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Abstract— Learning to perform household tasks is a key step
towards developing cognitive service robots. This requires that
robots are capable of discovering how to use human-designed
products. In this paper, we propose an active learning approach
for acquiring object affordances and manipulation skills in a
bottom-up manner. We address affordance learning in contin-
uous state and action spaces without manual discretization of
states or exploratory motor primitives. During exploration in
the action space, the robot learns a forward model to predict
action effects. It simultaneously updates the active exploration
policy through reinforcement learning, whereby the prediction
error serves as the intrinsic reward. By using the learned
forward model, motor skills are obtained to achieve goal states
of an object. We demonstrate through real-world experiments
that a humanoid robot NAO is able to autonomously learn how
to manipulate two types of garbage cans with lids that need to
be opened and closed by different motor skills.

I. INTRODUCTION

A fundamental challenge in developing cognitive service
robots is how to endow them with autonomous learning
capabilities for handling household objects, i.e., to learn
what objects afford what actions in a given context. The
concept of affordance [9] has been introduced in robotics
to address the problem of robot-object interaction [17],
[19], [24]. The key benefit of learning affordances is that
they can be generalized across objects for predicting action
effects, e.g., based on shape features [8], [22]. Affordances
can be used in various ways, such as for planning [30],
imitation [19], control [12], and tool use [27], [29]. However,
the affordance learning conditions in the above literature
were strongly controlled by human programmers and this
restricts the autonomy of the robot. Not only the amount of
training data required was assumed known before affordance
learning actually started, but also the motor primitives were
predefined and assumed to be always effective for object
manipulation. These assumptions do not guarantee that a
robot can learn how to manipulate a household object which
can be complex and unseen before by the robot. In this paper,
we take an active learning approach where the robot decides
by itself whether it has collected sufficient data to learn the
underlying object affordances. Besides, a range of reusable
motor skills are acquired in a bottom-up manner without
manual discretization of the continuous state space or robot
action space.

There has been much research on robot skill learning via
human demonstration [5], [15], [16], where complex robot
motions can be learned by mixing basic motor primitives.
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This approach is quite effective for object manipulation with
human-provided training samples. However, it is still a chal-
lenge for autonomous and open-ended skill learning when
such human guidance is not available or is too expensive
to obtain. The same challenge exists in the aforementioned
literature on affordance learning. In this paper, we address
this challenge by an active learning approach.

Active learning is a machine learning technique that allows
active selection of training data [25]. In robotics, active learn-
ing can be used for efficient acquisition of knowledge and
skills during continuous interaction with environments. For
example, a robot actively generates uncertain situations [18],
or queries a human teacher [6] to reduce the amount of
training data for learning symbolic concepts. Without human
guidance, active learning can be driven by intrinsic motiva-
tions such as artificial curiosity, surprise, or fear [1], [4], [20].
Heuristics typically direct active exploration towards the re-
gions where uncertainty or prediction errors are maximal [7],
[10]. The change of prediction errors can also be used as
an intrinsic reward to optimize the learning progress [2],
[21]. A relevant approach [11] proposed active learning of
controllable environmental contexts for object manipulation,
but again the motor skills were preprogrammed and high-
level control programs were given.

In this paper, we propose active affordance learning in
the framework of intrinsically motivated reinforcement learn-
ing [3]. Specifically, we use the actor-critic reinforcement
learning (RL) architecture [28] to learn action exploration
policies. In order to control the state changes of objects
through robot actions, forward models [14] are learned
through function approximation and used to predict action
effects in continuous state and action spaces. The prediction
error is not only a means to update the forward models, but
it also serves as the intrinsic reward signal to update the
critic and the actor. Then, the forward models are reused to
achieve goals, during which a range of manipulation skills
are acquired in a bottom-up manner. Finally, these motor
skills are associated with object representation defined by
perceptual proxies [13] that provide the contextual informa-
tion of the learned affordances. In this way, the robot can
learn to handle objects and ground the object representations
in its own sensory and motor experience.

Throughout the paper, we use the manipulation of garbage
cans with different lids (see Fig. 1) as a running example.
As a prerequisite for learning affordances [19], we assume
that the robot is already equipped with appropriate sensory
functions and motor skills, such that it can recognize objects
and perform elementary motor tasks such as controlling its
arm in Cartesian space.



(a) Push to open (b) Pull to open

Fig. 1. An illustration of different motor skills (push and pull) and their
effects on the lid opening. The upper row shows the images by the NAO’s
camera. Note that these motor skills are to be learned by the robot rather
than preprogrammed. A video is available at http://youtu.be/oluLDwMaVoY.

In our previous work, we proposed on-line affordance
learning in goal-directed tasks [33], as well as transfer
learning of affordances across objects [32]. However, random
exploration policy was applied and the motor primitives were
predefined for specific tasks. The main contributions of this
paper are:
• An active learning architecture updates affordance mod-

els simultaneously with exploration policies.
• Affordance learning takes place in continuous state and

action spaces without prior discretization.
• Manipulation skills are acquired in a bottom-up manner

without human intervention.
The paper is organized as follows: Section II describes

the active learning architecture. Section III discusses the
formal affordance learning model. Section IV introduces the
task environment with the experimental results. Section V
concludes the paper and outlines our plans for future work.

II. ACTIVE AFFORDANCE LEARNING ARCHITECTURE

As in previous work [33], we define an affordance as the
triple: (

Object,Action,Effect
)

(1)

Object refers to a household object and/or its part along with
its state, e.g., the state of a garbage can lid that is partially
open. Action refers to a repertoire of motor commands that
can be used to interact with the object, e.g., the change of
joint angles or end-effector positions. Effect refers to the
outcome of applying the action to the object, e.g., the handle
is displaced, or the lid is open (see Fig. 1).

The overall architecture we propose for active learning
of affordances is illustrated in Fig. 2. It consists of three
components: affordance learning, active exploration, and
model exploitation.

In the affordance learning component, we define an affor-
dance model that associates the three elements of (1). First
of all, an object is recognized by extracting features from

Fig. 2. An architecture of active learning of object affordances.

sensory input. As we take into account household objects
that are composed of several parts, each part is represented
by a perceptual proxy, e.g., a bounding box (see Fig. 1).
In this case, we can obtain the state of each part as the
size and location of the bounding box. Then, the affordance
model is represented as a forward model [14] that produces
a prediction of an effect, based on the state of object and
the selected action. As a result, affordance learning is to
learn forward models associated with perceptual proxies of
an object. For example, a robot learns a forward model
to predict the lid opening as a result of its arm and hand
movement. Whenever an action is performed, the forward
model makes a prediction about the consequent effect. After
the actual next state is observed, the actual effect is measured
by comparing the states of lid opening before and after the
action, e.g., by subtraction of the opening size. Then, the
prediction error of the effect is calculated to update the
forward model. In this paper, we choose a feedforward neural
network as the forward model and use back-propagation to
update the model based on the prediction error.

In the active exploration component, the prediction error
of the affordance model provides an intrinsic reward signal
to optimize the action selection policy which outputs an
action for the affordance learning component. This is an
active learning approach in the sense that the training data
collection is controlled by the robot itself based on its own
observation of the environment without human intervention.
The underlying heuristic is straightforward: the affordance
model is maximally corrected when the sampled state and
action spaces have the highest prediction error. In the actor-
critic RL architecture, the actor plays the key role that
determines the new samples for learning the affordance
model. It outputs an action which is to be performed on
the object, and the action is also the input of the affordance
model for effect prediction. The critic learns to predict the
value of each state and computes the Temporal Difference
(TD) error [28], which is used by the actor to output optimal
actions that will maximize the accumulated future rewards.



Finally, active model learning stops when the TD errors
become stable.

In the model exploitation component, the robot evaluates
the quality of the learned models by itself. It generates goals
in the effect space and selects actions to achieve them. A
range of manipulation skills can be acquired in various object
states for solving these goal-directed tasks. The underlying
assumption is that the learned model is good enough for use,
which is guaranteed by the convergence of the actor-critic
structure in the active exploration component. In this way, the
robot can develop object manipulation skills autonomously
when no task is specified by human. In the case of garbage
can manipulation, a robot may use the learned affordance
model to open, close or move a garbage can in a given object
configuration.

III. FORMAL AFFORDANCE LEARNING MODEL FOR
HANDLING HOUSEHOLD OBJECTS

We now discuss in detail each of the three elements of (1)
as well as the three components in Fig. 2.

A. Affordance model

1) Perception of object and parts: In this paper, a robot
perceives its environment and extracts visual features from
its camera image. We assume that the robot can identify
object parts based on known features (markers in our exper-
iments) and color segmentation. The robot then recognizes
a household object as a combination of all observed parts.
Refer to [26] for a method to recognize object parts with a
RGB-D camera. As our focus is on active learning, such a
method is beyond the scope of this paper.

Denote by Ψ the set of all known object parts (body, lid,
handle, pedal, etc.). As not all objects necessarily contain the
same parts, denote by Ψo ⊆ Ψ the set of parts that an object
o is composed of. We use so ∈ S to denote the state of the
object o. The state changes with time and is continuously
measured by robot’s sensors. For example, so can be the
current size of the lid opening. We note that so may also
include the states of other parts in Ψo if necessary.

2) Robot actions: Robot actions can be defined in the
constrained joint space as well as in the Cartesian space. In
this paper, we control a robot arm in 3D Cartesian space with
available inverse kinematics. This does not exclude other
action representations in our active learning architecture.

Denote by sr = (x, y, z)T ∈ R3 the current state of
a robot’s end-effector in the 3D space. Denote by a =
(∆x,∆y,∆z)T ∈ A ⊂ R3 a bounded action that changes
the position of the end-effector. In our case, the robot
interacts with only one part of the object using one end-
effector at a time. The robot always approaches the vicinity
of the chosen object part before interacting with it. The
reaching and grasping behaviors are assumed available in
the robot’s motor skill repertoire.

3) Effects of actions: The effect of action a on object o
is denoted by eo ∈ Eo. It is measured by

eo = m(so, s
′
o) (2)

where s′o is the state of o after a was applied, and m is a
suitable metric, e.g., subtracting so from s′o.

4) Forward models: A forward model is an internal model
that produces a predicted output based on a given input [14].
In our case, the input is the current object state and the
applied action, and the output is the predicted effect. Then,
object affordances are encoded in the following forward
models Fψ:

eo = Fψ(so, a, w) for ψ ∈ Ψo (3)

where ψ indicates that the robot interacts with a specific part
ψ ∈ Ψo by performing a. In our case, Fψ is a neural network
and w is the weight vector. Other function approximation
approaches are also applicable.

B. Affordance learning

Affordance learning is to learn the forward models (3) by
updating the model parameters based on prediction errors.
We use an on-line version of neural networks. Denote by
(sko , a

k, eko), k ∈ N the collected data after applying an action
ak, where sko and eko are the corresponding object state and
consequent effect. The decision of data sampling and its
termination will be discussed in Section III-C.

When learning a forward model Fψ , denote by êko the
predicted effect of ak in the state sko , i.e.,

êko = Fψ(sko , a
k, wk) (4)

where wk is the current weight vector. The prediction error
ηk is obtained as follows:

ηk = eko − êko (5)

where eko = m(sko , s
k+1
o ) is obtained from (2). Then, the new

model parameter wk+1 is updated as follows:

wk+1 = wk + αηk∇Fψ(sko , a
k, wk) (6)

where 0 ≤ α ≤ 1 is the step size parameter, ∇Fψ is the
gradient of the output of the network to the weight vector.

C. Active learning with intrinsic motivation

The goal of active affordance learning is to autonomously
learn the relations between objects, actions and effects in
an efficient manner. In our approach, this means that the
robot needs to learn forward models. Meanwhile, the policy
of selecting exploratory actions should also be learned to
optimize the affordance learning process. A baseline to be
compared with is the random action selection policy.

In order to learn the exploration policy, we integrate an
RL component in the affordance learning loop (see Fig. 2).
A conventional RL scheme requires manual definition of a
reward function to develop goal-directed exploration behav-
iors for a specific goal. In our architecture, the reward signal
is generated intrinsically by using the prediction error of a
forward model, whose maximization is expected to result in
an optimal action selection policy. The underlying heuristic
is that sampling in state and action spaces with higher
prediction error is more rewarding rather than sampling in
the already well-predicted area.



We have chosen to use Continuous Actor-Critic Learning
Automation (CACLA) because it has been proved to have
good performance for RL problems in continuous action
spaces [31]. Like other actor-critic algorithms, CACLA is
based on the simultaneous online approximation of two
structures, the actor and the critic. The actor corresponds
to an action selection policy, mapping states to actions in a
probabilistic manner. The critic corresponds to a value func-
tion, mapping states to expected cumulative future reward.

An actor is represented as a function approximator Actk
that approximates the function Act∗ : S → A, where
Act∗(sko) denotes the optimal action for state sko . A critic
is also represented as a function approximator Vk that
approximates a state value function V : S → R which
stores the expected sum of discounted rewards for states.
The strategy of active exploration is learned as follows.

During exploration, an action ak is selected stochastically
from the Gaussian probability function G(x, µ, σ) centered
around the output of the current actor Actk(sko):

G(x,Actk(sko), σ) =
1√
2πσ

e−(x−Actk(sko))2/2σ2

(7)

where σ is an exploration parameter. If A is more than one
dimension, σ could be chosen separately for each dimension.

After action ak is applied on the object, the new state
sk+1
o is observed, and the actual effect is compared with the

predicted effect to get the prediction error by (5). The current
reward is given as the absolute value of this prediction error:

r = |ηk| (8)

Then, the current TD error [28] is obtained as follows:

δk = r + γVk(sk+1
o )− Vk(sko) (9)

where 0 ≤ γ ≤ 1 discounts future rewards.
The current actor Actk is updated only if δk > 0, which

means that the performed action ak is better than expected
and should therefore be enforced. The actor Actk is then
updated towards this action:

Actk+1(sko) = Actk(sko) + ζ(ak −Actk(sko)) (10)

where 0 ≤ ζ ≤ 1 is a step size parameter.
The critic is always updated with the TD error:

Vk+1(sko) = Vk(sko) + β δk (11)

where 0 ≤ β ≤ 1 is a step size parameter.
The action exploration process terminates when the RL

almost stops, i.e., there is not much change in the actor-
critic RL component. This is measured by the convergence
of the TD error, when the following condition is satisfied:

|δ̄k+1 − δ̄k| < ε (12)

where ε is a small positive threshold, and

δ̄k =
1

N
Σki=k−N+1|δi| (13)

is the averaged absolute TD error of recent N actions.
The whole loop of active affordance learning is summa-

rized in Algorithm 1. In case of endless exploration, the loop
terminates anyway after a maximal number Ns of actions.

Algorithm 1 Active affordance learning of an object.
Input: An object o; Maximal action steps Ns;
Output: Forward models Fψ, ψ ∈ Ψo as in (3);
Iteration:

1: for all ψ ∈ Ψo do
2: Initialize k = 1;
3: while k ≤ Ns and (12) is not satisfied do
4: Observe the object state sko ;
5: Select an exploratory action ak using (7);
6: Predict the action effect êko using (4);
7: Apply ak and observe the resulted object state sk+1

o ;
8: Calculate the prediction error ηk using (5);
9: Update the parameter wk of Fψ using (6);

10: Calculate the intrinsic reward r using (8);
11: Calculate the TD error δk using (9);
12: if δk > 0 then
13: Update Actk using (10);
14: end if
15: Update the critic Vk using (11);
16: k ← k + 1;
17: end while
18: end for

D. Model exploitation for skill acquisition

In order to evaluate the learned models (3), goals are
generated in the effect space Eo to show whether useful
manipulation skills can be acquired. In each dimension of
Eo, the robot rehearses internally and selects an action to
maximize or minimize an effect. For example, the maximized
goal effect ego is:

ego = arg max
ψ∈Ψo,a∈AM

Fψ(so, a, w) (14)

where so is the current object state, and AM ⊂ A is a set
of M samples, e.g., evenly sampled in A.

The acquisition of a motor skill starts in an initial object
state sio and terminates when no more effect is observed.
Then, this object state is the termination state sto. The learned
skills are represented as a sequence of primitive actions
with initial and termination conditions. They are similar
to options [23] that can be transfered across tasks. The
whole skill learning process terminates when the current
termination state is similar to an initial state of learned skills.
In the garbage can example, the robot would first choose to
open it and then close it if it is initially closed, vice versa.

IV. A CASE STUDY: GARBAGE CAN MANIPULATION

We used a humanoid robot NAO and two garbage cans to
test our active affordance learning model (see Fig. 1).

A. Task Setting

In our experiment, the garbage cans were presented to
NAO separately. One had a pushable lid (Fig. 1(a)), and the
other had a pullable handle (Fig. 1(b)). In each learning trial,
a garbage can was positioned approximately 10 to 12 cm in
front of NAO and the area to be explored was about 25 to 45



cm high. These values agreed with the capabilities of NAO
due to its height and the length of its arms. Only the left
arm of NAO was used to interact with the garbage cans. The
garbage cans were reachable and manipulatable by NAO.

The bottom camera on NAO’s head was used as the main
sensory input, with a resolution of W ×H (e.g., 320×240).
For each garbage can, the same blue marker (5 cm × 2 cm)
was used for the recognition of lid (with a NAO marker at
its center), and a green marker for the recognition of the
handle (10 cm× 1 cm), if there was one. The markers were
recognized based on color segmentation. As a result, the set
of object parts was Ψ = {ψl, ψh} where ψl denoted a lid,
ψh denoted a green handle. Each ψ ∈ Ψ was located by a
bounding box (see the top row in Fig. 1).

In this paper, the state of a garbage can was described
by its openness. To detect the opened area, we put a black
plastic bag in each garbage can and calculated the area of the
dark part in an captured image. The opened area was also
located by a bounding box with a size of w × h in pixels.
Then, so was the percentage of opened area in an image:

so =
w × h
W ×H

(15)

where 0 ≤ so ≤ 1.
At each time step, a robot action a was selected from

A = {(x, y, z)T ∈ R3|−0.01 ≤ x, y, z ≤ 0.01} (in meters)1.
After an action was performed, the robot captured another
image and obtained the new state of object s′o in the same
way as (15). The effect was obtained as follows:

eo = s′o − so (16)

To approximate each forward models in (3), we used a
feed-forward neural network with four input neurons (one
neuron for so and three neurons for a), one hidden layer
with 10 neurons and one output neuron for eo. We also used
two neural networks to approximate the actor and critic. We
normalized the action values to [−1, 1] in each dimension.
For the three layers of all neural networks, we used linear,
hyperbolic tangent and linear transfer functions, respectively.
All weights of neural networks were initialized randomly in
[−0.3, 0.3]. The learning rates in (6), (10) and (11) were α =
0.3, ζ = 0.3, β = 0.3. The Gaussian exploration parameter
in (7) was δ = 0.2 for each action dimension. The discount
factor in (9) was γ = 0.9. The TD errors were averaged over
N = 20 actions in (12) and ε = 1× 10−4.

We tested the active exploration approach against the
baseline of random exploration. In the case of random
exploration, we used a random actor and its output was a
random number in A. We ran experiments in both 1D action
space (X axis of NAO space) and 3D Cartesian space for
the two garbage cans. In all experiments, NAO performed
the first 20 actions randomly, then it continued random
exploration or switched to the active learning mode. The
maximal allowed exploration steps were Ns = 100 and
Ns = 300, respectively.

1In the Cartesian space of NAO, the X axis is positive toward NAO’s
front, the Y from right to left and the Z is vertical. For more details, refer
to http://www.aldebaran-robotics.com.

B. Results

1) Learned forward models: The result of a learned
forward model is shown in Fig. 3 (active exploration of the
push-lid in 1D state space and 1D action space). The state
space was [0, 0.2] and the action space was [−0.01, 0.01] (in
meters). They were meshed into 10 × 10 grids for plotting
the surface of predicted effects. For example, action = 0
corresponded to a = (−0.01, 0, 0)T and action = 10
corresponded to a = (0.01, 0, 0)T .

Fig. 3. The learned forward model with the push-lid using active
exploration in 1D action space (0 ≤ state ≤ 0.2, −0.01 ≤ action ≤ 0.01).

Fig. 3 shows the linear relations between states, actions
and effects. Stretching the arm (action > 5) would result
in the opening effect (effect > 0), and stretching further
would result in more opening. Besides, the maximal opening
effect decreases when the current state of opening increases.
This prediction agrees with the hinged design of the push-
lid. Similarly, the closing effect (effect < 0) was predicted
by contracting the arm (action < 5).

2) Convergence of affordance learning: The averaged TD
errors in (13) during action exploration in both 1D and 3D
action spaces are shown in Fig. 4 - Fig. 7. In all experiments,
they converged for active exploration while the random
exploration failed to converge within allowed number of
action steps. Besides, the active exploration in 1D action
space converged faster than in 3D action space.

In the active learning mode, NAO intended to explore
the most uncertain spaces in an organized way. It usually
ended up being blocked by the boundaries of garbage cans,
i.e., when a lid was maximally opened or tightly closed.
In this case, the object state became stable and no more
effect was observed, which gave the TD errors a good
chance to converge. In contrast, the random exploration was
less efficient because it wasted time on exploring in well
predicted action space which contributed little to improving
the model prediction accuracy. Besides, it occasionally ran
into situations with high prediction errors so that the TD
errors would take longer time to converge.

3) Skill acquisition: The initial and termination object
states are shown along with the acquired motor skills in
TABLE I. Due to page limitation, we note that not all actions



Fig. 4. Experimental result with the push-lid in 1D action space.

Fig. 5. Experimental result with the push-lid in 3D action space.

Fig. 6. Experimental result with the pull-handle in 1D action space.

Fig. 7. Experimental result with the pull-handle in 3D action space.

are listed, and the values are rounded to three decimal points.
In all cases, NAO started skill learning with a closed lid and
succeeded to choose correct action sequences to maximize
the opening effect first, then maximize the closing effect.

TABLE I
THE ACQUIRED MOTOR SKILLS BY SELF-GENERATED GOALS (ego ) IN

DIFFERENT STATES (so) USING THE EIGHT FORWARD MODELS (TWO

PARTS, TWO EXPLORATION POLICIES, AND TWO ACTION SPACES).

ψ policy so a (1D or 3D) ego error
ψl random 0 0.008 0.018 0.009

0.114 0.008 0.003 -0.0005
0.117 -0.010 -0.031 -0.023
0.018 -0.010 -0.020 -0.020

ψl active 0 0.008 0.033 0.008
0.124 0.008 0.020 0.004
0.135 -0.010 -0.019 -0.002
0.035 -0.010 -0.008 -0.008

ψl random 0 (0.008,0.008,0.002) 0.034 0.018
0.072 (0.008, 0.008, 0) 0.024 0.024
0.071 (-0.010, 0.008, -0.010) -0.012 0.009
0.005 (-0.010, 0.008, -0.010) -0.005 -0.004

ψl active 0 (0.008, 0.010, 0.010) 0.031 0.012
0.112 (0.008, 0.010, 0.010) 0.021 0.021
0.094 (-0.010, -0.010, -0.010) -0.044 -0.009
0.024 (-0.010, -0.010, -0.010) -0.039 -0.039

ψh random 0 -0.010 0.008 0.001
0.124 0.008 0.020 0.004
0.135 -0.010 -0.019 -0.002
0.035 -0.010 -0.008 -0.008

ψh active 0 -0.010 0.017 0.006
0.101 -0.010 0.014 0.014
0.101 0.008 -0.006 0.038

0 0.008 -0.004 -0.005
ψh random 0 (-0.010, 0, -0.010) 0.017 0.024

0.119 (-0.010, 0.008, -0.010) 0.010 0.009
0.123 (0.008, -0.010, 0.008) -0.019 0.019

0 (0.008, -0.010, 0.008) -0.012 -0.012
ψh active 0.012 (-0.010, -0.008, -0.008) 0.009 -0.003

0.094 (-0.010, -0.008, -0.008) 0.012 0.011
0.095 (0.008, 0.008, 0.008) -0.003 -0.004

0 (0.008, 0.008, 0.008) -0.003 -0.003

In the push-lid case with 1D action space, NAO first
performed 5 or 6 pushing actions (a = 0.008 m) until the
lid was maximally opened (so = 0.114). Then, it contracted
the arm (a = −0.01 m) until the object state was not
changed anymore (a = 0.018 m). The push-lid could not
be closed completely by NAO due to the friction between
the lid and the body part (see the attached video). In the
3D cases, the direction of the optimal action for opening
was slightly different with the 1D cases. For example, NAO
pushed forward the push-lid while moving the arm left
and up, i.e., a = (0.008, 0.010, 0.010)T . NAO also pulled
the handle while moving the arm downwards, i.e., a =
(−0.01, 0,−0.010)T . These results agreed with the design
of hinges on the lids.

V. CONCLUSIONS

In this paper, we investigated an approach for active learn-
ing of affordances in continuous state and action spaces for
robot use of household products. Affordances were learned
on-line to predict action effects meanwhile the prediction



error served as intrinsic reward to update the action explo-
ration policy using an actor-critic RL structure. We have
demonstrated that a humanoid robot is able to actively learn
affordances and efficiently acquire manipulation skills to
handle garbage cans. In the future, we will consider the scale
of model complexity and the speedup of model convergence,
along with the transfer of learned exploration policies for
learning novel objects.
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