
A Computational Semantics for Communicating
Rational Agents Based on Mental Models

Koen V. Hindriks and M. Birna van Riemsdijk

EEMCS, Delft University of Technology, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk}@tudelft.nl

Abstract. Communication is key in a multi-agent system for agents
to exchange information and coordinate their activities. In the area of
agent programming, the challenge is to introduce communication prim-
itives that are useful to a programmer of agent programs as well as
semantically well-defined. Moreover, for agents that derive their choice
of action from their beliefs and goals it is natural to introduce primi-
tives that support communication related to both of these attitudes. We
introduce a communication approach for multi-agent systems based on
mood operators instead of the usual speech act labels and a semantics
based on the idea that a message can be used to (re)construct a mental
model of the sender. An operational semantics is provided that speci-
fies the precise meaning of the primitives. Finally, to facilitate coordina-
tion in multi-agent systems, we introduce the concept of a conversation
to synchronize actions and communication among agents. Conversations
provide a limited resource at the multi-agent level, and provide a natural
approach for multi-agent systems to coordinate agent activities.

1 Introduction

Communication is key in a multi-agent system for agents to exchange information
and coordinate their activities. For this reason, the design of constructs that
facilitate communication in agent programming languages also is an important
aspect that must be addressed in these programming languages. In particular, for
agents that derive their choice of action from their beliefs and goals it is natural
to introduce communication primitives that support communication related to
both of these attitudes.

We argue that it is not sufficient to provide only communication primitives
that facilitate the exchange of messages, but it is also necessary to provide ex-
plicit support for the coordination of agent communication and activities. It
often occurs that agents need to decide on which agent will perform a particular
task, whether it is the turn of an agent to make a move, or synchronize their
activities for other reasons. It is useful to provide programming constructs that
facilitate such coordination.

In this paper we address both aspects discussed above, and propose a com-
munication language that facilitates both information exchange as well as the



coordination of agent activities. We take a definite engineering stance here. Al-
though we think it is very important to introduce communication primitives
that are semantically well-defined and motivated adequately from a theoretical
point of view, our main concern is to provide useful communication facilities
to a programmer of rational agents. An approach is presented that addresses
each of these issues: the meaning of the communication constructs are defined
using a formal semantics, are theoretically motivated, and - so we believe - ad-
dress the pragmatic component as the primitives introduced are relatively easy
to grasp, which will facilitate programmers that will need to make good use of
these constructs.

The paper is organized as follows. In section 2 we briefly discuss related work
in agent programming languages with respect to communication. Then in section
3 we present our approach for integrating agent communication into an agent
programming language informally first and motivate some of our choices. Sec-
tion 4 introduces the formal semantics for the various communication facilities.
Section 5 illustrates all communication constructs, using the dining philosophers
as an example. Finally, section 6 concludes the paper.

2 Communication in Agent Programming Languages

It has been common in agent programming to integrate communication con-
structs into the programming language using constructs that are based on speech
act theory [1, 2]. This theory has underpinned much work on agent communica-
tion languages such as KQML [3] and FIPA [4], two of the most well-known agent
communication languages available. The JADE implementation [5] that is said
to be compliant with the FIPA specifications is one of the most used platforms
for implementing agents, as it not only facilitates the FIPA list of speech acts
but also provides a middleware infrastructure that facilitates message exchange.
One of the distinguishes features of any approach based on speech acts is the
list of performative labels that may be used to label possible speech acts that an
agent can perform, such as informing, ask ing, and request ing to name but a few
of the more well-known speech acts.

One of the approaches to integrating communication into an agent program-
ming language is to explicitly integrate the communication primitives that a
platform such as JADE provides. The interpreters of quite a few agent pro-
gramming languages are built on top of JADE in order to have a middleware
layer that facilitates message exchange. It is then relatively easy to provide the
communication primitives of JADE as constructs that can be used in an agent
program. This is more or less the approach taken in the programming language
Jadex [6]. Communication in JACK [7] also seems to be based on a similar ap-
proach, but the implementation has not been based on JADE but on a specific
implementation for JACK itself.

The integration of communication has been necessarily somewhat pragmatic
in order to be able to deal with the specifics of each programming language. In
particular, the means to handle received messages and the effects of messages



vary across languages. In 2APL, a successor of 3APL [8], the format of messages
as specified in FIPA is basically preserved [9], and the same performative labels
available in FIPA may be used as 2APL is built on top of JADE. Messages
that are received are stored in a message base and so-called procedure call rules
are used to allow an agent to react or respond to messages received. Different
from the languages discussed above, the semantics of communication in 2APL
is formally specified. The meaning of communication primitives and messages is
defined by as a simple “mailbox” semantics: communicating a message means
that the message is added to a mailbox and the programmer then needs to write
rules to handle these messages.

Interestingly, a somewhat different approach is used for providing communi-
cation in the agent language Jason[10]. Although the approach is based on speech
acts as well, instead of providing a long list of performative labels the program-
mer of a Jason agent can choose from a relatively small number of available
labels, derived from KQML. We think restricting the set of labels to a limited
set in the context of agent programming is a sensible thing to do for two reasons:
(i) Offering a broad range of performative labels may confuse a programmer and
complicate the design of agents, and (ii) it is difficult to avoid subtle differences
in the semantics for two or more labels that are hard to distinguish by pro-
grammers.1 For the set of labels available in Jason a formal semantics is defined
that in some respects is similar to that specified in FIPA as far as the effects
of communication are concerned. However, Jason does not require any specific
preconditions to be true before an agent may send a message. A Jason-specific
feature is the use of so-called ”annotations” to label a message with the identity
of the source of this information. These annotations were motivated specifically
by the design of the communication semantics [10]. For example, the tell mes-
sage inserts the content c of the message into the receiver’s belief base, labeled
with an annotation s to identify the source of this information; that is, c[s] is
inserted into the belief base. As another example, the achieve message inserts
the content of the corresponding message in the event base. Moreover, the ask
primitive provides a limited means to synchronize agents as the asking agent
may wait for an answer from the agent that is being asked to address the mes-
sage. Finally, abstract functions are introduced to determine whether a message
is “socially acceptable”, and only socially acceptable messages are processed.

Summarizing, all approaches in agent programming are based on the speech
act paradigm, and more or less are based on KQML/FIPA. Some agent pro-
gramming languages, such as 2APL and Jason, also provide a formal semantics
that specifies precisely what happens when a message is sent. Although FIPA
also specifies the preconditions and rational effects of the performance of specific
speech acts, in practice there is no programming language that actually imple-
ments these specifications. This is in part due to the fact that certain features
required by FIPA are not supported by agent programming languages, and in

1 An example to illustrate this issue is the subtle difference in meaning of the confirm

and inform speech acts in FIPA [4].



part due to more fundamental issues that gave rise to a shift from the sender to
that of the receiver.

The agent programming language that we take as our starting point in the
remainder of this paper is the Goal language [11]. This language has in common
with 2APL and Jadex that agents have mental states that consist of declarative
beliefs and goals. The presence of declarative beliefs and goals naturally induces
the question how a rational agent can be provided with primitives that support
communicating information related to both these mental attitudes, an issue that
has not been explicitly addressed in the context of agent programming. Mental
states also provide the means to define a semantics of communication that makes
explicit the idea that a receiver reconstructs a mental model of the sender, in line
with the noted shift from sender to receiver. The semantics that we will introduce
here explicitly uses messages received to model the sender. Another contribution
of this paper is the introduction of an explicit mechanism for synchronizing
and coordinating agent activities based on the concept of a conversation. This
concept seems related to that of an artefact or possibly workspace in the simpA
language [12], and may be effectively implemented using constructs provided in
this language.

3 Design of Communication Approach

Apart from a shift from the sender to the receiver, current approaches to com-
munication in agent programming still use speech act labels to tag messages. The
reason for this shift can be explained by some of the criticisms that have been
leveled against the use of speech act semantics for implementing agent commu-
nication, see e.g. [13, 14]. Speech act theory may be adequate as a descriptive
theory that specifies the conditions that identify the particular type of commu-
nicative act that has been performed when a sentence is uttered (or message
exchanged). It does not make so much sense anymore, however, when the the-
ory is interpreted as a recipe for executing actions specified by means of pre-
and postconditions as is traditional in computing science.2 Part of the problems
with speech act semantics, in particular the so-called sincerity conditions that
should hold with respect to the sender thus have been dropped in order to be
able to make practical use of the labels that are used to classify various acts.
These conditions have not been incorporated into an operatorional semantics
for communication for two reasons. First, it is impossible for a receiving agent
to verify whether an agent speaks truthfully upon receiving a message of the
form inform(..), making the variety of labels not very useful for the purpose of
identifying the act that has been performed (the reason for naming these labels
as they have been) [13, 14]. Second, a sender would be unnecessarily constrained

2 To highlight the difference we intend to convey here, an example may be useful: A
label such as misinform or lie makes perfect sense in a descriptive theory but not
so much as part of a message that is being transmitted, as usually one attempts to
hide that one is deceiving.



by imposing such conditions and would no longer be able to ”inform” an agent
of a statement it believes to be false, i.e. lie.

As discussed above, there is a second, more pragmatic reason to deviate
from the speech act paradigm in the context of agent programming, namely
the fact that introducing a relatively high number of performative labels with
possibly subtle semantical differences complicates agent design. The choice of
labels, moreover, is different from theory to theory and it is not clear which set
is to be preferred (compare e.g. KQML and FIPA). We argue below that these
issues can be resolved by using mood operators instead of speech act labels, a
choice that also has a strong basis in linguistic theory.

We briefly discuss an alternative approach to the FIPA-style semantics based
on so-called social commitments, see e.g. [15–17]. There is a huge literature on
the topic of social semantics which is impossible to survey here. A social se-
mantics for speech acts may be contrasted with a semantics based on mental
states. Whereas social commitments, the main entities in a social semantics, are
supposed to be public, mental states are supposed to be private. An advantage of
social commitments therefore is that there is no need to reconstruct and attribute
them to other agents [15]. The basic idea of social commitments is that speech
acts do have public and objective effects with which both sender and receiver
can always be confronted again; a receiver may always say, for example, some-
thing like: ”You told/asked/requested me so”. Although the processing of the
message by the receiver has moved to the background here, from the perspective
of agent programming this is not necessarily an advantage. As agent-oriented
programming may also be paraphrased as ”programming with mental states”,
it is important to clarify how social commitments relate to the mental attitudes
of agents. We recognize that a social semantics may be complementary to a se-
mantics based on mental attitudes and some work to revolve this issue has been
reported in, for example, [18]. The main issue seems to be how to relate com-
mitments which are supposed to be publicly available to mental states which are
supposed to be private. This issue, we believe, is not easily resolved, and in this
paper, we focus on a semantics that is based on mental models as they represent
the entities that an agent computes with in agent programming.

3.1 Communication Semantics

We take an engineering stance towards the design of a communication seman-
tics that fits well with the agent-oriented programming paradigm. Related to
this, issues such as how useful communication primitives are to a programmer,
whether such primitives facilitate communication about the beliefs and goals of
rational agents, and the range of applications that these primitives have need to
be considered. This means that communication primitives should support, e.g.,
the exchange of reasons for acting based on beliefs and goals, and should be
provided with a relatively easy to grasp semantics that fits basic intuitions.

The starting point for the semantics introduced here is the idea that a mes-
sage can be used to (re)construct a mental model of the sender. The content of
a message is not a speech act per se but a speech act is inferred from a message.



This idea is somewhat related to the inferential approach to speech act theory
advocated in [19]. In particular, some of our ideas are inspired by the work in
theoretical linguistics of Harnish [20] and we aim to provide a framework for
agent communication based on some of these ideas. It should however also be
noted that we have simplified this work in line with some of the pragmatic issues
discussed above. A second idea is to use mood operators instead of speech act
labels. Here, we take inspiration from natural language to differentiate between
various communication modes. Mood, in the sense that we use it here and in
line with linguistic theory, refers to ”sentential form with a function”. We follow
[20] and limit the discussion to the three major moods in natural language:

– declarative mood, e.g. ”Snow is white.” Typically, the literal and direct use
of a declarative sentence is to make statements (about the environment).

– interrogative mood, e.g. ”Is it snowing?”. One of the typical literal and direct
uses of an interrogative is, for example, to inquire about a state of affairs.

– imperative mood, e.g. ”Leave the room!”. Typically, the literal and direct
use of an imperative is to direct someone to establish a state of affairs.

These moods are recognized as central in their communicative importance
and to occur comparatively high in frequency [20], and therefore also seem most
important to include in a language for agent communication. Corresponding to
each of these moods, mood operators are introduced and :φ is used to indicate
declarative mood, ?φ is used to indicate declarative mood, and !φ is used to
indicate imperative mood.3

Returning to one of our main goals, that of defining a semantics for agent
communication, we start by discussing some of the ideas presented in [20]. Har-
nish presents a set of strategies accounting for the literal and direct use of declar-
atives, imperative and interrogative sentences. As a first approximation, Harnish
suggests that a hearer upon perceiving that S utters ”Leave the room!” is al-
lowed to infer that S is directing that someone to leave the room, and the request
(etc) is complied with just in case someone leaves the room. These strategies thus
allow to infer the force and the condition of satisfaction related to the uterrance.
Harnish suggests that this process proceed in two stages: ”first, there is an infer-
ence from form to expressed attitude; then there is an inference from expressed
attitude to force”. The expressed attitude of a declarative :φ is a believe that φ,
of an interrogative ?φ it is a desire that hearer tells whether that φ, and of an
imperative !φ it is a desire that hearer makes it the case that φ. Inferences to
(illocutionary) force in stage two then are restricted and only support inferences
to those speech acts whose conditions require the expressed attitude [20].

We adapt the proposal of Harnish here in two ways, which better meets our
pragmatic concerns to provide a relatively easy to understand semantics. First,
we do not want to complicate the representational means needed to express these
conditions, i.e. at this stage we do not want to complicate things by introducing
modal operators in the databases that agents maintain but leave this for future
work. The expressed attitudes that we propose therefore are as follows: upon
3 This notation has also been used by Pendlebury [21].



receiving a message :φ r concludes that sender s believes φ; from ?φ r concludes
that s does not know whether φ; and, from !φ r concludes that s has φ as a
goal, and does not believe φ to be the case. Second, we do not incorporate stage
two into our semantics. The actual conclusion as to which speech act has been
performed is left to the agent; that is, the programmer needs to either supply
the agent with explicit inference rules to derive speech act types, or leave these
implicit in the design of the agent (which we expect will be easier in practice). A
message of thus possibly allows for multiple interpretations as to which speech
act is performed [20].

We further motivate and illustrate this semantics briefly using an example
(see also [22]). Consider the utterance ”The house is white” and let p denote
the proposition that is expressed. In line with the strategies discussed above for
the literal and direct use of an utterance such as ”The house is white”, we have
chosen to incorporate effect 2 as the default interpretation in our semantics.
Obviously, this is not always a safe assumption to make, as the sender may be
lying, but it is also not overly presumptuous. Other ”effects” such an utterance
might have on the mental state of a receiver could be: (i) The receiver comes to
believe that the house is white, (ii) The receiver comes to believe that the sender
had the intention to make the receiver believe that the house is white,and (iii)
The utterance has no effect on the receiver, i.e. its mental state is not changed
as a result of the utterance. Even though each of these other interpretations may
be waranted given specific circumstances of the speaker and the hearer and the
knowledge they have about each other, these interpretations do not correspond
with the literal and direct use of an utterance [20]. In general, we consider effect
(i) too strong, as it implicitly assumes that the sender always convinces the
receiver; effect (ii) too indirect, and not very useful from a programmer’s point
of view either as rather involved reasoning on the part of the agent seems to be
required to make good use of such indirect conclusions about the sender’s state
of mind; and, finally, effect (iii) too weak, as it is not very useful for programming
communication among agents since no effect would occur.

Summarizing, the communication semantics that we propose records the ex-
pressed attitude of the sender in a mental model of that sender maintained by
the receiving agent. Declaratives express a belief of the sender, interrogatives
a lack of belief, and imperatives desires or goals. Messages thus never directly
impact the beliefs or goals of a receiving agent. We do allow, of course, that an
agent updates his own beliefs and goals using his model of that of other agents.
An agent also may use the mental models of other agents it maintains to decide
which action to perform next, which is illustrated in the program of section 5).

3.2 Conversations

A second contribution of this paper is the concept of a conversation to facilitate
the synchronization of actions and communication in a multi-agent system, which
is particularly important to coordinate agent activities.

As is well-known, in concurrent systems one needs mechanisms to ensure
that processes cannot access a particular resource simultaneously. A similar need



arises in multi-agent systems, but this has received little attention in the agent
programming community so far. Emphasis has been put on the fact that agent
communication is asynchronous. However, in order to ensure that only one agent
has access to a particular resource at any time, agents need to be able to coor-
dinate their activities and synchronize their actions.4 Of course, asynchronous
communication allows to implement synchronization between agents. We argue,
however, that it is useful to have predefined primitives available in an agent pro-
gramming language that facilitate coordination and synchronization, as is usual
in concurrent programming [23]. We introduce a mechanism that fits elegantly
into the overall setup of communication primitives introduced above, using the
notion of a conversation.

4 A Communication Semantics Based on Mental Models

In this section, we make the informal semantics discussed above precise in the
context of Goal.

4.1 Mental Models and Mental States

Mental models play a key role in this semantics and are introduced first. Goal
agents maintain mental models that consists of declarative beliefs and goals.
An agent’s beliefs represent its environment whereas the goals represent a state
of the environment the agent wants. Beliefs and goals are specified using some
knowledge representation technology. In the specification of the operational se-
mantics we use a propositional logic L0 built from a set of propositional atoms
Atom and the usual boolean connectives. We use |= to denote the usual conse-
quence relation associated with L0, and assume a special symbol ⊥ ∈ L0 which
denotes the false proposition. In addition, the presence of an operator ⊕ for
adding φ to a belief base and an operator 	 for removing φ from a belief base
are assumed to be available.5 A mental model associated with a Goal agent
needs to satisfy a number of rationality constraints.

Definition 1. (Mental Model)
A mental model is a pair 〈Σ,Γ 〉 with Σ,Γ ⊆ L0 such that:

• The beliefs are consistent: Σ 6|= ⊥
• Individual goals are consistent: ∀γ ∈ Γ : γ 6|= ⊥
• Goals are not yet (believed to be) achieved: ∀γ ∈ Γ : Σ 6|= γ

4 Note that perfectly symmetrical solutions to problems in concurrent programming are
impossible because if every process executes exactly the same program, they can never
‘break ties’ [23]. To resolve this, solutions in concurrency theory contain asymmetries
in the form of process identifiers or a kernel maintaining a queue.

5 We assume that Σ ⊕ φ |= φ whenever φ is consistent, and that otherwise nothing
changes, and that Σ 	 φ 6|= φ whenever φ is not a tautology, and that otherwise
nothing changes. Additional properties such as minimal change, etc. are usually
associated with these operators (see e.g. [24]) but not considered here.



In a multi-agent system it is useful for an agent to maintain mental models
of other agents. This allows an agent to keep track of the perspectives of other
agents on the environment and the goals they have adopted to change it. A
mental model maintained by an agent i about another agent j represents what
i thinks that j believes and which goals it has. Mental models of other agents
can also be used to take the beliefs and goals of these agents into account in its
own decision-making. An agent may construct a mental model of another agent
from the messages it receives from that agent or from observations of the actions
that that agent performs (e.g., using intention recognition techniques). Here we
focus on the former option.

We assume a multi-agent system that consists of a fixed number of agents.
To simplify the presentation further, we use {1, . . . , n} as names for these agents.
A mental state of an agent is then defined as a mapping from all agent names
to mental models.

Definition 2. (Mental State)
A mental state m is a total mapping from agent names to mental models, i.e.
m(i) = 〈Σi, Γi〉 for i ∈ {1, . . . , n}.

For an agent i, m(i) are its own beliefs and goals, which was called the agent’s
mental state in [25].

A Goal agent is able to inspect its mental state by means of mental state
conditions. The mental state conditions of Goal consist of atoms of the form
bel(i, φ) and goal(i, φ) and Boolean combinations of such atoms. bel(i, φ) where
i refers to the agent itself means that the agent itself believes φ, whereas bel(i, φ)
where i refers to another agent means that the agent believes that agent i believes
φ. Similarly, goal(i, φ) is used to check whether agent i has a goal φ.6

Definition 3. (Syntax of Mental State Conditions)
A mental state condition, denoted by ψ, is defined by the following rules:

i ::= any element from {1, . . . , n} |me | allother
φ ::= any element from L0

ψ ::= bel(i, φ) | goal(i, φ) | ψ ∧ ψ | ¬ψ

The meaning of a mental state condition is defined by means of the mental
state of an agent. An atom bel(i, φ) is true whenever φ follows from the belief
base of the mental model for agent i. An atom goal(i, φ) is true whenever φ
follows from one of the goals of the mental model for agent i. This is in line
with the usual semantics for goals in Goal, which allows the goal base to be
inconsistent (see [25] for details). Note that we overload |=.

Definition 4. (Semantics of Mental State Conditions)
Let m be a mental state and m(i) = 〈Σi, Γi〉. Then the semantics of mental state

6 In a multi-agent setting it is useful to introduce additional labels instead of agent
names i, e.g. me to refer to the agent itself and allother to refer to all other agents,
but we will not discuss these here in any detail.



conditions is defined by:

m |= bel(i, φ) iff Σi |= φ
m |= goal(i, φ) iff ∃γ ∈ Γi such that γ |= φ
m |= ¬ψ iff m 6|= ψ
m |= ψ ∧ ψ′ iff m |= ψ and m |= ψ′

4.2 Actions

Goal has a number of built-in actions and also allows programmers to introduce
user-specified actions by means of STRIPS-style action specifications. The pro-
gram discussed in Section 5 provides examples of various user-specified actions.
In the definition of the semantics we will abstract from action specifications
specified by programmers and assume that a fixed set of actions Act and a (par-
tial) transition function T is given. T specifies how actions from Act, performed
by agent i, update i’s mental state, i.e., T (i, a,m) = m′ for i an agent name,
a ∈ Act and m,m′ mental states. All actions except for communicative actions
are assumed to only affect the mental state of the agent performing the action.

The built-in actions available in Goal (adapted to distinguish between men-
tal models) that we need here include ins(i, φ), del(i, φ), adopt(i, φ), drop(i, φ)
and communicative actions of the form send(i,msg) where i is an agent name
and msg is a message of the form :φ, ?φ or !φ. The semantics of actions from
Act and built-in actions performed by agent i is formally captured by a mental
state transformer function M defined as follows:

M(i, a,m) =
{
T (i, a,m) if a ∈ Act and T (i, a,m) is defined
undefined otherwise

M(i, ins(j, φ),m) = m⊕j φ
M(i,del(j, φ),m) = m	j φ

M(i,adopt(j, φ),m) =
{
m ∪j φ if φ is consistent and m 6|= bel(i, φ)
undefined otherwise

M(i,drop(j, φ),m) = m−j φ
M(i, send(j,msg),m) = m

where m×j φ means that operator × ∈ {⊕,	,∪,−} is applied to mental model
m(j), i.e. m ×j φ(i) = m(j) × φ and m ×j φ(k) = m(k) for k 6= j. To define
the application of operators to mental models, we use Th(T ) to denote the
logical theory induced by T , i.e. the set of all logical consequences that can
be derived from T . Assuming that m(i) = 〈Σ,Γ 〉, we then define: m(i) ⊕ φ =
〈Σ ⊕ φ, Γ \ (Th(Σ ⊕ φ)〉, m(i)	 φ = 〈Σ 	 φ, Γ 〉, m(i) ∪ φ = 〈Σ,Γ ∪ {φ}〉, and
m(i) − φ = 〈Σ,Γ \ {γ ∈ Γ | γ |= φ}〉. Note that sending a message does not
have any effect on the sender. There is no need to incorporate any such effects in
the semantics of send since such effects may be programmed by using the other
built-in operators.

It is useful to be able to perform multiple actions simultaneously and we
introduce the + operator to do so. The idea here is that multiple mental actions
may be performed simultaneously, possibly in combination with the execution



of a single user-specified action (as such actions may have effects on the ex-
ternal environment it is not allowed to combine multiple user-specified actions
by the + operator). The meaning of a + a′ where a, a′ are actions, is defined
as follows: if M(i, a,m) and M(i, a′,m) are defined and M(i, a′,M(i, a,m)) =
M(i, a,M(i, a′,m)) is a mental state, then M(i, a+a′,m) = M(i, a′,M(i, a,m));
otherwise, a+ a′ is undefined.

In order to select actions for execution, an agent uses action rules of the form
if ψ then a, where a is a user-specified action, a built-in action, or a combination
using the +-operator. An agent A is then a triple 〈i,m,Π〉 where i is the agent’s
name, m is the agent’s mental state, and Π is the agent’s program (a set of
action rules).

4.3 Operational Semantics: Basic Communication

We first introduce a single transition rule for an agent performing an action.
Transitions “at the agent level” are labelled with the performed action, since this
information is required “at the multi-agent level” in the case of communication.

Definition 5. (Actions)
Let A = 〈i,m,Π〉 be an agent, and if ψ then a ∈ Π be an action rule.

m |= ψ M(i, a,m) is defined

m
a−→M(i, a,m)

Using Plotkin-style operational semantics, the semantics at the multi-agent
level is provided by the rules below. A configuration of a multi-agent system
consists of the agents of the multi-agent system {A1, . . . ,An} and the environ-
ment E, which is used to store messages that have been sent and are waiting for
delivery.7 The environment is used to model asynchronous communication, i.e.,
no handshake is required between sender and receiver of a message. Transitions
at the multi-agent level are not labelled. Actions other than the send action
only change the agent that executes them, as specified below.

Definition 6. (Action Execution)
Let “a” be an action other than send(j,msg).

Ai
a−→ A′i

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,A′i, . . . ,An, E

The following transition rule specifies the semantics of sending messages.

Definition 7. (Send)

Ai
send(j,msg)−→ Ai

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,Ai, . . . ,An, E ∪ {send(i, j,msg)}
7 Other aspects of the environment might also be modeled, but that is beyond the

scope of this paper.



The premise of the rule indicates that agent Ai sends a message to agent Aj .
To record this, send(i, j,msg) is added to the environment, including both the
sender i and the intended receiver j. Also note that a message that is sent more
than once has no effect as the environment is modeled as a set here (this is the
case until the message is received).8

Three rules for receiving a message are introduced below, corresponding to
each of the three message types. In each of these rules, the conclusion of the
rule indicates that the mental state of the receiving agent is changed. If agent
j receives a message from agent i that consists of a declarative sentence, it has
the effect that the mental model m(i) of the mental state of the receiver j is
modified by updating the belief base of m(i) with φ. In addition, any goals in the
goal base of m(i) that are implied by the updated belief base are removed from
the goal base to ensure that the rationality constraints associated with mental
models are satisfied.

Definition 8. (Receive: Declaratives)

send(i, j, :φ) ∈ E
A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j, :φ)}

where:

– m′(i) = 〈Σ ⊕ φ, Γ \ Th(Σ ⊕ φ)〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k 6= i.

The condition m′(k) = m(k) for k 6= i ensures that only the mental model
associated with the sender i is changed.

The rule below for interrogatives formalizes that if agent i communicates a
message ?ϕ of the interrogative type, then the receiver j will assume that i does
not know the truth value of φ. Accordingly, it removes φ using the 	 operator
from the belief base in its mental model of agent i to reflect this.

Definition 9. (Receive: Interrogatives)

send(i, j,?φ) ∈ E
A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j,?φ)}

where:

– m′(i) = 〈(Σ 	 φ))	 ¬φ, Γ 〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k 6= i.

8 The implicit quantifier allother may be used to define a broadcasting primitive:

broadcast(msg)
df
= send(allother,msg). In the rule above, in that case, for all

i 6= j send(i, j,msg) should be added to E, but we do not provide the details here.



Remark An alternative, more complex semantics would not just conclude that
agent i does not know φ but also that i wants to know the truth value of φ,
introducing a complex proposition Kiφ into the model of the goal base of that
agent. As explained above, this would require including modal operators Kiφ in
the goal base, and we leave such complications for future work.

The rule below for imperatives formalizes that if agent i communicates a
message !φ with imperative mood operator, then the receiver j will conclude
that i does not believe φ, and also that φ is a goal of i. Accordingly, it removes
φ using the 	 operator and adds φ to its model of the goal base of agent i.

Definition 10. (Receive: Imperatives)

send(i, j, !φ) ∈ E
A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j, !φ)}

where:

– m′(i) = 〈Σ 	 φ, Γ ∪ {φ}〉 if φ 6|= ⊥ and m(i) = 〈Σ,Γ 〉;
otherwise, m′(i) = m(i).

– m′(k) = m(k) for k 6= i.

Note that this semantics does not refer to the actual mental state of the
sender, nor does it define when a sender should send a message or what a receiver
should do with the contents of a received message (other than simply record it
in its mental model of the sending agent).

4.4 Operational Semantics: Conversations

As explained, the idea of a conversation is that an agent can engage only in a
limited number of conversations at the same time. By viewing a conversation as
a resource, the number of conversations that an agent can participate in simul-
taneously thus introduces a limit on access to that resource. For our purposes,
it suffices to restrict participation to at most one conversation at any time.

More specifically, a parameter representing a unique conversation identifier
can be added when sending a message, i.e., send(c : j,msg) specifies that the
message msg should be sent to agent j as part of the ongoing conversation c. We
also allow conversations with groups of more than two agents which is facilitated
by allowing groups of agent names {. . .} to be inserted into send(c : {. . .},msg).
A message that is sent as part of an ongoing conversation c is handled similarly
to a message that is not part of a specific conversation. Whenever a conversation
c has been closed (see below), sent messages that are intended to be part of that
conversation are “lost”, i.e. nothing happens. To initiate a conversation, the
term new can be used instead of the conversation identifier. That is, whenever
an agent i performs a send(new : g,msg) action where g is an agent or a
group of agents, agent i initiates a new conversation. Because agents can only
engage in a limited number of conversations at the time, it may be that an
initiated conversation is put on hold initially because one of the agents that
should participate already participates in another conversation.



Semantically, to be able to model that a conversation is ongoing, we split the
environment into a set A of active conversations, a queue Q of pending conver-
sations, and a set M of other pending messages. A message to initiate a new
conversation is added to the queue if at least one agent that should participate
is already present in the set A or the queue Q. The check on Q guarantees that
a conversation is not started when another conversation requiring the participa-
tion of one of the same agents is still on hold in the queue (“no overtaking takes
place”). Otherwise, the message is directly added to the set of active conversa-
tions.

Whenever a message send(c : i, g,msg) that initiated a conversation is part
of the set A, written c ∈ A, we will say that conversation c is ongoing, and
when such a message is part of the queue Q, written c ∈ Q, we will say that
conversation c is put on hold. Since the rules for receiving messages remain
essentially the same, we only provide the rules for sending a message at the
multi-agent level. The following rule specifies the semantics of sending a message
that is part of an ongoing conversation.

Definition 11. (Send: Ongoing Conversation)

Ai
send(c:j,msg)−→ A′i c ∈ A

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′i, . . . ,An, 〈A,Q,M ′〉

where M ′ = M ∪ {send(c : i, j,msg)}.

The following transition rule specifies the semantics of messages that are used to
initiate conversations. We use + (e.g., Q+send(c : i, g,msg)) to add a message
to the tail of a queue. The set of active conversations A and the queue Q store
information about participants in conversations, as this may be derived from
send(c : i, g,msg), where agents i and g are participants. We write agent(A,Q)
to denote the set of agents in A and Q. The reserved new label is used to have
the system automatically generate a new conversation identifier.

Definition 12. (Send: Initiating a Conversation)
Let g be a set of agent names, and c a new conversation identifier not yet present
in A or Q.

Ai
send(new:g,msg)−→ A′i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′i, . . . ,An, 〈A′, Q′,M ′〉

where if ({i}∪g)∩agents(A,Q) = ∅ then A′ = A∪{send(c : i, g,msg)}, Q′ = Q
and M ′ =

⋃
k∈g send(c : i, k,msg), and otherwise A′ = A, Q′ = Q + send(c :

i, g,msg), and M ′ = M .

This semantics specifies that we cannot simply allow a conversation between two
agents to start when these agents are not part of an ongoing conversation, as
this may prevent a conversation between another group of agents involving the
same agents from ever taking place. The point is that it should be prevented



that “smaller” conversations always “overtake” a conversation between a larger
group of agents that is waiting in the queue.

As conversations are a resource shared at the multi-agent level, it must be
possible to free this resource again. To this end, we introduce a special action
close(c) which has the effect of removing an ongoing conversation from the
set A and potentially adding conversations on hold from the queue Q to A.
This is the only essentially new primitive needed to implement the conversation
synchronization mechanism.

We need an additional definition: we say that F is a maximal fifo-set of
messages derived from a queueQ relative to a set of agent names Agt if F consists
of all messages send(c : i, g,msg) from Q that satisfy the following constraints:
(i) ({i} ∪ g) ∩ Agt = ∅, and (ii) there is no earlier message send(c′ : i′, g′,msg′)
in the queue Q such that ({i} ∪ g) ∩ g′ 6= ∅.

Definition 13. (Send: Closing a Conversation)

Ai
close(c)−→ A′i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′i, . . . ,An, 〈A′, Q′,M〉

where, assuming that F is the maximal fifo-set derived from Q relative to
agents(A), if send(c : i, g,msg) ∈ A then A′ = (A \ {send(c : i, g,msg)}) ∪ F
and Q′ = Q \ F , and otherwise A′ = A and Q′ = Q.

Note that the transition rule for closing a conversation only allows the initia-
tor of a conversation, i.e. agent Ai, to close the conversation again. (Otherwise
agents that want to start their own conversation immediately might try to get
it going by closing other conversations.) Finally, as it is important that the ini-
tiating agent as well as other participating agents are aware that a conversation
has started or is ongoing, we assume a special predicate conversation(c, i) is
available, where c denotes a unique conversation identifier and i the initiating
agent, which can be used in the belief base of an agent to verify whether a con-
versation is ongoing or not. We do not provide the formal details here due to
space restrictions (see the next section for an example).

5 The Dining Philosophers

The dining philosophers is a classic problem in concurrency theory [23]. In the
Table below, a complete Goal program (for one of the philosopher agents) is
listed that implements a solution. The currently implemented version of Goal
uses Prolog as a knowledge representation language, which we also use here. We
use numbers to refer to the action rules of the Goal program.

A number of philosophers are sitting at a round table where they each engage
in two activities: thinking and eating (1,2). Our philosophers only think when
they are not hungry and get hungry after thinking a while (see the action spec-
ifications). At the table an unlimited supply of spaghetti is available for eating.
A philosopher needs two forks, however, to be able to eat (3). Forks are available



as well, but the number of forks equals the number of philosophers sitting at the
table (one fork is between each two philosophers). It is thus is never possible for
all of the philosophers to eat at the same time and they have to coordinate. The
problem is how to ensure that each philosopher will eventually be able to eat.

main i { % i, a number between 1 and N, is the name of the philosopher agent
knowledge{

neighbour(X,left) :- i>1, X is i-1.
neighbour(X,left) :- i=1, X is N. % N is the number of philosophers.
neighbour(X,right) :- i<N, X is i+1.
neighbour(X,right) :- i=N, X is 1.
neighbours(X,Y) :- neighbour(X,left), neighbour(Y,right).
forkAvailable(D) :- hold(fork,D) ; on(fork,table,D).
forksAvailable :- forkAvailable(left), forkAvailable(right).

beliefs{ hold(fork,left). }
goals{ hold(fork,left), hold(fork,right). }

program{
1. if true then think. % can only think when not hungry (see action spec)
2. if true then eat. % can only eat when hungry and holding forks

3. if bel(hungry) then adopt(hold(fork,left), hold(fork,right)).

% Initiate conversation with neighbors if you want to eat but forks are not
% available by sending an imperative: See to it that I hold the fork.
4. if goal(hold(fork, )), bel(not(forksAvailable), neighbours(X,Y))

then send(new:{X,Y},!hold(fork)).

% Ongoing conversation initiated by philosopher itself.
% Only in this case the philosopher will pick up forks.
5. if bel(neighbour(X,D), not(hold(fork,D))), bel(X, on(fork,table))

then ins(on(fork,table,D)).
6. if bel(conversation(Id,i)) then pickUp(fork,D) + send(Id:X, .hold(fork)).
% Close the conversation if I hold both forks and neighours have noticed this.
7. if bel(conversation(Id,i), hold(fork,left), hold(fork,right), neighbours(X,Y))

bel(X,not(on(fork,table))), bel(Y,not(on(fork,table)))
then close(Id).

% Ongoing conversation initiated by a neighbouring philosopher
% Only in this case a philosopher will put down a fork.
8. if bel(conversation(Id,X)), goal(X, hold(fork))

then putDown(fork,D) + send(Id:X, .on(fork,table), not(hold(fork))).
9. if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))

then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).
}
action-spec{

think{pre{not(hungry)}post{hungry}}
pickUp(fork,D){pre{on(fork,table,D)}post{hold(fork,D),not(on(fork,table,D))}}
eat{pre{hungry,hold(fork,left), hold(fork,right)}post{not(hungry)}}
putDown(fork, D){pre{hold(fork,D)}post{on(fork,table,D),not(hold(fork,D))}}

}
}

The solution uses the conversational metaphor for coordinating activities. In
the solution we present, the dining philosophers are assumed to be decent agents
that are always willing to listen to the needs of their fellow philosophers at the
table, and provide them with the forks when they indicate they require the forks
to eat. If a philosopher needs the forks to eat but they are not available, he
will initiate a conversation with his neighbors and indicate that he needs the



forks (4).9 According to Definition 12, a conversation will be started if no con-
versation initiated by the agent is part of the queue or ongoing, thus preventing
a philosopher from continuously asking for the forks. Each of the philosophers
competing for the works will thus be able to initiate at most one conversation
to aks for works, which are ordered automatically in the queue and the request
to start a conversation thus will be eventually initiated. If a philosopher i is
eating and receives a request for forks from a fellow philosopher X as part of a
new conversation, i will finish eating and put down the fork in between X and
himself and notify X of this fact (8). A philosopher i will put down a fork only
upon being requested. As long as the conversation is ongoing, i will not pick
up the fork again. The philosopher that initiated the conversation will pick up
the fork after being informed by his neighbor that the fork is on the table (6).10

The initiator of the conversation informs his neighbors that he picked up the
fork (6). Upon receiving a message from both neighbors that they do not know
whether the fork is on the table or not (reflected in the mental models of the
neighbors), the initiator closes the conversation (7), and another conversation
involving one of the philosophers may be started. Rules 5 and 9 are used to
update the philosopher’s own beliefs on the basis of its mental models of other
philosophers (which are changed due to the sending of messages).

6 Conclusion

In this paper, we have introduced an alternative semantics for communication
in agent programming languages, based on the idea that a received message can
be used to (re)construct a mental model of the sender. We have made this idea
precise for the Goal agent programming language. Also, we have introduced
the concept of a conversation to synchronize actions and communication in a
multi-agent system. We have shown how these new constructs can be used to
program a solution for a classic problem in concurrency theory. We are currently
implementing these ideas to allow further experimentation and testing.

References

1. Austin, J.: How to Do Things with Words. Oxford University Press, London (1962)
2. Searle, J.: Speech acts. Cambridge University Press (1969)
3. Labrou, Y., Finin, T.: A semantics approach for KQML - a general purpose com-

munication language for software agents. In: Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94), ACM (1994)

4. FIPA: Fipa communicative act library specification. Technical Report SC00037J,
Foundation for Intelligent Physical Agents, Geneva, Switzerland (2002)

9 In the sent messages the direction of the forks (left, right) has been dropped as this
is just a matter of perspective, useful for keeping track of which fork has been picked
up or put down from a single philosopher’s perspective. From the point of view of
two philosophers, a fork is just “in between” them.

10 In fact, only when having initiated a conversation to require the forks, will a philoso-
pher pick up a fork in our solution.



5. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

6. Braubach, L., Pokahr, A., Lamersdorf, W. In: Software Agent-Based Applications,
Platforms and Development Kits

7. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents -
summary of an agent infrastructure. In Wagner, T., Rana, O.F., eds.: Proceedings
of the 5th ACM International Conference on Autonomous Agents, Workshop on
Infrastructure for Agents, MAS and Scalable MAS. (2001) 251 257

8. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent Program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401

9. Dastani, M.: 2APL: a practical agent programming language . Journal Autonomous
Agents and Multi-Agent Systems 16(3) (2008) 214–248

10. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.: Formal Semantics of Speech-
Act Based Communication in an Agent-Oriented Programming Language. Artifi-
cial Intelligence Research 29 (2007) 221–267

11. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-Agent Pro-
gramming: Languages, Tools and Applications. Springer (2009) 119–157

12. A. Ricci, M.V.V., Piancastelli, G.: simpa: A simple agent-oriented java extension
for developing concurrent applications. In: Proc. of the Workshop on Languages,
Methodologies and Development Tools for MAS (LADS’007). (2007) 176–191

13. Singh, M.: Agent Communication Languages: Rethinking the Principles. IEEE
Computer 31(12) (1998) 40–47

14. Wooldridge, M.: Semantic Issues in the Verification of Agent Communication
Languages. Autonomous Agents and Multi-Agent Systems 3(1) (2000) 9–31

15. Colombetti, M.: A commitment–based approach to agent speech acts and conver-
sations. In: Proc. Workshop on Agent Languages and Communication Policies, 4th
International Conference on Autonomous Agents (Agents 2000). (2000) 21–29

16. Singh, M.: A social semantics for agent communication languages. In: Issues in
Agent Communication, Springer-Verlag (2000) 31–45

17. Chopra, A., Singh, M.: Constitutive interoperability. In: Proceedings of the 7th
International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’08). (2008) 797–804

18. Boella, G., Damiano, R., Hulstijn, J., van der Torre, L.: Role-based semantics
for agent communication: embedding of the ’mental attitudes’ and ’social commit-
ments’ semantics. In: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems. (2006) 688–690

19. Bach, K., Harnish, R.M.: Linguistic Communication and Speech Acts. The MIT
Press (1979)

20. Harnish, R.M.: Mood, Meaning and Speech Acts. In: Foundations of Speech Act
Theory: Philosophical and Linguistic Perspectives. Routledge (1994) 407–459

21. Pendlebury, M.: Against the power of force: reflections on the meaning of mood.
Mind 95 (1986) 361–372

22. Wooldridge, M.: An introduction to multiagent systems. John Wiley and Sons,
LTD, West Sussex (2002)

23. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice
Hall (1990)

24. Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States.
MIT Press (1988)

25. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic 5(2)
(2007) 277–302


