
n2 - 1 1 37 1 1 -
n3 - 1,13 - 37 1,2,13 - -
e1 - 3 - - 3 - -
e2 - 3 3 - 3,5 - -
e3 - 3 - - 3 - -
t1 - 1,37 - 1,37 1,2,3,37 - -
t2 - 2,3 - 2 2,3,13 - -
t3 - 1 - - 1,3,25,37 1 -
s1 1 1,2,13 - 1 1,2,13,37 1 -
s2 - 1,2 - 1 1,2,3 1 -
s3 1 1,2,25 - 1,2 1,25,37 1 -
r1 - 2 2 - 2 - -
r2 - 1 2 - 2,3 - -
r3 - - - - 2,3 - -
m1 - 1 - 37 1 1 -
m2 - 1 1 - 1 1 -
m3 - 1 1 - 1 1 -
d1 - 1,2,37 - 37 1,2,37 - -
d2 - 13,37 - - 2,13,14,37 - -
d3 - 25 - - 25 - -
k1 - 37 37 37 4,37 - 1
k2 - 3 - - 3,14,38 - -
k3 - 1 - - 1,2 - -
l1 - 4 - - 1,4 - -
l2 - - - - 1,4 - -
l3 - - - - 1,4 - -
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Table 6.3: Male speakers: features with averages above the threshold

Phoneme Age1

Age2

Age2

Age3

Age3

Age4

Age4

Age5

Age1

Age3

Age2

Age4

Age3

Age5

@1 - - - - - - -
@2 - - - - 2 - -
@3 - - - - - - -
n1 - - - - 1 - -
n2 - - - - 1 - -
n3 - - - - - - -
e1 - 3 - - 1,2 - -
e2 - 3 - - 2,3 2,3 -
e3 - 3 - - 2,3 3 -
t1 - 1,37 - 37 1,2 - -
t2 - 2 - - 2,3 - -
t3 - 1 - - 1,3,25 1 -
s1 1 1,13 - 1 1,2,13,37 1,2,13 -
s2 - 1,2 - 1 1,2,25,37 1,2 1
s3 1 1 - 1 1,37 1 1
r1 - 1 - - 2 2 -
r2 - 2 - - 2 2 -
r3 - - - - 2 - -
m1 - 37 - - - 37 -
m2 - 1 - - 1 1 -
m3 - 1 - - 1 1 1
d1 - 37 - 1 - - -
d2 - - - - - - -
d3 - - - - - - -
k1 - 37 - 37 - - 1
k2 - - - - - - -
k3 - - - - - - -
l1 - 4 - - 4 - -
l2 - 4 - - 4 4 -
l3 - 4 - - 4 - -
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Table 6.4: Features with di�erent averages for male and female speakers

Phoneme Features Phoneme Features

@1 - r1 -
@2 - r2 -
@3 - r3 -
n1 - m1 -
n2 - m2 -
n3 - m3 -
e1 2 d1 -
e2 2,3 d2 -
e3 - d3 -
t1 - k1 -
t2 1,2,3 k2 -
t3 - k3 -
s1 - l1 -
s2 - l2 -
s3 - l3 -

there are little features that di�er signi�cantly between male and female speech,
when comparing their averages. One of the few phonemes is the /t/ state 2. The
average phonemes for this phoneme were plot in �gure 6.3. Now we compare
the distributions of the phoneme /t/ values for male and female speakers for
the most di�ering feature: feature 1. This is done by making a histogram of
these values and normalizing them by dividing by the number of values. This
distribution is plot in �gure 6.4. We see that the two distributions overlap almost
completely, so the di�erences are very small. For the features with a smaller
di�erence in averages, the distributions are almost identical. This suggests that
the models for male and female speech should be very similar. Now we look at
the distributions for the di�erent age groups.

We see in tables 6.2 and 6.3 that for both male and female speakers, there
are di�erences in multiple feature averages for state 1 of the phoneme /s/. This
is why we will look at their speci�c feature distributions, expecting to �nd the
biggest di�erences here. Looking at feature 1, we get �gures 6.5 for the female
speakers and �gure 6.6 for the male speakers. It can readily be seen that the
di�erence between these distributions is much larger than the most di�ering
feature state distribution between male and female speakers from �gure 6.4.
For the second feature, in �gures 6.7 and 6.8, the distributions again are almost
identical. Feature 13 di�ers more, as can be seen in �gures 6.9 and 6.10. Lastly,
we compare feature 37 in �gures 6.11 and 6.12. For both male and female
speakers, there is a clear di�erence between these distributions. Overall, there
seems to be su�cient di�erence here to make a distinction between these two
age categories.

To give a typical example of a feature distribution without much di�erence
between the averages, we add �gure 6.13. It is clearly impossible to make a
distinction between these categories.
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Figure 6.4: Distribution of feature 1 for /t/, state 2 for female speakers from
age category 1 (solid line) and category 3 (dashed line).

Figure 6.5: Distribution of feature 1 for /s/, state 1 for female speakers from
age category 1 (solid line) and category 3 (dashed line).
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Figure 6.6: Distribution of feature 1 for /s/, state 1 for male speakers from age
category 1 (solid line) and category 3 (dashed line).

Figure 6.7: Distribution of feature 2 for /s/, state 1 for female speakers from
age category 1 (solid line) and category 3 (dashed line).
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Figure 6.8: Distribution of feature 2 for /s/, state 1 for male speakers from age
category 1 (solid line) and category 3 (dashed line).

Figure 6.9: Distribution of feature 13 for /s/, state 1 for female speakers from
age category 1 (solid line) and category 3 (dashed line).
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Figure 6.10: Distribution of feature 13 for /s/, state 1 for male speakers from
age category 1 (solid line) and category 3 (dashed line).

Figure 6.11: Distribution of feature 37 for /s/, state 1 for female speakers from
age category 1 (solid line) and category 3 (dashed line).
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Figure 6.12: Distribution of feature 37 for /s/, state 1 for male speakers from
age category 1 (solid line) and category 3 (dashed line).

Figure 6.13: Distribution of feature 5 for /r/, state 3 for female speakers from
age category 1 (solid line) and category 3 (dashed line).
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6.4 Conclusions

At this moment, we would like to remind the reader that the original idea was
to compare data in another feature format: mfcc features. This feature extrac-
tion process mimics the transformation that takes place in a human ear so these
features should contain the same information people use to identify speaker age.
Unfortunately, the Sonic manual and default features led us to using pmvdr fea-
tures, developed to remove as much speaker-dependent information as possible.
Since the process and time schedule was too far along to restart, we decided
to continue with these features, although this reduced our chances of �nding
signi�cant age di�erences in the speech data. All the conclusions that follow,
only apply to this speci�c feature type.

However, analysis of the pmvdr feature data has led to some surprising
conclusions. The pmvdr features succeeded quite well at removing di�erences
between speech from di�erent genders: the features for male and female speakers
are almost identical. Relative to the di�erences between speech from di�erent
genders, age is a much bigger inuence. It would thus make more sense to make
provisions for di�erent ages than for di�erent genders, when using this type
of acoustic feature. But not every age category can uniquely be identi�ed: the
di�erences are largest between age categories 1 and 3 and are almost completely
absent between age categories 1 and 2, 3 and 4, 2 and 4, 3 and 5. There is a
small di�erence between the genders here: there is some di�erence between
women from age categories 3 and 4, 4 and 5 while the di�erences between
speech from men of these ages has far less di�erences. Although there is less
di�erence between men from age categories 2 and 3, 3 and 4, there are more
di�erences between speech from age categories 2 and 4. This suggests there is a
change in speech for female speakers in age category 3, that declines around the
crossing to category 4. Di�erences between speech from male speakers across
these categories adds up, on the other hand. This is not explained by literature
from the phonetics �eld.

Surprisingly, the di�erences between the age categories are smaller for men
than for women, although the literature on phonetics [Sch�otz, 2007] predicts
otherwise. However, this statement refers also to the changes during puberty,
which could not be researched here by a lack of data. Also, the pmvdr features
are especially well suited for medium and high pitch speech, which could also
be the cause of these di�erences.

Overall, it seems unlikely that with pmvdr features, using di�erent age cat-
egories will improve the recognition rate for the Dutch language. Di�erences
between phonemes are rare and where they occur, they are limited to a max-
imum of 4 features out of a set of size 39. Mostly, only one feature element
di�ers. The only way to achieve certainty on this, is to try this out in practice,
as is customary in this �eld of research. When this is done, provisions should
be made for speci�c phonemes since the results of the age di�erences mani-
fest themselves di�erently for di�erent phonemes. It is also interesting to see
whether the mfcc incorporate larger age di�erences for the Dutch language.
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Chapter 7

Conclusions and

Recommendations

The most important thing in human

communication is hearing what isn't being said

Anonymous

In this �nal chapter, we reect on the research goals and the choice for the
Sonic asr system in my literature study. Some �nal conclusions and recommen-
dations for future work �nish this master's thesis.

7.1 Goals

In this section, we recapitulate the goals of this research. There were two main
objectives in this research project:

� to prepare a Dutch lvcsr system for the TU Delft to use as a basic system
for asr research and during the N-Best project, for the recognition of
broadcast news as well as for spontaneous speech.

� to research whether the acoustic di�erences between Dutch speakers from
di�erent age categories, for male and female speakers separately, are suf-
�ciently large to potentially be useful in the �eld of asr.

Where the �rst goal is concerned, a Dutch lvcsr has been created for the
Northern Dutch broadcast news task, described in chapter 5. The system per-
forms well and achieves a good recognition rate. There was not enough time
to repeat the steps in this creation using the Southern Dutch data but this can
be done rather quickly using the programs I created on the Flemish data and
waiting for the training steps to �nish. The spontaneous speech task is also left
to my successor in the N-Best project. This is because getting Sonic to work
without in-house knowledge of this software and without support, took more
time than expected.

The acoustic di�erences between Dutch speakers from di�erent age cate-
gories, for male and female speakers separately, were investigated and it was
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concluded that this does not seem promising when using pmvdr features. With
mfcc features, this could still be bene�cial.

7.2 Using Sonic

In my literature study [Clerx, 2007], a theoretical choice was made to use the
Sonic asr system for this project. At this point, we can reect on how this
choice has turned out.

The fast training algorithm promised Sonic's authors, delivered: only a few
training passes were needed and the training passes were quick, when we ob-
tained a more recent server. This has been very valuable during this project.
The many speaker adaptation techniques have not yet been used but are still
an interesting possibility that could increase the recognition rate even more.

It was the intention to use the classic and still standard mfcc features and
then compare the results with the usage of pmvdr features, if there would be
enough time left. Unfortunately we were lead astray on this point and started
out with pmvdr features. Whether these features actually improved the recog-
nition rate, can not be concluded without creating new speech models of the
mfcc type. There was not enough time for this.

The many speech adaptation techniques in Sonic, still seem promising but
have not yet been tried.

We used a trigram language model and that performed quite well. It achieved
a good recognition rate and Sonic made good on the promise of speed: it per-
formed its calculations on the bn task faster than real time, giving us the op-
portunity to enter the N-Best project with a contrastive condition.

7.3 Conclusions

The Sonic asr system has been ported to the Dutch language and performs
reasonable on the broadcast news task. The performance is lower than for
American English but that is to be expected: the Dutch language incorporates
many compounds and more verb conjugations, which makes asr more complex.
Sonic is a fast system with many interesting options but the manual really needs
to be updated and improved. The learning curve is very steep and requires
knowledge of programming and scripting languages.

This master's thesis also describes the practical side of speech recognition:
where many researchers su�ce by stating what recognition rate was obtained,
this thesis also describes how that recognition was obtained in practice. This
gives a good impression to new researchers of the practical side of this �eld.

When using pmvdr features, age di�erences are present but pretty limited.
They are not expected to result in a much higher recognition rate. Di�erences
between genders are even more limited though. Age di�erences could still im-
prove asr when using mfcc features.

7.4 Future Work

For the N-Best project, a Flemish version needs to be created, using the North-
ern Dutch asrmodels as the basis, following the process described in section 5.5.
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Separate models and approaches need to developed for the spontaneous speech
task using conversational telephone speech. This can be done quite quickly us-
ing the programs I created on the Flemish data and waiting for the training
steps to �nish. Then some experimentation needs to take place, following my
approach in section 5.5. The spontaneous speech task will involve adding some
new pieces to the puzzle, starting with the usage of a �ller �le and �ller penalty
to compensate for the di�erent �ller words used in spontaneous speech. The
basic Dutch speech system to be used as the basis, has already been prepared in
sections 5.2 and 5.4. A new language model should also be created, as described
in section 5.3. The language model is a crucial factor and should receive proper
attention.

It would be very interesting to investigate whether age di�erences present
themselves more in mfcc features, which incorporate more speaker-dependent
information. This should also be tried in practice since that is the best test for
asr �ndings.
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Appendix A

The N-Best Time Table

The evaluation is scheduled to take place in spring 2008. The exact dates of the
evaluation are tabulated below.

1 January 2007 This is the start of the evaluation data collection process.
No acoustic or text resource originating after this data may be used for training
the ASR system.

6 August 2007 Start of distribution of dry-run material in evaluation-format.

31 August 2007 Deadline for submitting dry-run results.

31 March 2008 Deadline for signing up with the N-Best evaluation.

6 April 2008 Start of the evaluation. Evaluation material will be made
available prior to this date, and running the evaluation can o�cially start after
this date.

2 May 2008 Evaluation must be submitted to TNO.

9 May 2008 TNO releases the �rst evaluation results, reference transcripts
will be distributed, adjudication period begins.

23 May 2008 End of adjudication period, TNO will �x scoring scripts and
reference transcriptions.

4 August 2008 Deadline for workshop proceedings and electronic version of
presentations.

11 August 2008 One-day workshop at TNO in Soesterberg for presentation
of the N-Best evaluation results.

31 December 2008 End of research license of the training for sites that have
not licensed the material directly from the supplier.
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Appendix B

Sonic's English Decision

Tree Rules

The Sonic asr uses these splitting rules to create the decision trees.

$silence SIL br ls lg ga
$aspiration HH
$dental DH TH
$l w L W
$s sh S SH
$s z sh zh S Z SH ZH
$a�ricate CH TS JH
$nasal M N NG
$schwa AX IX AXR
$voiced fric DH Z ZH V
$voiceless fric TH S SH F
$fricative DH TH S SH Z ZH V F
$liquid L R
$lqgl back L R W
$liquid glide L R W Y
$w glide UW AW OW W
$y glide IY AY EY OY Y
$diphthong UW AW AY EY IY OW OY
$round vocalic UH AO UW OW OY W AXR ER
$labial W M B P V F
$palatal Y CH JH SH ZH
$alveolar N D T S Z DX TS
$alveolar stop D T
$velar NG G K
$velar stop G K
$labial stop B P
$delete stop PD TD KD BD DD GD
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$oral-stop1 B D G P T K CH TS JH BD DD GD PD TD KD
$oral-stop2 P T K PD TD KD
$oral-stop3 B D G BD DD GD
$front-r AE EH IH IX IY EY AH AX Y AW
$back-r UH AO UW OW AA ER AXR OY L R W AY
$back-l UH AO UW OW AA ER AXR L R W AW
$front-l AE EH IH IX IY EY AH AX Y OY AY
$retro-ex R ER AXR
$retro-vowel ER AXR
$high-vowel IH IX IY UH UW Y
$lax-vowel EH IH IX UH AH AX
$low-vowel AE AA AO AW AY OY
$tense-vowel IY EY AE UW OW AA AO AY OY AW
$vowel AE EH IH IX IY UH AH AX AA AO UW AW AY EY
OW OY ER AXR
$sonorant AE EH IH IX IY EY AH AX OY AY UH AO UW OW
AA ER AXR AW L R W Y
$voiced AE EH IH IX IY UH AH AX AA AO UW AW AY EY
OW OY L R W Y ER AXR M N NG JH B D DH G V Z ZH DX
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Appendix C

Sonic's German Decision

Tree Rules

The German rule set below is included in Sonic's porting example package. This
rule set is used to build the decision tree.

$silence SIL br ls lg ga
$aspiration x h
$l w l
$s sh s S
$s z sh zh s z S
$a�ricate ts tS Z j dZ
$nasal m n G
$schwa &
$voiced fric z v V
$voiceless fric s S f pf
$fricative s S z v V f pf
$liquid l r
$w glide u U W w Y y w~ au o O O~
$y glide i @ I ai E oi
$diphthong u U W w Y y w~ au ai E i @ I o O O~ oi
$round vocalic u U W w Y y w~ o O O~ oi
$labial m b p v V f pf
$palatal Z j dZ S
$alveolar n d t s z ts tS
$alveolar stop d t
$velar G g k
$velar stop g k
$labial stop b p
$oral-stop1 b d g p t k ts tS Z j dZ
$oral-stop2 p t k
$oral-stop3 b d g
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$front-r e i @ I E & au
$back-r u U W w Y y w~ o O O~ a A $ a~ $ ~ oi l r ai
$back-l u U W w Y y w~ o O O~ a A $ a~ $ ~ l r au
$front-l e i @ I E & oi ai
$retro-ex r
$high-vowel i @ I u U W w Y y w~
$lax-vowel e &
$low-vowel a A $ a~ $ ~ au ai oi
$tense-vowel i @ I E u U W w Y y w~ o O O~ a A $ a~ $ ~ ai oi
au
$vowel e i @ I & a A $ a~ $ ~ u U W w Y y w~ au ai E o O O~ oi
$sonorant e i @ I E & oi ai u U W w Y y w~ o O O~ a A $ a~ $
~ au l r
$voiced e i @ I & a A $ a~ $ ~ u U W w Y y w~ au ai E o O O~
oi l r m n G Z j dZ b d g v V z
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Appendix D

Paper

D.1 Keywords

Automatic Speech Recognition, Language Porting, Dutch Language, Flemish,
Phonetics, Sonic, N-Best,Perceptual Minimum Variance Distortionless Response,
PMVDR

D.2 Abstract

Humans are capable of estimating speaker ages by only hearing them speak. It
is also well known from the �eld of phonetics that speaker age inuences the
speech signal. This has however not yet been researched for the Dutch language.
In this research, the inuence of age on speech is researched for both genders sep-
arately and compared with the gender di�erences, using Perceptual Minimum
Variance Distortionless Response features. The inuences of age are minimal
for these features but greater than the di�erences between speech from di�er-
ent genders. Di�erent spectral features are inuenced for di�erent phonemes.
It seems unlikely that adapting speech recognizers using Perceptual Minimum
Variance Distortionless Response features will lead to much improvement.

Furthermore, this thesis describes the process of creating a Dutch automated
speech recognition system, using the Sonic large vocabulary continuous speech
recognition system as a basis. The system achieves a recognition rate of 64.6%
on the broadcast news task from the N-Best project. The porting process is
described in detail and provides an accurate introduction to the practice of
porting speech recognition systems.
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D.3 Introduction

D.4 The N-Best Project

D.5 Porting Sonic to the Dutch Language

D.6 The Inuence of Gender and Age

D.7 Conclusions and Recommendations
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