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Abstract. An important aim in bilateral negotiations is to achieve a win-win
solution for both parties; therefore, a critical aspect of a negotiating agent’s suc-
cess is its ability to take the opponent’s preferences into account. Every year,
new negotiation agents are introduced with better learning techniques to model
the opponent. Our main goal in this work is to evaluate and compare the perfor-
mance of a selection of state-of-the-art online opponent modeling techniques in
negotiation, and to determine under which circumstances they are beneficial in a
real-time, online negotiation setting. Towards this end, we provide an overview
of the factors influencing the quality of a model and we analyze how the per-
formance of opponent models depends on the negotiation setting. This results in
better insight into the performance of opponent models, and allows us to pin-
point well-performing opponent modeling techniques that did not receive much
previous attention in literature.
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1 Introduction

A negotiation between two agents is a game in which both agents try to reach an agree-
ment better than their status quo. To avoid exploitation, agents often keep their prefer-
ences private during the negotiation [6]; however, if an agent has no knowledge about its
opponent’s preferences, then this can result in a suboptimal outcome [10]. A common
technique to counter this is learning the opponent’s preference profile during the nego-
tiation, which aids in increasing the quality of the negotiation outcome by identifying
bids that are more likely to be accepted by the opponent [6,10,21].

If there have been previous negotiations with a similar opponent, the opponent model
can be prepared before the start of the negotiation; we will refer to these models as
offline models (for example [6]). Contrastingly, if the agent has to learn the preferences
during the negotiation it performs online modeling (for example [8,10,14]).

In this work we focus on online opponent models in a single-shot negotiation with
private preference profiles; i.e., a setting in which an agent has no knowledge about the
opponent’s preference profile and no history of previous negotiations is available. There
has been recent interest in opponent modeling for such settings, for example in the
Automated Negotiating Agents Competition (ANAC) [1,4]. Despite ongoing research
in this area, it is not yet clear how different approaches compare, and empirical evidence
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has raised the question whether using an opponent model is beneficial at all in such a
setting. To illustrate: state-of-the-art agents, such as the top three agents of both ANAC
2010 [4] and ANAC 2011 [1], do not model the opponent, yet outperformed agents that
do. One reason that opponent modeling does not guarantee a better outcome for an agent
is that the model can be a poor representation of the opponent’s preferences. If the model
consistently suggests unattractive bids for the opponent, it may even be preferable to not
employ one at all. Secondly, a time-based deadline introduces an additional challenge
for online opponent modeling, as learning the model can be computationally expensive
and can therefore influence the amount of bids that can be explored. More precisely,
the gain in using the model should be higher than the loss in utility due to decreased
exploration of the outcome space. We will refer to this as the time/exploration trade-off.

Apart from the inherent trade-off in opponent modeling, we are interested whether
opponent models are accurate enough to provide gains at all, even when ignoring com-
putational costs. To this end, we evaluate opponent models in two settings: a time-based
and round-based negotiation protocol. This paper compares a large set of opponent
modeling techniques, which were isolated from state-of-the-art negotiation strategies.
We measure their performance in various negotiation settings, and we provide a detailed
overview of how the different factors influence the final negotiation outcome.

After discussing related work in Section 2, we introduce the negotiation setting and
consider the difficulties in evaluating opponent models in Section 3. In Section 4 we
introduce a method to quantify opponent model performance, after which we apply it
to a set of models in Section 5. We formulate hypotheses and analyze the results in
Section 6; and finally, in Section 7 we provide directions for future work.

2 Related Work

Opponent modeling has received a lot of attention in automated negotiation. There are
three groups of related work when considering opponent model evaluation. The first
category consists of work that details an agent strategy in which the opponent model is
introduced, but the performance is not evaluated. Examples of this type are [8] and [20].

The second category compares a single novel model with a set of baseline strategies.
The approaches usually differ in how they define performance. In [10] for example,
a model is introduced for the same time-based protocol discussed in this work. The
performance of the opponent model is estimated by embedding it in a strategy and
comparing the average utility against two baseline strategies. The modeling technique
discussed by [16] introduces a model for a similar protocol, but in this case the baseline
is set by humans. Zeng and Sycara measure performance in terms of social welfare,
but focus on single-issue negotiations in which they compare the performance of three
settings: both learn, neither learn, and only the buyer learns [21]. Finally, [5] evaluates
the accuracy of a model against simple baseline strategies in terms of the likelihood that
the correct class is estimated to which the opponent’s preference profile belongs.

The last category is most similar to our work, and consists of literature comparing
the performance of a model against other models or against a theoretical lower or upper
bound. For example, Coehoorn and Jennings [6] evaluate the performance of their op-
ponent model using a standard bidding strategy that can be used both with and without
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a model. The performance of the strategy is evaluated in three settings: without knowl-
edge, with perfect knowledge, and when using an offline opponent model. This work
is similar to our work, however, it differs in the fact that we focus on online opponent
modeling. Our setting is especially challenging as it involves the time/exploration trade-
off. Another example is the work by [13], which introduces two opponent models for
e-recommendation in a multi-object negotiation. Compared to our work, we focus on
the more general type of multi-issue negotiations. Finally, [11] defines two accuracy
measures and uses these measures to analyze the accuracy of two opponent models.
The main differences are that we focus on a larger set of performance measures, and
pay more attention to the factors that influence the performance of the model.

Furthermore, as far as we know, our work is the first to compare and analyze such a
large set of state-of-the art models of the opponent’s preference profile.

3 Evaluating Opponent Models

The main goal of this work is to answer the following research question: “Under what
circumstances is it beneficial to use an online opponent model in a real-time negotiation
setting?”. An answer is not straightforward due to the time/exploration trade-off and
potentially poor accuracy of a model. In particular, we want to answer the following:

1. Assuming perfect knowledge about the opponent’s preferences, is there a signifi-
cant performance gain in using this information compared with ignoring it?

2. Is there a significant performance gain from using an online opponent model in
comparison to not using a model, assuming no prior knowledge is available?

The main difficulty in finding a conclusive answer to these questions, is that the perfor-
mance of an opponent model depends on the negotiation setting. Therefore, we study
an third, overarching research question:

3. How does the performance of using an opponent model depend on the setting?

3.1 Preliminaries

In this work we focus on a bilateral automated negotiation in which two agents try
to reach an agreement while maximizing their own utility. Agents use the widely-
employed alternating-offers protocol for bilateral negotiations [17], in which the ne-
gotiating parties take turns in exchanging offers. A negotiation scenario consists of the
negotiation domain, which specifies the setting and all possible bids, together with a
privately-known preference profile for each party. A preference profile is described by
a utility function u(x), which maps each possible outcome x in the negotiation domain
to a utility in the range [0, 1]. In this work we discuss opponent models that attempt to
estimate the opponent’s utility function u′(x) during the negotiation.

3.2 Influence of the Agent’s Strategy

Different agents apply their opponent model in different ways. There are two main
factors in which the application of an opponent model by a bidding strategy can differ:
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– Type of information gained from the opponent model. A bidding strategy can em-
ploy an opponent model for different reasons: for example, it can be employed to
select the best bid for the opponent out of a set of similarly preferred bids [3,20];
to select a bid that optimizes a weighted combination of both utility functions [8];
or to help estimate the utility of a specific outcome, such as the Nash-point [3].

– Selecting a bid using an opponent model. When a model is used to select a bid from
a set of similarly preferred bids, the question still remains which one to choose. One
can select the best bid for the opponent, but this may be suboptimal, as models may
be inaccurate. An alternative is to select a bid from the set of n best bids [3].

Even when the factors above are taken into account, still care has to be taken to properly
compare different models. Opponent models can only be fairly compared if the other
components, such as bidding strategy and acceptance strategy [2] are fixed.

3.3 Influence of the Opponent’s Strategy

All opponent modeling techniques make certain assumptions about the opponent, so as
to assign meaning to the observed behavior. If the opponent does not adhere to these
assumptions, the model may not reflect reality well. The set of strategies against which
a model is tested is a decisive factor when measuring its performance. Therefore, a set
of opponents should contain both agents that fulfill the model’s assumptions to deter-
mine its efficacy in optimal conditions; and agents that test the model’s robustness by
violating its assumptions.

The following assumptions were found by analyzing the models in Section 5.2:

1. The concession of the opponent follows a particular function. Some opponent mod-
eling techniques assume that the opponent uses a given time-based bidding strategy.
Modeling the opponent then reduces to estimating all issue weights such that the
predicted utility by the modeled preference profile is close to the assumed utility.

2. The first bid made by the opponent is the most preferred bid. The best bid is the se-
lection of the most preferred value for each issue, and thereby immediately reveals
which values are the best for each issue. Many agents start with the best bid.

3. There is a direct relation between the preference of an issue and the times its value
is significantly changed. To learn the issue weights, some models assume that the
amount of times the value of an issue is changed is an indicator for the importance
of the issue. The validity of this assumption depends on the distribution of the issue
and value weights of the opponent’s preference profile and its bidding strategy.

4. There is a direct relation between the preference of a value and the frequency it
is offered. A common assumption to learn the value weights is to assume that val-
ues that are more preferred are offered more often. Similar to the issue weights
assumption, this assumption strongly depends on the agent’s strategy and domain.

3.4 Influence of the Negotiation Scenario

Three main factors of a scenario influence the quality of an opponent model:

1. Domain size. In general, the larger the domain, the less likely a bid is a Pareto-bid.
Furthermore, domains with more bids are likely more computationally expensive
to model. Therefore, the influence of the time/exploration trade-off is higher.
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2. Bid distribution. The bid distribution quantifies how bids are distributed. We define
bid distribution as the average distance of all bids to the nearest Pareto-bid. The bid
distribution directly influences the performance gain attainable by a model.

3. Opposition. We define opposition as the distance from the Kalai-point to complete
satisfaction (1, 1). The opposition of a domain influences the number of possible
agreements, and opponent models may be help in locating them more easily.

4 Measuring the Performance of Opponent Models

As we noted in the previous section, the effectiveness of an agent’s opponent model is
heavily influenced by the negotiation setting. This work proposes a careful measure-
ment method of opponent modeling performance, and can be interpreted as a first step
towards creating a generic performance benchmark for the type of opponent models
that we study here. The following sections discuss the four components of the method.

4.1 Negotiation Strategies of the Agents

For the negotiation strategies of the agents in which the opponent models are embedded,
we elected a variant of the standard time-dependent tactic [7]. This strategy is chosen
for its simple behavior, which elicits regular behavior from its opponents; furthermore,
adding a model may significantly increase its performance. Given a target utility, the
adapted agent generates a set of similarly preferred bids and then selects a bid using the
opponent model. We focus on selecting a bid from a set of similarly preferred bids, as
this usage is commonly applied, for example in [20] and [14]. We embedded the models
in four time-dependent agents (e = 0.1; 0.2; 1.0; 2.0). We opted for multiple agents as
we believed that the concession speed can influence the performance gain.

The remaining issue in using an opponent model is which bid to select for the op-
ponent given a set of similarly preferred bids. Given the approaches in Section 3.2, we
opted to have the models select the best bid for the opponent, as this approach is most
differentiating: it leads to better performance of the more accurate opponent models.

4.2 Negotiation Strategies of the Opponents

This section discusses the opponents selected using the guidelines outlined in
Section 3.3. The set of opponent strategies consists of three cooperative agents, which
should be easy to model as their concession speed is high, and five competitive agents.
The set of conceding agents consists of two time-dependent agents with high concession
speeds e ∈ {1, 2}, and the offer decreasing agent, which offers the set of all possible
bids in decreasing order of utility. The set of competitive agents contains two time-
dependent agents with low concession speeds e ∈ {0.0, 0.2}, and the ANAC agents
Gahboninho, HardHeaded, and IAMcrazyHaggler.

Given the five opponent modeling assumptions introduced in Section 3.3, the first
assumption about the opponent’s decision function fails in general, as an opponent in
practice never completely adheres to the assumed decision function. The second as-
sumption holds for all agents except IAMcrazyHaggler, whose first bid is randomly
picked. The other three assumptions are typical for the frequency models. It is not
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possible to adhere to or violate these assumptions completely, as they depend both on
the negotiation scenario structure and opponents.

4.3 Negotiation Scenarios

As we explored in Section 3.4, the domain size, bid distribution, and opposition of a
negotiation scenario are all expected to influence an opponent model’s performance,
and therefore we aimed for a large spread of the characteristics of the scenarios, as
visualized in Table 1. In total seven negotiation scenarios were selected.

Table 1. Characteristics of the negotiation scenarios

Scenario name Size Bid distrib. Opposition
ADG [1] 15625 (med.) 0.136 (low) 0.095 (low)
Grocery [1] 1600 (med.) 0.492 (high) 0.191 (med.)
IS BT Acquisition [1] 384 (low) 0.121 (low) 0.125 (low)
Itex–Cypress [12] 180 (low) 0.222 (med.) 0.431 (high)
Laptop [1] 27 (low) 0.295 (med.) 0.178 (med.)
Employment contract [19] 3125 (med.) 0.267 (med.) 0.325 (high)
Travel [4] 188160 (high) 0.416 (high) 0.230 (med.)

4.4 Quality Measures for Opponent Models

The quality of an opponent model can be measured in two ways: a black box approach,
in which performance measures evaluate the quality of the outcome; and a white box
view, which uses accuracy measures capable of considering the internal design of a
strategy and revealing the accuracy of the estimation of the opponent’s preferences.

This work focuses on the performance measures shown in Table 2, as [11] has already
compared models using a white box approach, albeit in a more limited setting.

Table 2. Overview of the performance measures

Performance measure Description
Avg. utility [1,13,10] Average score of the agents against selected opponents on all ne-

gotiation scenarios.
Avg. time of agr. [2] Average time required to reach an agreement.
Avg. rounds [13,21] Average rounds a negotiation lasts. In a rounds-based setting, less

means more accurate.
Avg. Pareto dist. of agr. [1,9] Average minimal distance to the Pareto-frontier. Lower is better.
Avg. Kalai dist. of agr. [9] Average distance to the Kalai-point. Lower means more fair.
Avg. Nash dist. of agr. [9] Average distance to the Nash-point. Lower means more fair.

5 Experiments

We applied the method described in the previous section to our experimental setup
below in order to answer the research questions introduced in Section 3.
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5.1 Experimental Setup

To analyze the performance of different opponent models, we employed GENIUS [15],
which is an environment that facilitates the design and evaluation of automated ne-
gotiators’ strategies and their components. The experiments are subdivided into two
categories: we use a standard time-based protocol, as well as a round-based protocol.
In total, we ran 17920 matches, which on a single computer takes nearly two months.

Our main interest goes out to the real-time setting, as this protocol features the
time/exploration trade-off. We applied our benchmark to the set of models using the
time-based protocol. Each match features a real-time deadline set at three minutes.

In the round-based protocol the same approach is applied, but in this case, time does
not pass within a round, giving the agent infinite time to update its model. This provides
valuable insights into the best theoretical result an opponent model can achieve.

5.2 Opponent Models

We compare the performance of the opponent models used in ANAC [1,4], which is a
yearly international competition in which negotiating agents compete on multiple do-
mains. Each year, the competition leads to the introduction of new negotiation strategies
with novel opponent models. While the domain (i.e., the set of outcomes) is common
knowledge to all agents, the utility function of each player is private information and
hence has to be learned. The utility functions of the agents are linearly additive; that
is, the overall utility consists of a weighted sum of the utility for each individual issue.
The setting of ANAC is consistent with the preliminaries in this paper.

We specifically opted to use agents that participated in ANAC for the following rea-
sons: the agents are designed for one consistent negotiation setting, which makes it
possible to compare them fairly; their implementation is publicly available; and finally,
we believe that the agents and opponent models represent the current state-of-the-art.
We used modeling techniques from ANAC 2010 [4], ANAC 2011 [1], and a selection of
opponent models designed for ANAC 2012. We isolated the opponent models from the
agents and reimplemented them as separate generic components to be compatible with
all other agents (as in [2]). As discussed in Section 3.2, this setup allows us to equip a
single negotiation strategy with various opponent models, which makes it straightfor-
ward to fairly compare the different modeling techniques.

Table 3 provides a summary of the online opponent models used in our experi-
ments, with references to the papers in which they are described. We did not include
the Bayesian Model from [10] and the FSEGA Bayesian Model [18], even though they
fitted our setup, as both models were not designed to handle domains containing more
than a 1000 bids. We are aware that many alternative opponent modeling techniques
exist [5,10,16,21]; however, for our negotiation setting, this is currently the largest set
available of comparable opponent modeling techniques.

Based on our analysis, we found that in our selection two approaches to opponent
modeling are prominent: Bayesian opponent models and Frequency models.

Bayesian opponent models generate hypotheses about the opponent’s preferences
[10]. The models presuppose that the opponent’s strategy adheres to a specific decision
function; for example a time-dependent strategy with a linear concession speed. This is
then used to update the hypotheses using Bayesian learning.
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Table 3. Overview of the online opponent models and their modeling assumptions (M)

Model Description M
No Model No knowledge about the preference profile. -
Perfect Model Perfect knowledge about the preference profile. -
Bayesian Scal-
able Model [10]

This model learns the issue and value weights separately using Bayesian
learning. Each round, the hypotheses about the preference profile are up-
dated based assuming that the opponent conceded a constant amount.

1

IAMhaggler Bay.
Model [20]

Efficient implementation of the Bayesian Scalable Model in which the op-
ponent is assumed to use a particular time-dependent decision function.

1

HardHeaded
Freq. Model [14]

This model learns the issue weights based on how often the value of an
issue changes between turns. The value weights are determined based on
the frequency in which they have been offered.

3
4

Smith
Freq. Model [8]

Similar to the HardHeaded Frequency Model, but less efficient. The issue
weights depends on the relative frequency of the most offered values.

3
5

Agent X
Freq. Model

This model is a more complex variant of the HardHeaded Frequency
Model that also takes the opponent’s tendency to repeat bids into account.

3
4

N.A.S.H.
Freq. Model

In contrast to HardHeaded Frequency Model, this model learns the issue
weights based on the frequency that the assumed best value is offered.

2
4

Frequency models learn the issue and value weights separately. The issue weights
are usually calculated based on the frequency that an issue changes between two offers.
The value weights are oten calculated based on the frequency of appearance in offers.

Both modeling approaches are prone to failure as they rely on a subset of the as-
sumptions introduced in Section 3.3. More specifically, Bayesian models make strong
assumptions about the opponent’s strategy, whereas frequency models assume knowl-
edge about the value distribution of the issues of a preference profile and place weak
restrictions on the opponent’s negotiation strategy. Generally, the Bayesian models are
far more computationally expensive; however, it is unknown if they are more accurate.

6 Results

Below we analyze the outcomes of the experiment to provide an answer to the research
questions in the form of hypotheses H1–H6. We first discuss the overall gain in per-
formance when using perfect knowledge versus online opponent modeling. Section 6.2
provides an answer to the final research question on how the negotiation setting influ-
ences the performance of an opponent model.

6.1 Overall Performance of Opponent Models

Our experimental results for a selection of the quality measures described in Section 4.4
are shown in Table 4 for both the time-based and round-based protocol. Before we
analyze the performance gain of online opponent models, we first answer the question
whether perfect knowledge aids in improving the negotiation outcome at all:

H1. Usage of the perfect model by a negotiation strategy leads to a significant perfor-
mance gain in comparison to not using an opponent model.

We expected that perfect knowledge about the opponent’s preferences would signif-
icantly improve performance of an agent. Our main aim here was not to reconfirm
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the already widely acknowledged benefits of integrative bargaining, but to analyze
whether our experimental setup is a valid instrument for measuring the learning effect
in other types of settings. Our expectation is confirmed by the experiment, as the Perfect
Model yields a significant performance increase on all quality measures (except aver-
age rounds) for both protocols. For the real-time protocol, the difference between the
best online opponent model (HardHeaded Frequency Model) and No Model is 0.0135;
for the round-based protocol it is 0.0144 (Smith Frequency Model). Note that while the
gains are small, there are three small domains where opponent modeling does not result
in significant gains. If we solely focus on the large Travel negotiation scenario, then
the gain relative to No Model becomes 0.0413 for the Perfect Model. Especially note
the improvement in distance between the outcome and Pareto-frontier, and the earlier
agreements, in Table 4. This leads us to conclude that using an opponent model leads
to better performance as it aids in increasing the quality of the outcome.

H2. Usage of an online opponent model leads to a significant performance gain when
time is not an issue. Online opponent modeling does not yield the same benefit in
a real-time setting because of the time/exploration trade-off.

We noted previously that in some cases, ANAC agents that do not model the opponent
can outperform agents that do, and such agents have even won the competition. This
led us to believe that online modeling does not benefit the agents, either because it
misrepresents the preferences, or by taking too much time in a time-sensitive setting.

This is why it came as a surprise that in both the time- and round-based protocol,
online opponent models performed significantly better on all quality measures. For the
time-based protocol the best online opponent models are the frequency models, ex-
cept for the Smith Frequency Model who scores badly in this case. However, for the
round-based protocol, the Smith Frequency Model is actually best. This is caused by the
time/exploration trade-off, because the model is computationally expensive as indicated
by the small amount of bids offered in the time-based protocol.

Surprisingly the worst performance on a quality measure is not always made by using
No Model. For example in the time-based experiment the Bayesian Scalable Model has
the worst performance. The Bayesian model of IAMhaggler however, performs much
better, but disappoints in the round-based protocol. We believe this can be attributed to
its updating mechanism: only unique bids are used to update the model, which speeds-
up updating but can result in poor performance against slowly conceding agents that
offer the same bid multiple times.

In conclusion, online opponent model can result in significant gains and surprisingly,
frequency models lead to the largest gains, outperforming the Bayesian models. We
believe that the winners of ANAC could have performed even better by learning the
opponent’s preferences with a frequency model. The success of the frequency model
can be attributed to its simplicity and hence faster performance, and to the fact that it
is more robust by making weaker assumptions about the strategy of the opponent in
comparison to the Bayesian modeling approaches.

6.2 Influence of the Negotiation Setting

We will now discuss the influence of each of the three components of the negotiation
setting on the quality of an opponent model, following the structure of Section 3.
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Table 4. Performance of all models on a set of quality measures for both protocols

Quality Measures
Perfect HH.

FM
Agent X
FM

Nash
FM

IAH.
BM

Smith
FM

None Scal.
BM

Time-based
Avg. utility .7285 .7260 .7257 .7257 .7178 .7156 .7125 .7077
Avg. time of agr. .4834 .4865 .4867 .4865 .4958 .4937 .5022 .5055
Avg. rounds 7220 7218 7231 7198 7004 4745 7352 4836
Avg. Pareto dist. of agr. .0007 .0017 .0015 .0018 .0069 .0068 .0059 .0071
Avg. Kalai dist. of agr. .2408 .2434 .2447 .2428 .2515 .2474 .2683 .2561
Avg. Nash dist. of agr. .2442 .2471 .2481 .2483 .2541 .2500 .2721 .2594
Rounds-based
Avg. utility .7235 .7196 .7191 .7192 .7111 .7199 .7050 .7124
Avg. time of agr. .4928 .4975 .4978 .4977 .5058 .4974 .5136 .5038
Avg. rounds 2508 2531 2533 2533 2572 2531 2567 2562
Avg. Pareto dist. of agr. .0010 .0029 .0023 .0028 .0073 .0026 .0066 .0063
Avg. Kalai dist. of agr. .2332 .2380 .2395 .2380 .2456 .2369 .2614 .2445
Avg. Nash dist. of agr. .2370 .2403 .2437 .2404 .2516 .2403 .2644 .2472

Influence of the Agent’s Strategy. The performance gain of using an opponent model
necessarily depends on the strategy in which it is embedded. Table 5provides an overview
of the relative gain in comparison to No Model for all opponent models in the time-based
experiment. Based on the results, we have tested the following hypothesis:

H3. The more competitive an agent, the more it benefits from using an opponent model.

At each turn of a negotiation session, a set of possible agreements can be defined. This
is the intersection of two sets: the set of bids that an agent considers for offering, and
the set of all bids acceptable to the opponent. The more competitive the agent, the
smaller the intersection between the two sets. When an agent concedes, the number
of possible agreements increases at the cost of utility. An opponent model can help
in finding possible agreements, preventing concession and therefore loss in utility. We
therefore expected the gain for competitive agents to be higher, as the set of possible
agreements each turn is smaller, and therefore an optimal bid is more easily missed by
an agent not employing an opponent model. This is especially decisive in the last few
seconds of the negotiation, when many agents concede rapidly to avoid non-agreement.

The hypothesis is confirmed by our experiments. In Table 5 there is a negative corre-
lation between the concession speed and relative gain in performance. If we ignore the
results of the three worst performing models, a small – albeit statistically significant –
negative correlation of −0.508 is found.

Influence of the Opponent’s Strategy. The opponent’s behavior also has an important
impact on the performance of an opponent model. Based on the results shown in Table 6,
we test the three hypotheses below.

H4. An agent benefits more from an opponent model against competitive agents.

Intuitively, the more competitive the opponent, the more useful the opponent model as
the set of possible agreements is smaller, analogous to hypothesis H3. Therefore, we
expected the highest gain against the competitive agents Gahboninho V3, HardHeaded,
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Table 5. Utility of each opponent model relative to using No Model for each agent

Agents e = 0.1 e = 0.2 e = 1 e = 2

Perfect Model 0.0180 0.0164 0.0152 0.0144
HardHeaded Freq. Model 0.0156 0.0137 0.0118 0.0128
Agent X Freq. Model 0.0161 0.0137 0.0116 0.0113
N.A.S.H. Freq. Model 0.0166 0.0129 0.0108 0.0121
IAMhaggler Bay. Model 0.0084 0.0055 0.0033 0.0039
Smith Freq. Model -0.0031 0.0020 0.0071 0.0063
Bayesian Scalable Model -0.0050 -0.0058 -0.0032 -0.0053

and IAMcrazyHaggler. However, in Table 6 only the gain for Gahboninho V3 and
IAMcrazyHaggler is very high.

For HardHeaded, we believe this can be attributed to the agent using an opponent
model itself. If the opponent uses a well-performing opponent model, then the per-
formance gain of an opponent model can be expected to be lower, as the opponent is
already able to make Pareto-optimal bids. Our experiment appears to the confirm this
hypothesis in the case of playing against HardHeaded, whose well-performing oppo-
nent model seems to diminish the effect of opponent modeling by the other side.

Concluding, given the results of our experiment, we believe that the hypothesis holds,
at least for consistently competitive opponents without an opponent model.

H5. Frequency models are more robust against opponents employing a random tactic
than the Bayesian models.

In order to estimate the opponent’s utility of a certain bid, both types of models make
certain assumptions about the opponent. The Bayesian opponent models assume that
the opponent follows a particular decision function through time (cf. modeling assump-
tion 1 in Section 3.3), while the frequency models assume higher valued bids are of-
fered more often (cf. modeling assumptions 3 and 4). Many opponent strategies do not
adhere to these assumptions, which causes the learning models to make wrong predic-
tions when playing against them. For example, opponents such as IAMcrazyHaggler
who employ a random negotiation strategy, explicitly violate the assumptions of both
models. For the Bayesian learning models, this means the opponent preferences will be
estimated incorrectly, and more so through time. The frequency models however, are
much more robust, not only in the sense that a negotiation tactic has a greater chance
to satisfy its assumptions, but more significantly: it is less sensitive to a tactic violating
its assumptions. For instance, in the case of IAMcrazyHaggler, it will deduce that it
equally prefers any bid it has offered so far – which, in this case, is exactly right.

We therefore expected relatively poor performance from the Bayesian models. This
hypothesis is confirmed by our experiment: the frequency models have a high per-
formance gain against IAMcrazyHaggler, whereas using the Bayesian models is even
worse than not using an opponent model at all.

Influence of the Negotiation Scenario. The performance of an opponent model is
influenced by the characteristics of the negotiation scenario, such as amount of bids,
distribution of the bids, and the opposition of the domain. Table 7 provides an overview
of the relative gain of all opponent models in comparison to No Model for in the time-
based experiment. Based on these results, we formulate the following hypothesis:
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Table 6. Utility of each opponent model relative to using No Model for each opponent

Opponents TDT
0

TDT
0.2

TDT
1.0

TDT
2.0

OD Gah. HH. IcH.

Perfect .0085 .0015 .0008 .0022 .0060 .0676 .0015 .0399
HH. Freq. Model .0085 .0013 -.0002 .0019 .0060 .0515 .0000 .0388
Agent X Freq. Model .0085 .0019 .0002 .0036 .0058 .0561 .0009 .0285
N.A.S.H. Freq. Model .0085 .0005 -.0005 .0020 .0065 .0507 .0037 .0336
IAH. Bay. Model .0000 .0003 -.0021 -.0001 -.0046 .0511 .0039 -.0066
Smith Frequency -.0038 -.0023 -.0019 .0007 -.0113 .0357 -.0224 .0297
Bay. Scalable Model .0000 -.0033 -.0055 -.0058 -.0535 .0458 -.0128 -.0036

H6. The higher the amount of bids, bid distribution, or opposition of a scenario, the
more an agent benefits from using an opponent model.

We anticipated the bid distribution to be the major factor determining the performance
gain of an opponent model. If the bid distribution is high, then the Pareto-frontier is
more sparse. This means a higher gain can be expected of utilizing an opponent model to
locate bids close to the Pareto-frontier. This hypothesis is confirmed by our experiments,
as we found a strong Pearson correlation of 0.778 between the bid distribution and the
performance gain of the best four models, and 0.701 if we solely focus on the perfect
opponent model. Therefore we confirm this sub-hypothesis.

Another factor is the size of the negotiation domain. If a domain contains more bids,
then there are relatively less bids that are Pareto-optimal, so an opponent model can aid
more in identifying them. On the other hand, opponent models are more computation-
ally expensive on the larger domains. Despite this effect, we found a strong Pearson
correlation between the amount of bids and the performance gain: 0.631 for the best
four models, and 0.596 when using the perfect model.

The final factor is the opposition of the scenario. Intuitively, if the opposition is
higher, then there are less possible agreements. Opponent models can aid in identifying
these rare acceptable bids, thereby preventing break-offs and unnecessary concessions.
Nevertheless, if the opposition is high, then the bids are also relatively closer to the
Pareto-optimal frontier, which renders it more difficult for an opponent model to make
a significant impact on the negotiation outcome. Despite this effect, we expected that
higher opposition would lead to higher performance gain. However, in our experiments
we noted only a small positive Pearson correlation of 0.256 for the best four models and
0.262 for the perfect model. Based on these results we are unable to draw a conclusion,
which leads us to believe the two mentioned effects cancel each other out, making the
other two characteristics of the scenario decisive in the effectiveness of a model.

Table 7. Gain of each model relative to using No Model for each scenario parameter

Model Low Medium High
Size Perfect 0.001 0.022 0.041

Best 4 0.002 0.018 0.039
Bid Distribution Perfect 0.001 0.013 0.035

Best 4 -0.001 0.010 0.034
Opposition Perfect 0.001 0.023 0.020

Best 4 -0.001 0.022 0.016
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7 Conclusion and Future Work

This paper evaluates and compares the performance of a selection of state-of-the-art
online opponent models. The main goal of this work is to evaluate if, and under what
circumstances, opponent modeling is beneficial.

Measuring the performance of an opponent model is not trivial, as the details of
the negotiation setting affects the effectiveness of the model. Furthermore, while we
know an opponent model improves the negotiation outcome in general, the role of time
should be taken into account when considering online opponent modeling in a real-
time negotiation because of the time/exploration trade-off: a computationally expensive
model may produce predictions of better quality, but in a real-time setting it may lead
to less bids being explored, which may harm the outcome of the negotiation.

Based on an analysis of the contributing factors to the quality of an opponent model,
we formulated a measurement method to quantify the performance of online opponent
models and applied it to a large set of state-of-the-art opponent models. We analyzed
two main types of opponent models: frequency models and Bayesian models. We noted
that the time/exploration trade-off is indeed an important factor to consider in oppo-
nent model design of both types. However, we found that the best performing models
did not suffer from the trade-off, and that most – but not all – online opponent models
result in a significant improvement in performance compared with not using a model;
not only because the deals are made faster, but also because the outcomes are on av-
erage significantly closer to the Pareto-frontier. A main conclusion of our work is that
we noted that frequency models consistently outperform Bayesian models. This is not
only because they are faster, because the effect remains in a round-based setting. This
suggests that frequency models combine the best of both worlds. Surprisingly, despite
their performance, frequency models have not received much attention in literature.

Our other main conclusion concerns the effects of the negotiation setting on an op-
ponent model’s effectiveness. We found that the more competitive an agent, or its oppo-
nent, the more benefit an opponent model provides. In addition, we found that the higher
the size or the bid distribution of a scenario, the higher the gain of using a model.

For future work, it would be interesting to examine other uses of opponent modeling,
such as opponent prediction. Another direction of future work is to investigate the in-
teraction between opponent model performance and its accuracy through time. We also
plan to test a larger set of models derived from literature and ANAC 2012.
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