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Visual Attention in Objective Image Quality
Assessment: Based on Eye-Tracking Data

Hantao Liu, Member, IEEE, and Ingrid Heynderickx

Abstract—Since the human visual system (HVS) is the ultimate
assessor of image quality, current research on the design of objec-
tive image quality metrics tends to include an important feature
of the HVS, namely, visual attention. Different metrics for image
quality prediction have been extended with a computational
model of visual attention, but the resulting gain in reliability of
the metrics so far was variable. To better understand the basic
added value of including visual attention in the design of objective
metrics, we used measured data of visual attention. To this end,
we performed two eye-tracking experiments: one with a free-
looking task and one with a quality assessment task. In the first
experiment, 20 observers looked freely to 29 unimpaired original
images, yielding us so-called natural scene saliency (NSS). In the
second experiment, 20 different observers assessed the quality of
distorted versions of the original images. The resulting saliency
maps showed some differences with the NSS, and therefore, we
applied both types of saliency to four different objective metrics
predicting the quality of JPEG compressed images. For both
types of saliency the performance gain of the metrics improved,
but to a larger extent when adding the NSS. As a consequence,
we further integrated NSS in several state-of-the-art quality met-
rics, including three full-reference metrics and two no-reference
metrics, and evaluated their prediction performance for a larger
set of distortions. By doing so, we evaluated whether and to what
extent the addition of NSS is beneficial to objective quality pre-
diction in general terms. In addition, we address some practical
issues in the design of an attention-based metric. The eye-tracking
data are made available to the research community [1].

Index Terms—Eye tracking, image quality assessment, objec-
tive metric, saliency map, visual attention.

I. Introduction

IMAGE QUALITY metrics are already integrated in a
broad range of visual communication systems, e.g., for the

optimization of digital imaging systems, the benchmarking of
image and video coding algorithms, and the quality monitoring
and control in displays [2]. These so-called objective metrics
have the aim to automatically quantify the perceived image
quality, and so, to serve eventually as an alternative for
expensive quality evaluation by human observers. They range
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from dedicated metrics that measure a specific image distortion
to general metrics that assess the overall perceived quality.
Both the dedicated and general metrics can be classified into
full-reference (FR), reduced-reference (RR), and no-reference
(NR) metrics, depending on to what extent they use the orig-
inal, non-degraded image or video as a reference. FR metrics
are based on measuring the similarity between the distorted
image and its original version. In real-world applications,
where the original is not available, RR and NR metrics are
used. RR metrics make use of features extracted from the
original, while NR metrics attempt to assess the overall quality
or some aspect of it without the use of the original.

Since the human visual system (HVS) is the ultimate asses-
sor of image quality, it is highly desirable to have objective
metrics that predict image or video quality consistent with
what humans perceive [2]. Traditional FR metrics, such as
the mean squared error (MSE) or the peak signal-to-noise
ratio (PSNR), are simple, since they are purely defined on a
pixel-by-pixel difference between the distorted and the original
image, but, they are also known for their poor correlation with
perceived quality [3]. Therefore, a considerable amount of re-
search is devoted to the development of more reliable objective
metrics taking characteristics of the HVS into account.

Some meaningful progress in the design of HVS-based
objective metrics is reported in the literature [4]–[18]. In these
studies, lower level aspects of the HVS, such as contrast
sensitivity, luminance masking, and texture masking, are suc-
cessfully modeled and integrated in various metrics. The basic
idea behind the metrics in [4]–[7] is to decompose the image
signal into channels of various frequencies and orientations in
order to reflect human vision at the neural cell level. Classical
HVS models, such as the contrast sensitivity function per
channel, and interactions between the channels to simulate
masking, are then implemented. These metrics are claimed
to be perceptually more meaningful than MSE or PSNR.
In [8]–[13], metrics are designed to explicitly quantify the
annoyance of various compression artifacts. In this research,
properties of the HVS are combined with the specific physical
characteristics of the artifacts to estimate their supra-threshold
visibility to the human eye. The added value of including
HVS aspects in these metrics is validated with psychovisual
experiments. Instead of simulating the functional components
of the HVS, the metrics in [14]–[18] are rather based on
the overall functionality of the HVS, e.g., by assuming that
the HVS separates structural information from nonstructural
information in the scene [14]. These metrics are able to
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successfully predict image quality in close agreement with
human judgments.

In recent years, researchers tend to include higher level as-
pects of the HVS, such as visual attention, in objective metrics.
Limited progress has been made in this research area, mainly
due to the fact that the mechanism of attention for image
quality judgment is not fully understood yet, and also due to
the difficulties of precisely modeling visual attention. Current
research mostly incorporates visual attention into the objective
metrics in an ad hoc way, based on optimizing the performance
increase in predicting perceived quality. For example, studies
in [19]–[23] are based on the assumption that a distortion
occurring in an area that gets the viewer’s attention is more
annoying than in any other area, and they attempt to weight
local distortions with local saliency, a process referred to as
“visual importance pooling.” The essential concept behind this
approach is that the natural scene saliency (i.e., saliency driven
by the original image content, and referred to as NSS) and the
image distortions are taken into account separately, and they
are combined to determine the overall quality score. In such a
scenario, a variety of computational attention models are im-
plemented in different metrics, resulting in a performance gain
as reported in [19]–[23]. As such, this approach appears to be
a viable way of including visual attention in objective metrics.

There are, however, several concerns related to the devel-
opment of attention-based objective quality metrics. First of
all, most research published so far in the literature employs
an existing attention model to specifically optimize a targeted
objective metric. Computational attention models are avail-
able, e.g., in [24] and [25], but they are either designed or
chosen for a specific domain, and therefore, not necessarily
generally applicable. Moreover, the accuracy of these models
in predicting human visual attention is not always completely
proved yet, especially not in the domain of image quality
assessment. Therefore, the question arises whether an atten-
tion model successfully embedded in one particular metric
is also able to enhance the performance of other metrics,
and even if so, whether the gain by adding this attention
model to a specific metric is comparable to the gain that
can be obtained with alternative metrics. Second, it is well
known that eye movements depend on the task assigned to
the observer [26]. Hence, whether NSS or saliency during
image quality assessment should be included in the design
of objective quality metrics is still insufficiently studied. It
is, e.g., not known yet whether the difference between both
types of saliency is sufficiently large to actually affect the
performance gain for the objective quality metrics. Third, since
computational efficiency becomes a significant issue when
applying an objective metric in real-time processing, the mea-
sured gain in metric performance should be balanced against
the additional costs needed for the rather complex attention
modeling. This implies that before implementing an attention-
based metric, it is worthwhile to know exactly whether and to
what extent including visual attention can improve existing
objective quality metrics. Finally, studies combining visual
attention and image distortions in a perceptually meaningful
way are still limited, and hardly discuss a generalized strategy
for combining distortion visibility and saliency.

Obviously, investigating the aspects mentioned above heav-
ily relies on the reliability of the visual attention data used.
Since recording eye movements is so far the most reliable
means for studying human visual attention [26], it is highly
desirable to use these “ground truth” visual attention data for
the evaluation of the added value of attention in objective
quality metrics. This idea is recently exploited in [27], in
which the data of an eye-tracking experiment are integrated
in the peak signal-to-noise ratio and structural similarity
(SSIM) [14] metric. The results obtained in [27], however, are
inconsistent with those found in [19]–[23], i.e., no clear im-
provement is found in the metric performance when weighting
the local distortions with local saliency. It should, however,
be noted that the eye-tracking data of [27] were collected
during image quality assessment with the double stimulus
impairment scale protocol [28]. This implies that each observer
saw an unimpaired reference and its impaired version several
times during the experiment. As a consequence, the observer
might have learnt where to look for the artifacts, and thus,
the recorded eye-tracking data on the impaired images may
have been more affected by the image distortions than by the
natural scene content. Then, simply adding these eye-tracking
data to a quality metric may overweight the distraction power
of the distortions compared to the NSS, and this may explain
differences in the conclusions between [19]–[23] and [27] . To
evaluate these assumptions, more data on whether to include
NSS or saliency during scoring in the design of an attention-
based metric is needed. This issue is addressed in [29] and
[30], and the results show a trend of a larger improvement in
predictability of the objective metrics when using eye-tracking
data obtained during freely looking to unimpaired images. It
should, however, be kept in mind that the study reported in [29]
and [30] only made use of a limited number of human subjects
(five participants looked freely to the images, while two
scored the images). Nonetheless, the observed trend is in line
with research recently published in [31], showing that adding
“ground truth” NSS [in this case obtained by asking human
observers to select the region-of-interest (ROI) in reference
images] significantly improves the performance of metrics that
predict the perceived quality of images that are wirelessly
transmitted. Artifacts in these images are typically clustered
in certain areas of the image. In such a specific scenario,
using NSS is more practical since it can be transmitted as side
information through the wireless communication channel. As
such, the metric can make use of ROI versus background (BG)
segmentation at the receiver end in real-time.

To better understand the added value of including visual
attention in the design of objective metrics, we start from
eye-tracking data obtained during free looking and during
scoring image quality, as explained in Section II. Both types
of saliency are then added to several objective quality met-
rics well-known in literature. The corresponding results are
discussed in Section III, and reveal that although both types
of saliency are beneficial for objective quality prediction,
NSS tends to improve the metrics’ performance more. As a
consequence, we integrate, as discussed in Section IV, NSS
in three full-reference metrics and two NR metrics with the
aim to provide more accurate quantitative evidence on whether
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and to what extent visual attention can be beneficial for
objective quality prediction. We also discuss some important
issues of applying NSS in the design of an attention-based
metric. Moreover, we have made the eye-tracking data publicly
available [1] to facilitate future research in image quality
assessment.

II. Eye-Tracking Experiments

It is generally agreed that under normal circumstances
human eye movements are tightly coupled to visual attention
[32]–[34]. Therefore, we performed eye-tracking experiments
to obtain “ground truth” visual attention data. Actually, two
eye-tracking experiments were conducted. In the first experi-
ment, the NSS for the 29 source images of the LIVE database
[35] was collected by asking 20 observers to look freely to the
images. In the second experiment, the saliency was recorded
for 20 different observers, who were requested to score the
quality of distorted versions of the source images.

A. Test Environment

The eye-tracking experiment was carried out in the New
Experience Lab of the Delft University of Technology, Delft,
The Netherlands [36]. Eye movements were recorded with
an infrared video-based tracking system (iView X RED,
SensoMotoric Instruments). It had a sampling rate of 50 Hz,
a spatial resolution of 0.1°, and a gaze position accuracy
of 0.5°−1.0°. Since the system could compensate for head
movements within a certain range, a chin rest was sufficient
to reduce head movements and ensure a constant viewing
distance of 70 cm. The stimuli were displayed on a 19-in
cathode ray tube monitor with a resolution of 1024 × 768
pixels and an active screen area of 365 × 275 mm. Forty
students, being 24 males and 16 females, inexperienced with
eye-tracking recordings, were recruited as participants. They
were assigned to two groups of equal size (Groups A and B),
each with 12 males and 8 females. Each session (per subject)
was preceded by a 3 × 3 point grid calibration of the eye-
tracking equipment.

B. Experiment I: NSS

Participants of Group A were requested to look freely to the
29 source images of the LIVE database [35]. Each participant
saw all stimuli in a random order. Each stimulus was shown for
10 s followed by a mid-gray screen during 3 s. The participants
were requested to look at the images in a natural way (“view
it as you normally would”).

C. Experiment II: Saliency During Scoring

Participants of Group B were requested to score JPEG
compressed versions of the source images (using MATLAB’s
imwrite function). To include a broad range of quality, while
avoiding that the recorded saliency was biased by viewing a
scene multiple times, the source images were divided into six
groups (i.e., five groups of five scenes each, and one group of
four scenes, indicated by “S1” to “S6”). Each group of scenes
was compressed at a different level (i.e., S1 at Q = 5, S2 at

Fig. 1. Illustration of the scoring screen.

Q = 10, S3 at Q = 15, S4 at Q = 20, S5 at Q = 30,
and S6 at Q = 40). By doing so, each scene was viewed
only once per subject, and for each subject in a different
random order. The subject was requested to score the image
quality for each stimulus with the single-stimulus (SS) method,
i.e., in the absence of a reference [28]. A categorical scoring
scale (recommended by ITU-R [28]) with the semantic terms
“Excellent,” “Good,” “Fair,” “Poor,” and “Bad” was used. Each
stimulus was shown for 10 s, followed by a scoring screen as
illustrated in Fig. 1. The actual experiment was preceded by a
training, in which the participant was instructed on the task and
could familiarize himself/herself with how to use the scoring
scale.

III. NSS Versus Saliency During Scoring Applied

in Objective Metrics

A. Saliency Map

A saliency map representative for visual attention is usually
derived from the spatial pattern of fixations in the eye tracking
data [32]–[34]. To construct this map, each fixation location
gives rise to a grayscale patch whose activity is Gaussian
distributed. The width (σ) of the Gaussian patch approximates
the size of the fovea (about 2° of visual angle). A mean
saliency map (MSM) over all fixations of all subjects is then
calculated as follows:

Si(k, l) =
T∑

j=1

exp

[
− (xj − k)2 + (yj − l)2

σ2

]
(1)

where Si(k, l) indicates the saliency map for stimulus Ii of size
M ×N pixels (i.e., k ∈ [1, M] and l ∈ [1, N]), (xj, yj) are the
spatial coordinates of the jth fixation (j = 1, . . . , T ), T is the
total number of all fixations over all subjects, and σ indicates
the standard deviation of the Gaussian (i.e., σ = 45 pixels in
our specific case). The intensity of the resulting saliency map
is linearly normalized to the range [0, 1]. Fig. 2 illustrates as
an example a MSM derived from eye-tracking data obtained
in experiment I for one of the original images, and the MSM
obtained in experiment II for a JPEG compressed version of
the same image (the saliency maps for the entire database can
be accessed in [1]).

The example illustrates typical correspondences and differ-
ences between the NSS, derived from experiment I, and the
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Fig. 2. Illustration of the saliency map. (a) Original image.
(b) MSM of (a) derived from the eye-tracking data of experiment I.
(c) Saliency map (b) superimposed on the image (a). (d) JPEG compressed
image (Q = 5). (e) MSM of (d) derived from the eye-tracking data of
experiment II. (f) Saliency map (e) superimposed on the image (d). Note
that the darker the regions are, the lower the saliency is.

saliency during scoring, derived from experiment II. In gen-
eral, the most salient regions are comparable between the NSS
and the saliency during scoring, but there are some deviations
for which it is worthwhile to investigate their impact on the
performance of an objective metric. An extensive discussion
on the differences between NSS and saliency during scoring,
including aspects of the appropriate comparison method, and
the impact of the experimental protocol, is outside the scope of
this paper, and will be treated in a separate contribution [37].

B. Added Value of NSS and Saliency During Scoring in
Objective Metrics

Based on the eye-tracking data, obtained from both our
experiments, we evaluate whether and to what extent adding
saliency is beneficial to the prediction performance of objec-
tive metrics. In this evaluation, we compare the performance
gain obtained when adding NSS versus saliency during scor-
ing. To this end, we use the subjective scores we obtained in
experiment II, and we try to predict these scores with several
well-known objective metrics, all weighted with both types of
saliency.

1) Subjective Scores: In experiment II, 20 human sub-
jects scored the quality of 29 JPEG distorted images. We
transformed the raw quality ratings (i.e., “Excellent” = 5,
“Good” = 4, “Fair” = 3, “Poor” = 2, and “Bad” = 1 as shown
in Fig. 1) into numbers, and calculated the mean opinion score
(MOS) as described in [13]. The resulting MOS are illustrated
in Fig. 3.

2) Objective Metrics: The evaluation of adding saliency
was performed with four objective metrics (i.e., three FR
metrics and one NR metric), which are so far widely accepted
in the image quality community to assess the quality of JPEG
compressed images. The FR metrics are as follows.

a) PSNR: The peak signal-to-noise ratio simply measures
the difference (i.e., MSE) between the distorted image
and its original version on a pixel-by-pixel base.

b) SSIM: The structural similarity index [14] assumes that
the HVS is highly adapted for extracting structural
information from a scene, and it measures image quality
based on the degradation in structural information.

Fig. 3. MOS of the 29 JPEG images of experiment II. The error bars indicate
the 95% confidence interval.

c) VIF: The visual information fidelity [15] quantifies how
much of the information present in the reference image
can be extracted from the distorted image. Note that in
this paper, we use the implementation of the VIF in the
spatial domain (as described in [35]).

The NR metric is as follows.

a) GBIM: The generalized block-edge impairment metric
[8] is one of the most well-known metrics to quantify
blocking artifacts in discrete cosine transform (DCT)
coding. It measures blockiness as an inter-pixel dif-
ference across block boundaries (i.e., referred to as
block-edges) scaled with a weighting function, which
addresses luminance and texture masking of the HVS.

The objective metrics mentioned above are all formulated
in the spatial domain. They estimate the image distortion
locally, yielding a quantitative distortion map, which provides
a spatially varying quality degradation profile. As an example,
Fig. 4(a) illustrates the distortion map calculated by SSIM
for the JPEG compressed image of Fig. 2(d) (bit rate of
0.41 b/p). The intensity value of each pixel in the distortion
map indicates the local degree of distortion, i.e., the lower the
intensity, the larger the distortion is.

3) Including Saliency: Saliency (i.e., either NSS or
saliency during scoring) is included in a metric by locally
weighting the distortion map, as illustrated in Fig. 4(b) and (c)
for the distortion map of SSIM weighted with NSS and
saliency during scoring, respectively. Note that in the case of
GBIM, the metric is calculated only around block-edges. As
a result, weighting its distortion map with saliency actually
gives more weight to the block-edges in the salient areas than
in the non-salient areas.

Adding saliency to PSNR, SSIM, VIF, and GBIM re-
sults in eight attention-based metrics, which are referred to
as WPSNR−NSS, WPSNR−SS, WSSIM−NSS, WSSIM−SS,
WVIF−NSS, WVIF−SS, WGBIM−NSS, and WGBIM−SS,
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Fig. 4. Illustration of an objective metric based on saliency. (a) distortion
map of SSIM calculated for the JPEG compressed image (bit rate 0.41 b/p)
of Fig. 2(d). (b) Corresponding NSS superimposed on (a). (c) Corresponding
saliency during scoring superimposed on (a). For the distortion map, the lower
the intensity, the larger the distortion is.

respectively. They can be defined as follows:

WMetric =

M∑
x=1

N∑
y=1

[distortion−map(x, y) · Si(x, y)]

M∑
x=1

N∑
y=1

Si(x, y)

(2)

where distortion−map is calculated by the metric used, S

indicates the corresponding saliency map derived from the
eye-tracking experiment, and WMetric denotes the resulting
attention-based metric. It should be noted that the combination
strategy used here is a simple weighting function similar to
that in [19]–[23]. More complex combination strategies may
further improve the metric’s performance, as is discussed in
Section IV.

4) Experimental Results: As prescribed by the Video Qual-
ity Experts Group [38], the performance of an objective metric
is determined by its ability to predict subjective quality ratings
(the MOS). This ability can be quantified by the Pearson linear
correlation coefficient (CC) indicating prediction accuracy,
the Spearman rank order correlation coefficient (SROCC)
indicating prediction monotonicity, and the root-mean-squared
error (RMSE). With respect to the latter measure, we want
to note that the scores are normalized to the scale [1], [10]
before the calculation of the RMSE. As suggested in [38],
the metric’s performance can also be evaluated with nonlinear
correlations using a nonlinear mapping of the objective pre-
dictions before computing the correlation. Indeed, the image
quality community is more accustomed to, e.g., a logistic
function, to fit the predictions of an objective metric to the
MOS. It may, e.g., account for a possible saturation effect
in the quality scores at high quality. A nonlinear fitting
usually yields higher CCs in absolute terms, while generally
keeping the relative differences between the metrics [39]. On
the contrary, without a sophisticated nonlinear fitting (often
including additional parameters) the CCs cannot mask a bad

Fig. 5. CCs (without nonlinear regression) of 12 metrics for the 29 JPEG
images of experiment II. (a) PSNR, WPSNR−NSS, and WPSNR−SS.
(b) SSIM, WSSIM−NSS, and WSSIM−SS. (c) VIF, WVIF−NSS, and
WVIF−SS. (d) GBIM, WGBIM−NSS, and WGBIM−SS. The corresponding
RMSE-values are given in (e).

performance of the metric itself, as discussed in [23]. To better
visualize differences in performance, we avoid any nonlinear
fitting and directly use linear correlation and RMSE between
the metrics’ predictions and the MOS.

The 12 metrics (i.e., PSNR, WPSNR−NSS, WPSNR−SS,
SSIM, WSSIM−NSS, WSSIM−SS, VIF, WVIF−NSS,
WVIF−SS, GBIM, WGBIM−NSS, and WGBIM−SS) are
applied to the 29 JPEG compressed images, and the results
are compared to the corresponding MOS of experiment II.
Fig. 5 shows the resulting CC, SROCC, and RMSE-values,
and demonstrates that the performance of all metrics enhances
by including both NSS and saliency during scoring. The
experimental results also tend to indicate that adding NSS
to a metric yields a larger amount of performance gain
than adding saliency during scoring. Adding NSS to PSNR
corresponds to an increase of 8% in CC and of 10% in
SROCC, and a decrease of 0.258 in the RMSE value, but
adding saliency during scoring to PSNR results only in an
increase of 6% in CC and of 8% in SROCC, and a decrease
of 0.225 in the RMSE value. The same trend of changes in
performance is consistently found for the three other metrics.

Based on the above results, we can conclude that the small
difference in saliency due to scoring with respect to the NSS
is nonetheless sufficient to yield a consistent difference in
performance gain when including visual attention to objective
metrics. The relatively lower performance gain obtained with
the saliency during scoring is possibly caused by the fact that
this saliency is more spread toward BG areas in the image
due to the distraction power of annoying artifacts. As such,
artifacts in BG areas are weighted more (in relative terms)
than artifacts in salient areas, and so, this might result in an
overestimation of the annoyance of distortions in the BG. Our
results tend to support the assumption made in Section I for
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the difference in conclusion given in [27], on the one hand,
and in [19]–[23], on the other hand. When adding saliency to
objective metrics, it should be the NSS, obtained when people
look at a distortion-free image for the first time. The saliency
or distraction power of the image distortions themselves is kind
of addressed by the metric (especially, when HVS aspects,
such as contrast sensitivity and masking are already included
in the distortion map).

IV. Adding NSS in Objective Metrics: Based on

LIVE Database

To further evaluate the added value of visual attention in
objective metrics, we include the NSS obtained from our eye-
tracking data in experiment I into various objective metrics
available in literature, and compare the performance of these
attention-based metrics to the performance of the same metrics
without visual attention. To also evaluate a variety of distortion
types, this validation is done for the entire LIVE database [35],
which consists of 779 images distorted with JPEG compres-
sion (i.e., JPEG), JPEG2000 compression (i.e., JP2 K), white
noise (i.e., WN), Gaussian blur (i.e., GBLUR), and simulated
fast-fading Rayleigh occurring in (wireless) channels (i.e., FF).
Per image the database also gives a difference in mean opinion
score (DMOS) derived from an extensive subjective quality
assessment study [40]. Based on the evaluation, we address
some technical issues relevant to the application of visual
attention in objective metrics. More specifically, we discuss
the effect of image content and of the combination strategy.

A. Objective Metrics

For practical reasons, the objective metrics used in our
validation are limited to three well-known FR metrics and
two NR metrics. The FR metrics are PSNR, SSIM, and VIF,
as explained in Section III. The NR metrics are GBIM (also
explained in Section III) and NR perceptual blur (NRPB). The
latter refers to the NRPB metric [11] based on extracting sharp
edges in an image, and measuring the width of these edges.

B. Evaluation of the Overall Performance Gain

Adding NSS to the metrics mentioned above results in five
attention-based metrics, which are referred to as WPSNR,
WSSIM, WVIF, WGBIM, and WNRPB, respectively. The six
FR metrics, i.e., PSNR, SSIM, VIF, WPSNR, WSSIM, and
WVIF, are intended to assess image quality independent of
distortion type, and therefore, are applied to the entire LIVE
database [35]. The metrics GBIM and WGBIM are designed
specifically for block-based DCT compression, and are applied
to the JPEG#1 and JPEG#2 subsets of the LIVE database. The
metrics NRPB and WNRPB are designed to quantify blur in
images, and they are applied to the GBLUR subset of the
LIVE database.

Figs. 6 and 7 give the corresponding CCs and RMSE values.
The overall gain (averaged over artifacts where appropriate)
of an attention-based metric over its corresponding metric
without NSS is summarized in Tables I and II. Both figures and
tables demonstrate that there is indeed a gain in performance

when including visual attention in the objective metrics PSNR,
SSIM, VIF, GBIM, and NRPB, independent of the metric used
and of the image distortion type tested. The actual amount of
performance gain, however, depends on the metric and on the
distortion type. A promising performance gain (expressed in
terms of CC) is found for the subset of the LIVE database
distorted by GBLUR: the gain of WPSNR over PSNR is 2%,
of WSSIM over SSIM is 7%, of WVIF over VIF is 2%, and
of WNRPB over NRPB is 5%. The amount of performance
gain, however, is relatively small for the subset of the LIVE
database distorted by WN: the gain (again in terms of CC) of
WPSNR over PSNR is 0.01%, of WSSIM over SSIM is 1%,
and of WVIF over VIF is 1%. Differences in performance may
be attributed to two possible causes: 1) the performance of a
metric (i.e., without NSS) varies with the distortion type, and
as such it is more difficult to obtain a significant increase in
performance by adding NSS when a metric already has a high
prediction performance for a given type of distortion, and 2) in
the specific case of images distorted by GBLUR, some metrics
might confuse unintended (Gaussian) blur with intended blur
in the BG to increase the field of depth (i.e., a high-quality
foreground object with an intentionally blurred BG). Adding
NSS reduces the importance of blur in the BG, and as such
might improve the overall prediction performance of a metric.

C. Statistical Significance

In order to check whether the numerical difference in perfor-
mance between a metric with NSS and the same metric without
NSS is statistically significant, we performed some hypothesis
testing to provide statistical soundness on the conclusion of
superiority of the attention-based metrics. As suggested in
[38], the test is based on the residuals between the DMOS and
the quality predicted by the metric (hereafter, referred to as M-
DMOS residuals). Before being able to do a parametric test,
we evaluated the assumption of normality of the M-DMOS
residuals. A simple kurtosis-based criterion (as used in [40])
was used for normality; if the residuals had a kurtosis between
2 and 4, they were assumed to be normally distributed, and the
difference between the two sets of M-DMOS residuals could
be tested with a parametric test. The results of the test for
normality are summarized in Table III, and indicate that in
most cases the residuals are normally distributed. Considering
that most parametric tests are not too sensitive to deviations
from normality, we decided to test statistical significance for
the performance improvement of NSS-based metrics with a
parametric test for all combinations of objective metrics with
distortion types. In our particular case, the two sets of residuals
being compared are dependent samples: one is from the metric
itself and one is from the same metric after adding the NSS.
Therefore, a paired-sample t-test [41] is used instead of the
F-test, as suggested in [38], since the latter one assumes that
the two samples being compared are independent. The paired-
sample t-test starts from the null hypothesis stating that the
residuals of one metric are statistically indistinguishable (with
95% confidence) from the residuals of that same metric with
NSS. The results of this t-test are given in Table IV for all
metrics and distortion types separately. This table illustrates
that in most cases the improvement in prediction performance
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TABLE I

Performance of PSNR, WPSNR, SSIM, WSSIM, VIF, and WVIF Averaged Over All Distortion Types for the Images of the LIVE

Database [35]

CC SROCC RMSE CC SROCC RMSE CC SROCC RMSE
PSNR 0.88 0.87 1.09 SSIM 0.91 0.92 0.86 VIF 0.95 0.955 0.70
WSNR 0.90 0.90 0.99 WSSIM 0.94 0.95 0.74 VWIF 0.96 0.958 0.62
� �P = 2% �S = 3% �R = 0.1 � �P = 3% �S = 3% �R = 0.12 � �P = 1% �S = 0.3% �R = 0.08

TABLE II

Performance of GBIM and WGBIM for the Subsets JPEG#1 and JPEG#2, and Performance of NRPB and WNRPB for the Subset

GBLUR of the LIVE Database [35]

CC SROCC RMSE CC SROCC RMSE
GBIM 0.83 0.90 0.91 NRPB 0.81 0.87 1.04
WGBIM 0.84 0.94 0.74 WNRPB 0.86 0.88 0.99
� �P = 1% �S = 4% �R = 0.17 � �P = 5% �S = 1% �R = 0.05

Fig. 6. CCs (without nonlinear regression) of six FR metrics for images
distorted by JPEG#1, JPEG#2, JPEG2000#1, JPEG2000#2, WN, GBLUR,
and FF, respectively. (a) PSNR and WPSNR. (b) SSIM and WSSIM. (c) VIF
and WVIF. The corresponding RMSE-values are given in (d). Note that the
data used are taken from the LIVE database [35].

by adding NSS to an objective metric is statistically significant.
The improvement reported in Section IV-B is not statistically
significant only in three combinations of metrics applied to a
given distortion type (with only 29 stimuli).

It should, however, be noted that statistical significance
testing is not straightforward, and the conclusions drawn from

Fig. 7. CCs (without nonlinear regression) of four NR metrics. (a) GBIM
and WGBIM for JPEG#1 and JPEG#2. (b) NRPB and WNRPB for GBLUR.
The corresponding RMSE-values are given in (c). Note that the data used are
taken from the LIVE database [35].

it largely depend, e.g., on the number of sample points, on the
selection of the confidence criterion, and on the assumption
of normality of the residuals. These issues are extensively
discussed in [40].

D. Evaluation of the Influence of Image Content

The distribution of saliency over an image largely depends
on its content, and, therefore, it makes sense to also study
whether the added value of including visual attention to
objective metrics is content dependent. The effect of content
on NSS is quantified by calculating per image the correlation
between the MSM obtained from experiment I and each
individual saliency map (ISM) (derived from the fixations of
an individual subject). The correlation between two saliency
maps (i.e., SMA and SMB) is often measured by the coefficient
(ρ), as employed in [32]. It is defined with its value ranging
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TABLE III

Normality of the M-DMOS Residuals

JPEG#1 JPEG#2 JP2K#1 JP2K#2 WN GBLUR FF
PSNR 1 1 1 1 1 1 1
WPSNR 1 1 1 1 1 1 1
SSIM 1 1 1 1 1 0 1
WSSIM 1 1 1 1 1 0 1
VIF 1 1 1 1 1 1 1
WVIF 1 1 1 1 1 1 1
GBIM 1 0
WGBIM 1 0
NRPB 1
WNRPB 1

“1” means that the residuals can be assumed to have a normal distribution
since the kurtosis lies between 2 and 4.

TABLE IV

Results of t-Test Based on M-DMOS Residuals

JPEG#1 JPEG#2 JP2K#1 JP2K#2 WN GBLUR FF
PSNR and WPSNR 1 1 1 – 1 1 –
SSIM and WSSIM 1 1 1 1 1 1 1
VIF and WVIF 1 1 1 1 1 1 1
GBIM and WGBIM 1 –
NRPB and WNRPB 1

“1” means that the attention-based metric is statistically significantly better
that the metric without NSS, and “–” means that the difference is not

statistically significant.

[−1, 1] as follows:

ρ =

M∑
n=1

(SMA(n) − μA)(SMB(n) − μB)√
M∑
n=1

(SMA(n) − μA)2
M∑
n=1

(SMB(n) − μB)2

(3)

where μA and μB are the mean values of the SMA and SMB,
respectively. M is the total number of pixels in both maps. A
higher value of ρ indicates a larger similarity between the two
saliency maps. Fig. 8 gives the ρ-values between the MSM
and the ISM averaged over all subjects. This averaged ρ-
value strongly varies over the different natural scenes, with the
highest value of ρ for “scene25” (ρ = 0.7549) and the lowest
value of ρ for “scene3” (ρ = 0.4521). This averaged ρ-value
quantifies the variation in eye-tracking behavior among human
subjects when viewing a SS. A large value of the ρ averaged
over all subjects indicates a small variation in saliency among
subjects, while a small value of ρ indicates that the saliency is
widely spread among subjects. Fig. 9 presents the images with
the three smallest values of the averaged ρ (i.e., “set−low”)
in Fig. 8. These images clearly lack highly salient features,
and their corresponding MSM includes fixations distributed
all over the image. Fig. 10 shows the three images, with the
largest value of the averaged ρ (i.e., “set−high”) in Fig. 8.
These images generally contain a few salient features, such as
the human face in the images “statue” and “studentsculpture”
and the billboard in the image “cemetry.” For these images,
the saliency converges around these features in the MSM.
The difference in saliency between both sets of images is
apparently driven by the image content.

Fig. 8. CC (ρ) between the MSM and the ISM averaged over all subjects
per scene.

Fig. 9. Illustration of the three images with the smallest correspondence in
saliency between subjects (i.e., smallest value of averaged ρ in Fig. 8). (a) ρ =
0.4521. (b) ρ = 0.5485. (c) ρ = 0.5963. (d) MSM-buildings. (e) MSM-streams.
(f) MSM-bikes.

To evaluate the content dependency in the performance gain
when adding saliency to objective metrics, we repeated the
experiment in Section IV-B once for the source images of
“set−low,” and once for the source images of “set−high.” The
former set contained 20 stimuli with JPEG compression, 17
stimuli with JPEG2000 compression, 15 stimuli with WN,
15 GBLUR stimuli, and 15 stimuli with FF artifacts, while
the latter set consisted of 18 stimuli with JPEG compression,
17 stimuli with JPEG2000 compression, 15 stimuli with WN,
15 GBLUR stimuli, and 15 stimuli with FF artifacts. Fig. 11
illustrates the comparison in performance gain (i.e., quantified
by the Pearson CC) between a metric and its NSS-weighted
version for the “set−low” and “set−high” images separately. In
general, it shows the consistent trend that including saliency
results in a larger performance gain in the objective metrics
for the images of “set−high” than for the images of “set−low”;
more particularly, for the images of “set−low,” the perfor-
mance gain when adding saliency is actually non-existing.
The gain of WPSNR over PSNR corresponds to an average
increase in the Pearson CC (over all distortion types of the
LIVE database) from 0.942 to 0.943 for the “set−low” images
(i.e., 0.1%), and from 0.882 to 0.910 for the “set−high” images
(i.e., 2.8%). The gain of WSSIM over SSIM is 0 (from 0.976
to 0.976) for the “set−low” images and 3.1% (from 0.934 to
0.965) for the “set−high” images. The gain of WVIF over
VIF is 0 (from 0.958 to 0.958) for the “set−low” images and
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Fig. 10. Illustration of the three images with the largest correspondence in
saliency between subjects (i.e., largest values of the averaged ρ in Fig. 8). (a) ρ

= 0.7549. (b) ρ = 0.7444. (c) ρ = 0.7344. (d) MSM-statue. (e) MSM-cemetry.
(f) MSM-studentsculpture.

1.6% (from 0.966 to 0.982) for the “set−high” images. The
gain of WGBIM over GBIM is 1.6% (from 0.929 to 0.945)
for the “set−low” images and 7.7% (from 0.789 to 0.866)
for the “set−high” images. There is, however, one exception
to this trend, namely, for the metrics WNRPB and NRPB. As
shown in Fig. 11(e), adding saliency degrades the performance
of NRPB for the images of “set−high.” This may be due
to the specific design of the blur metric, which is based on
measuring the width of extracted strong edges. Including the
saliency of Fig. 10 to the NRPB metric with a linear weighting
combination strategy runs the risk of eliminating some very
obvious edges in the calculation of blur, and may consequently
affect the accuracy of the metric.

In summary, our findings suggest that the performance gain
in an objective metric when applying saliency depends on the
image content as well as on the specific metric design.

E. Evaluation of the Influence of Combination Strategy

So far, saliency was added to the objective metrics based
on a linear weighting combination strategy. This method is
simple and intuitive, and has been widely adopted to pool local
distortions of an image with saliency [19]–[23]. Our results of
Sections III and IV demonstrate the general effectiveness of
using the linear combination strategy. This strategy, however,
has limitations in dealing with certain distortions in more
demanding conditions [42]. Fig. 12 illustrates an image JPEG
compressed at a bit rate of 0.43 b/p, and its corresponding
NSS obtained from our eye-tracking data. Due to texture
and luminance masking in the HVS [10], this image exhibits
imperceptible blocking artifacts in the more salient areas (e.g.,
the foreground of the white tower), and relatively annoying
blocking artifacts in the less salient areas (e.g., the BG of the
sky). In such a case, combining the distortion and saliency map
with a linear combination strategy intrinsically underestimates
the annoyance of the artifacts in the BG, and their impact on
the quality judgment.

To quantify the effect of linearly adding saliency in an
objective metric for the quality prediction of demanding im-

Fig. 11. Comparison in performance gain when adding saliency (quantified
by the Pearson CC) between images of “set−low” (distorted images extracted
from the LIVE database [35] based on the source images of Fig. 9) and images
of “set−high” (distorted images extracted from the LIVE database [35] based
on the source images of Fig. 10). (a) PSNR versus WPSNR. (b) SSIM versus
WSSIM. (c) VIF versus WVIF. (d) GBIM versus WGBIM. (e) NRPB versus
WNRPB.

ages, a subset of nine images was selected from the LIVE
database. The images “img{9, 37, 44, 47, 63, 69, 89, 92, 105}”
of the subset JPEG#1 typically represent the type of JPEG
compressed images with the artifacts in the more salient areas
locally masked by the content, and with clearly visible artifacts
in the less salient areas. The blockiness metrics, GBIM and
WGBIM are applied to this sub-selection of the database. As
illustrated in Fig. 13, WGBIM fails in accurately predicting the
subjective quality ratings for this subset of demanding images,
mainly due to the inappropriate integration of saliency in the
blockiness metric (i.e., the gain of WGBIM over GBIM in
CC is −59%). Hence, the overall gain in CC of WGBIM
over GBIM (i.e., 1%) for the entire LIVE database of JPEG
compressed images is explained by the fact that most of the
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Fig. 12. (a) Image JPEG compressed at a bit rate of 0.43 b/p, and (b) its
corresponding NSS obtained from our eye-tracking data.

Fig. 13. Performance of the blockiness metrics GBIM and WGBIM in
predicting the subjective quality rating of a subset of demanding images (i.e.,
img{9, 37, 44, 47, 63, 69, 89, 92, 105}) selected from the LIVE database
JPEG#1 [35]. (a) Scatter plot of DMOS versus GBIM and WGBIM. (b) CCs
(without nonlinear regression) of GBIM and WGBIM.

images in this database exist of one of the following types:
1) images having visible artifacts uniformly distributed over
the entire image, and 2) images having the artifacts masked
by the content in the less salient areas, but showing visible
artifacts in the more salient areas. Obviously, for these two
types of images, adding saliency with a linear combination
strategy is reasonable.

So, these findings indicate that a linear combination strategy
is not necessarily appropriate for adding saliency in objective
metrics. Hence, from a point of view of metric optimization,
it is worthwhile to investigate adaptive combination strategies
as, e.g., discussed in [23] and [42].

V. Discussion

In this paper, we evaluate the intrinsic gain in prediction
accuracy that can be obtained by introducing visual attention
in objective quality metrics. This evaluation is performed
for a diverse, though limited set of images, and mainly for
distortions that affect the images globally. The results we
obtained show that there is added value in weighting pixel-
based distortion maps with local saliency. The amount of
added value is bigger when extending the objective metrics
with NSS than with saliency recorded while the viewers assess

the quality of the images. The actual gain in performance
accuracy is highly dependent on the image content, on the
distortion type, and on the objective metric itself. Images with
a clear ROI demonstrate a bigger gain as compared to images
in which the NSS is spread over the whole image. In addition,
the gain is small for objective metrics that already show a high
correlation with perceived quality for a given distortion type.

Although showing clear results, the study reported here
has some limitations. First, as mentioned above, the set of
images used has a fair size, but could be extended in order
to investigate the effect of image content on the gain in
prediction accuracy in a more systematic way. Second, most
images are degraded with distortions that affect the image
quality globally, i.e., the artifacts are uniformly distributed
over the entire image. In specific applications, such as in
wireless imaging, artifacts may occur localized, i.e., only at
some random, but limited location in the image. Although
we did not investigate this type of distortions specifically, we
expect that introducing visual saliency in quality prediction
metrics for this type of distortions is still beneficial. At least,
results reported in [31] support this hypothesis. Finally, the
gain in prediction accuracy claimed in this paper is based on
eye-tracking recordings. These recordings intrinsically have
some inaccuracy, which may limit the overall reliability of
our conclusions. We have shown, however, that recorded
saliency data are highly consistent when using well-calibrated
equipment and a well-defined protocol; the consistency is
even shown for data collected in various laboratories [43].
Using eye-tracking data, of course, is unrealistic for real-
time applications. Hence, a visual attention model will be
needed in the actual implementation of an objective metric.
Since the reliability of most visual attention models is still
limited, we expect that the actual gain in prediction accuracy
that can be obtained in a real-time application is lower than
what we showed here, at least with the current soundness of
visual attention models. In the coming years, the soundness
of visual attention models may improve, but most probably at
the expense of their computational cost.

Given the fact that the added value of having NSS weighted
objective quality metrics depends on the image content, dis-
tortion type, and objective metric, an adaptive approach might
be desirable in real-time applications to limit the overall
computational cost. In such an approach, the performance of
an objective metric needed in the video chain can be optimized
offline, i.e., for each metric the added value of incorporating
saliency can be estimated from its general prediction accuracy.
For those metrics that contain saliency in their extended ver-
sion a simple visual attention model can be used to determine
the size of the ROI in the image. Only when the ROI is
limited in size, the extended version of the metric is needed.
Otherwise, the metric without saliency model can be applied
at sufficient accuracy.

VI. Conclusion

In this paper, we investigated the added value of visual
attention in the design of objective metrics. Instead of using a
computational model for visual attention, we conducted eye-
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tracking experiments to obtain “ground truth” visual attention
data, thus making the results independent of the reliability
of an attention model. Actually, two eye-tracking experiments
were performed: one in which the participants looked freely
to undistorted images, and a second one in which different
participants were asked to score the quality of a JPEG com-
pressed version of the images. The resulting eye-tracking data
indicated that there is some deviation between the NSS and
saliency during scoring.

Adding either type of saliency to an objective metric im-
proved its performance in predicting perceived image quality.
However, we also found a tendency that adding NSS to a
metric yields a larger amount of gain in the performance.
Based on this evidence, the data of NSS were further integrated
in several objective metrics available in literature, including
three FR metrics and two NR metrics. This evaluation showed
that there is indeed a gain in the performance for all these
metrics when linearly weighting the local distortion map of
the metrics with the NSS. The extent of the performance gain
tends to depend on the specific objective metric and the image
content. But our findings also illustrated that for some image
content and for some distortion types, the linear combination
strategy is insufficient and adaptive strategies are needed.
Current and future research includes modeling saliency for
real-time quality assessment, and integrating this saliency in
objective metrics in a perceptually even more meaningful way.
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