
Avoiding Approximation Errors in Multi-Issue Negotiation

with Issue Dependencies
Koen Hindriks

Man-Machine Interaction Group

Delft University of Technology

Mekelweg 4, Delft, The Netherlands

+31.15.2781315

k.v.hindriks@tudelft.nl

Catholijn Jonker
Man-Machine Interaction Group

Delft University of Technology

Mekelweg 4, Delft, The Netherlands

+31.24.2782523

c.m.jonker@tudelft.nl

Dmytro Tykhonov
Man-Machine Interaction Group

Delft University of Technology

Mekelweg 4, Delft, The Netherlands

Telephone number, incl. country code

d.tykhonov@tudelft.nl

ABSTRACT

Searching for good bids in a utility space based on multiple,

dependent issues in general is intractable. Tractable algorithms do

exist for independent issue sets, so one idea is to eliminate the

dependencies by approximating the more complex utility space

with issue dependencies. It has been shown that an approximation

may give reasonable results when some structural features of the

negotiation domain and preference profile are exploited. Of

course, there is a risk that approximation results in significantly

different negotiation outcomes. In this paper, we present a

checking procedure to mitigate this risk and show that by tuning

the parameters of this procedure the outcome deviation can be

controlled. These parameters allow for a trade-off between

computational cost and accuracy of negotiation outcome. Based

on experimental results we propose specific values for the

parameters of the checking procedure that provide a good balance

between computational costs and accuracy. Additionally, we show

how different values of these parameters influence the

computational costs of negotiating multiple issues with

dependencies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

--- intelligent agents, multi-agent systems.

General Terms

Algorithms, Performance, Economics, Experimentation, Theory.

Keywords

Efficient multi-issue negotiation, issue dependencies, tunable

algorithm, approximating utility spaces.

1. INTRODUCTION
Negotiation is a process by which a joint decision is made by two

or more parties (cf. [10]). The parties or agents first express

conflicting demands and then move towards agreement by a

process of concession making. During the negotiation both agents

make various offers, called bids, to each other that more or less

match with their own preferences. The negotiation outcome is

either a failure, or a deal, i.e., a bid accepted by all parties. If

multiple issues are at stake then these issues may need to be

negotiated simultaneously and the bids made may vary on each of

these issues.

One of the complicating factors in a computational approach to

negotiation is that the value associated with a bundle of multiple

issues may not be a simple function of the value associated with

individual issues. In [10], Raiffa explains how to mathematically

model a preference profile of an agent that can be used during the

negotiation to determine the utility of exchanged bids. The

representation of an agent’s preferences by mathematical

functions, called utility functions, which map values of issues to

the utility of bids, i.e. bundles of issue values, allows the

development of software support for negotiations. In negotiation

domains with issue dependencies which influence the overall

utility of a bid, however, the utility space is non-linear in the

issues (cf. [1]). In [7], Klein et al. show that in that case there is

no efficient method to compute alternative bids during a

negotiation, even if the agent tries to guess the opponent’s profile.

Some proposals have been made to reduce the computational

complexity of multi-issue negotiation with issue dependencies.

For example, [7] propose the use of a mediator which may be

more computationally efficient when both agents in a negotiation

reveal their preferences to this mediator. An alternative,

interesting option is to investigate the complexity of the utility

space itself and try to eliminate the dependencies between issues.

In [5], an approximation method is proposed to eliminate issue

dependencies, see Figure 1. This method exploits some structural

features of preference profiles of agents to approximate the

original profile. The resulting approximated utility function

without dependencies can be handled by negotiation algorithms

that can efficiently deal with independent multiple issues and have

a polynomial time complexity (see e.g. [6]).

It is clear that the method proposed in [5] removes the

computational intractability of multi-issue negotiation with issue

dependencies by transforming the original profile input to one that

can be linearly decomposed. Tested over numerous random spaces

of interdependent issues, the negotiation outcome using this

approximation is reasonably good, see [5]. The negotiation

outcome, however, does not only depend on the preference profile

but also on the process of negotiation itself. It is to be expected

that the risk of obtaining a bad outcome due to the use of an

approximation cannot be avoided completely even if the

approximation is quite good.

In this paper, we analyze the risk of a bad negotiation outcome

when using an approximation of the agent’s preference profile. It

turns out that in some domains this risk may still be unreasonably

high. The results show that using the approximated space a bid

might be proposed that in the original utility space would have a

too low utility. The risk of such an erroneous bid can be quite

high and, as a consequence, the risk of obtaining a bad negotiation

outcome is significant. In order to control this risk, we therefore

also have to look at the process of negotiation. More precisely, we

investigate a way to incorporate a method to control the risk of an

erroneous bid in the negotiation algorithm itself. This paper

presents a checking procedure to control the risk of erroneous

bids which can be incorporated in any negotiation algorithm.

Negotiation
Algorithm

WAID

Original Utility Space Approximated Space

Scope of the paper

Figure 1. Multi-issue negotiation with issue dependencies

using approximated utility spaces

Of course, this checking procedure introduces some additional

computational costs. A procedure that completely eliminates the

risk of erroneous bids, moreover, would make the negotiation

process intractable again. One of the main contributions of this

paper is that it shows that a trade-off can be made between

computational efficiency and approximation accuracy, which is

directly related to the negotiation outcome. The parameters of the

checking procedure allow the tuning of a negotiation algorithm to

increase either the computational efficiency or decrease the risk of

erroneous bids. Derived from experimental results, we propose

specific values for these parameters that ensure a reasonable

balance between computational costs and outcome deviation (in

terms of utility) in many domains. Finally, we present

experimental results that show that the approach of adding a

checking procedure to the negotiation algorithm is scalable and

allows an agent to negotiate about high-dimensional utility spaces.

The paper is organized as follows. First, some of the basic notions

to model preference profiles that characterize our approach to

multi-issue negotiation are introduced. In section 3 a brief

overview of the approximation method for eliminating issue

dependencies is presented. Then in section 4 the outcome

deviation that results from using an approximated space as input

for a negotiation algorithm is analyzed and the need for an

additional method to prevent erroneous bids is argued for. In

section 5, the negotiation algorithm is adapted by incorporating a

checking procedure. Successively, the performance of this adapted

negotiation algorithm is investigated. Experimental results are

presented that confirm that a significant improvement can be

obtained by incorporating the checking procedure. The impact of

the checking procedure is analyzed in Section 6. The impact of on

the computational tractability of the negotiation algorithm is

investigated in Section 7. Section 6 shows that by varying certain

parameters of the method a trade-off can be made between

outcome deviation, caused by erroneous bids, and computational

costs. Furthermore, specific values for these parameters of the

checking procedure are proposed to obtain a good balance.

Finally, section 9 concludes the paper.

2. MODELING ISSUE DEPENDENCIES
The overall utility of a set of independent issues can be computed

as a weighted sum of the values of each of the issues by

associating an evaluation function with each issue variable (see

e.g. [6, 10]). The properties of the utility function are derived

from these evaluation functions which map issue values on a

closed interval [0; 1]. This model, represented in equation (1), can

be used for issue values that are numeric (e.g. price, time) as well

as for issue values that are discrete (e.g. colors, brands).

∑
=

=
n

i

iiin
xevwxxu

1

1)(),...,(
(1)

Equation (1) cannot be used, however, for modeling dependencies

between issues and equation (1) needs to be generalized to

equation (2) (cf. also [1]). Of course, the value of an issue does

not need to depend on all other issues and subsets of dependent

issues will have to be considered to model individual examples.

∑
=

=
n

i

niin xxevwxxu
1

11),...,(),...,((2)

The representation of a utility space with non-linear issue

dependencies as in equation (2) is similar to the model proposed

in [7]. The main difference is that instead of considering only

binary issue values, we allow multi-valued, discrete, as well as

continuous issue ranges.

The complexity of a utility function determines the computational

complexity of the negotiation process. One of the main problems

in dependent multi-issue negotiation is the computational

complexity associated with searching for appropriate bids in the

corresponding utility spaces. In case a utility function of multiple

issues is non-linear in these issues, i.e. there are issue

dependencies, finding a particular bid in the utility space is

intractable.

3. APPROXIMATING UTILITY SPACES
To experimentally determine the need for, and later, to assess the

effectiveness of including our checking procedure in negotiations

in which approximated utility spaces are used, we need a

functioning approximation method and an implemented

negotiation strategy.

This section provides a brief overview of the WAID-

approximation technique of [5]. The WAID-method transforms a

utility space with issue dependencies into a space without such

dependencies to meet the input requirements of efficient multi-

issue negotiation algorithms, see Figure 1. The WAID-method is

explained only to the detail necessary to understand the problem

of approximations and in order to understand that using a checker

in the negotiation algorithm would diminish the risk of erroneous

bids. More details can be found in [5].

The main idea of the WAID-method is that structural features of

the negotiation domain and utility functions with issue

dependencies can be exploited to approximate a preference profile

and eliminate issue dependencies. It also seems that humans tend

to simplify the structure of their preferences and prefer to

negotiate one issue at a time [13].

Formally, the objective of the WAID-method is to transform a

utility space u(x1,…,xn) based on dependent issues as represented

by equation (2) to a utility space u’(x1,…,xn) without such

dependencies that can be represented by equation (1). The

transformation consists of approximating each of the evaluation

functions evi(x1,…,xn) by a function ev’i(xi) in which the

influence of the values of other issues xj, j≠i, on the associated

value evi(x1,…,xn) have been eliminated.

The heart of the WAID-method is a weighted averaging

technique. The dedication of WAID to utility spaces for

negotiation shows in it’s exploitation of some general and, if

available, additional domain specific insight into negotiation.

These insights concern the relative importance of bids and what

utility can reasonably be expected of an outcome of a negotiation.

The WAID-method looks only into the utility space of the agent

and does not require any information about the opponent It

consists of 4 steps. The first step is to estimate an expected

outcome utility, called m-point. The m-point later serves as a

focus point for the approximation. Secondly, an evaluation of the

type of approximation that best fits the case at hand is made. This

second step is not elaborated here. Third, the actual

approximation is computed. In the last step the difference of the

original and approximated utility space is determined. Depending

on this analysis, negotiators can decide to use the approximation

or not in their negotiation algorithm.

Estimate an Expected Outcome Utility

In the first step, the expected utility of the outcome is estimated.

This estimate is called the m-point and is used to define a region

in the utility space where the actual outcome is expected to be.

The m-point is used to feed information about the final goal of

negotiation, i.e., the utility of the outcome, into the approximation

technique used to transform the utility space.

For multi-issue negotiation in general we may assume that the

expected outcome of the negotiation is located somewhere in the

open utility interval (0.5; 1), say 0.75. Lower than 0.5 would not

be accepted by the agent, and 1 is the maximal utility. The

approximation should be most accurate in that interval, and

especially around the m-point, because those points are most

important for getting a good negotiation outcome. An experienced

agent or one with additional knowledge about the domain can

narrow the interval of the m-point.

Choice of Weighting Function

The next step is to define a weighting function ψ. An agent may

be more or less uncertain, about its estimate of the m-point and

therefore, also of the corresponding interval. The weighting

function ψ is chosen such that the approximation is most accurate

in the region(s) of the utility space corresponding to that interval.

Computing the Approximation

The third step is to calculate an approximation of the original

utility space based on non-linear issue dependencies using the m-

point and the weighting function as defined in the previous steps.

The result of this step is a utility space that can be defined as a

weighted sum of evaluations of independent issues, i.e., of the

form of equation (1). The WAID-method multiplies each

evaluation value with its corresponding weight and then averages

the resulting space by integration. Additionally the weighting is

normalized over the interval of integration, see equation (3). V

denotes the range of integration and is a volume of n-1

dimensionality build from the issue dimensions {x1,x2,…,xi-

1,xi+1,…,xn}. Of course, not all issues have to depend on all others

and some issue variables may be dropped from the equation in

that case. The approximation technique can be applied

sequentially for each issue variable which involves dependencies

between issues.

()
() ()

∫

∫
=′

V

n

V

nin

ii

dVxx

dVxxevxxx

xve

),...,(

,..,,..,,

1

121

ψ

ψ

(3)

There are no strict restrictions for types the utility spaces with

issue dependencies to be approximated by the WAID method. The

only restriction is that the utility function with the dependencies

must be integrable as well as the product of the utility function

and the weighting function.

The approximation of the utility space modeling an agent’s may

more or less differ from the original utility space, but always will

introduce errors in the associated utility of a bid. As a result, in a

negotiation, bids selected by using the approximated space may

deviate from the actual utility in the original space. Such bids in

turn may become a final deal. If the deviation is quite big,

however, the outcome may not be acceptable in the end to the

agent. But how big is that risk? To understand the risks,

experimentation is necessary. To be able to experiment,

comparable negotiations must be performed with the original and

with the approximated utility space. To be comparable, a

particular negotiation strategy must be applied in both cases. The

next section discusses such a strategy and presents the results of

its application in a thorough experiment to understand the risks of

using an approximated space. Since the risk is real, we then

investigate in Section 5 and after whether a controlled trade-off

between computational complexity and accuracy of the

negotiation strategy can be incorporated into a negotiation

algorithm.

Negotiation Algorithm Used by Agent B

Initialization: set initial utility to maximum of U’B.

1 Evaluate bid bid
A
(i) received from opponent A:

Accept and end negotiation if UB(bidA
 (i))>UB(bidB(i))

2
Compute concession and target utility:

Concession γ = β*(1-µ/ UB(bidB
 (i)))*(UB(bidA

 (i))-UB(bidB(i)))

Target Utility τ = UB(bidB
 (i))+γ

3
Determine a next bid:

Find a bid bidB(i+1) such that U’B(bidB
 (i+1)) = τ

4 Send bid to opponent.

Table 1. ABMP negotiation algorithm for approximations

4. NEGOTIATION ALGORITHM
The negotiation algorithm that is used plays a key role in

obtaining a good negotiation outcome. The approximation of a

preference profile allows an agent to more efficiently compute

good bids during negotiation, but does not in itself provide a

guarantee that against arbitrary opponents a good negotiation

outcome will be reached. More insight is required to assess the

effects of using approximations of real preference profiles.

As a first step, therefore, we analyze the effects of using

approximated utility spaces as substitutes for the original spaces.

To perform such an analysis, we use a negotiation algorithm that

corresponds to the ABMP-strategy of [6], but other strategies

could have been used as well. The algorithm is outlined in Table

1. It is assumed that negotiation proceeds between agents A and

B. In Table 1, the perspective of agent B, that uses the

approximated space U’B, is provided. The original space of agent

B is indicated by UB.

The negotiation strategy can be outlined in the following way. In

step 1, any previous bid of the opponent A is evaluated and

accepted if it exceeds the bid of agent B in the last round. If an

agreement cannot yet be reached, the ABMP-strategy determines

a next bid to offer in two steps: the strategy first (step 2)

determines the target utility for the next bid based on a

computation of a concession step, and then (step 3) determines a

bid that has that target utility. Step 3 of the strategy is very

efficient for utility spaces without issue dependencies. It is in this

step that the approximated utility space U’B has to be used. Note

that the approximated utility space U’ is only used in the

initialization and in step 3 since its purpose is to speed up the

negotiation. In the other steps the computations that involve the

original space are computationally cheap. In step 4, finally, the

computed bid is sent to the opponent for evaluation.

The ABMP negotiation algorithm is used to assess the outcome

deviation that may occur when an approximated space is used

instead of the original space during a negotiation. In the

experiments that were performed agent A also uses a variant of

the ABMP strategy but does not approximate any issue

dependencies in its utility space. Instead it uses exhaustive search

through its utility space in step 3 to determine a next bid given a

suitable discretization of this space (i.e. using small enough

steps).To compare outcomes for utility spaces of medium size, the

same negotiation is performed again with agent B using

exhaustive search in step 3. Of course, exhaustive search can only

be used for utility spaces of medium size due to exponential time

costs and memory limitations. It is, however, imperative to use it

if we want to calculate outcome deviation. In the experiments,

spaces with up to a number of 5 issues and a number of

discretization steps of at most 25 have been used (see also Section

6 and 7). Agent A always begins the negotiation by proposing an

initial bid.

To analyze the impact of the weighted averaging method on the

negotiation outcome a probabilistic experimental setup has been

used. The negotiation outcomes obtained by using the

approximation method are compared with those obtained using

the original utility space. The experimental results are obtained

from utility spaces modeled by multivariate quadratic

polynomials. These polynomials may have multiplicative terms

xixj which represent issues. It is well-known that solving such

quadratic programming problems is NP-hard, see e.g. [3]. In the

experiments utility spaces have been randomly generated. The m-

point parameter that has to be fixed in order to apply the WAID-

method is determined for each utility space by a Monte-Carlo

method.

The main result of the experiments performed shows that the

distribution of negotiation outcome deviations is similar to a

normal distribution with a mean value close to zero. Figure 2

presents the distribution of outcome deviations for a negotiation

about 4 issues. The deviation is a result of using the approximated

space in the negotiation strategy instead of performing an

exhaustive search to find a good bid in the original space. As can

be seen in figure 2, the bell-shaped distribution (average = -0.02;

standard deviation = 0.09) means that the negotiation over the

approximated space tends to produce the same result as the

negotiation over the original space using exhaustive search. This

demonstrates that one may expect to obtain reasonable outcomes

when negotiating with approximated spaces instead of non-

approximated spaces.

Even though this result shows that approximating the original

utility space to remove issue dependencies may result in quite

reasonable outcomes compared to those obtained otherwise, it

also shows that there is quite a high chance of deviating

significantly. In fact, for the 4 issue case figure 2 shows that there

is a quite high probability of obtaining outcomes that are worse by

up to 33%. Additionally, the curve is not really symmetrical and

shows a tendency towards negative deviations. As an illustration,

the probability of obtaining a result that is worse than 10% equals

0.196. It is clear that in many domains such a high risk will be

unacceptable.

The main conclusion thus is that additional measures need to be

taken to reduce this risk. The benefit of using approximated

spaces is clear: issues can be negotiated independently which

makes the negotiation tractable. But a balance has to be found

between the computational costs and the risk of significantly

deviating negotiation outcomes. Ideally, we would like to be able

to make a tradeoff between costs and outcome deviation to obtain

the right balance and control the risk of bad outcomes.

Outcome distribution

0

10

20

30

40

50

60

-0
.2

0

-0
.1

6

-0
.1

1

-0
.0

7

-0
.0

2
0.

0
2

0.
0
7

0.
1
1

0.
1
5

0.
2
0

Difference in outcome

P
e
rc

e
n

ta
g

e
 o

f
e

x
p

e
ri

m
e
n

ts

Figure 2 – Distribution of negotiation outcome deviation for

approximated spaces vs. original spaces for 4 issues (k=15)

5. PROCEDURE FOR CONTROLLING

NEGOTIATION OUTCOME DEVIATION
In this section we propose a parameterized procedure that can be

used to control the probability of large outcome deviations. The

parameters of this procedure can moreover be used to influence

the tradeoff between the accuracy of the negotiation outcome and

the computational efficiency of the negotiation strategy. In the

next sections, experimental results are presented that allow the

tuning of these parameters.

In the negotiation algorithm the bid selection procedure is the

source of the deviation of the negotiation outcome. In particular,

in step 3 of the algorithm in Table 1 the approximated space is

used instead of the original space which gives rise to outcome

deviations. To avoid approximation errors that are too big, we

propose to add a checking procedure in this step which compares

the utility of a bid in the approximated space with the utility in the

original space. The checking procedure can be always executed by

the agent because the original utility space with the issue

dependencies and the approximated one belong to the agent by

the definition.

The absolute error as a result of the approximation can be

computed simply by subtracting the utility in the approximated

space from the utility in the original space as in equation (4).

() () ()nnn xxxuxxxuxxx ,...,,,...,,,...,, 212121
′−=∆ (4)

This equation gives the error associated with the utility of any bid

that is proposed during the negotiation. In order to get as close as

possible to a negotiation outcome that would result if the original

space would have been used, one approach is to minimize this

error for each bid that is offered to the opponent during the

negotiation.

The proposed procedure can be found in Table 2. The step to

determine a next bid is refined and an iterative procedure is

incorporated to check whether the difference in utility stays below

a certain threshold δ. As before, in step 3a a bid is computed that

matches a certain target utility. In step 3b, however, now a check

has been incorporated that checks whether ∆(bid)< δ, that is,

whether the absolute approximation error stays below a threshold

δ. This additional check itself is computationally cheap, since it

involves only a simple calculation using equation (4). If ∆(bid) >

δ, a bid bid’, which utility differs minimally from the previously

computed bid, is searched for, until ∆(bid’)< δ. This iterative

procedure for finding an appropriate bid is called δ-checking.

The additional check is used to avoid the risk of proposing bids

with (very) low utilities in the original space that have (much)

higher utilities in the approximated space. The concessions made

in step 3 thus are controlled by a parameter δ to ensure that they

are not too big. The value of the parameter δ has to be determined

for every negotiation case depending on the acceptable level of

losses that can be caused by the error and the available

computational power.

Negotiation Algorithm Used by Agent B

Initialization: set initial utility to maximum of U’B.

1 Evaluate bid bid
A
(i) received from opponent A:

Accept and end negotiation if UB(bidA
 (i))>UB(bidB(i))

2
Compute concession and target utility:

Concession γ = β*(1-µ/ UB(bidB
 (i)))*(UB(bidA

 (i))-UB(bidB(i)))

Target Utility τ = UB(bidB
 (i))+γ

3 Determine a next bid:

3a Find a bid with target utility

Find a bid bidB(i+1) such that U’B(bidB
 (i+1)) ≈ τ

3b Compare bid utility in approximated and original space

Check whether |UB(bidB
 (i+1)) – U’B(bidB

 (i+1))|<δ

3c

If not, find next candidate for the bid and repeat step (3b):

Find next candidate bid bidB(i+1) such that U’(bidB(i+1)) ≈ τ

and utility with previous bid only differs minimally.

4 Else, send bid to opponent.

Table 2. Negotiation algorithm with δδδδ-checking procedure

A few remarks about implementing step 3c are in order. Currently,

we use a simple approach and a discretization of the approximated

evaluation functions is used. Using these discretized evaluation

functions, a distance between the target evaluation value and each

issue value can be calculated as follows:

() ()() () ()iiiii xtevxevxtevxevd −=, (5)

The impact of adding the δ-checking procedure to the negotiation

algorithm on the outcome distribution is significant, as is shown

by figure 3. The experimental setup is exactly the same as that for

figure 2 but the negotiation algorithm used by agent B now

includes the checking procedure. It shows the outcome

distribution for a threshold of δ=0.01.

Clearly, the outcome distribution curve in figure 3 is more

symmetrical than in figure 2 and more clustered around the mean;

it has a mean=-0.00016 and a standard deviation of 0.045. A more

detailed analysis of the relation between δ and the outcome

deviation is presented in the next section.

The δ-checking procedure introduces additional search again into

the computation of a bid. Various heuristics could be applied

again, however, to minimize the amount of search. For example, a

limit on the number of iterations could be introduced for spaces of

high dimensionality to ensure a bid would be found within a

reasonable amount of time. (The probability of finding an

appropriate bid is high in high-dimensional spaces close to the m-

point.) The relation of the value of the δ-parameter and the

computational cost is analyzed in more detail using experimental

results in Section 7.

Outcome distribution

0

10

20

30

40

50

60

-0
.3

2
9

-0
.2

9
0

-0
.2

5
2

-0
.2

1
3

-0
.1

7
4

-0
.1

3
5

-0
.0

9
6

-0
.0

5
7

-0
.0

1
8

0
.0

2
1

0
.0

6
0

0
.0

9
9

0
.1

3
7

0
.1

7
6

0
.2

1
5

0
.2

5
4

0
.2

9
3

M
o
re

Difference in outcome

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

Figure 3 – Outcome distribution with checking procedure for

approximated spaces vs. original spaces for 4 issues (k=15)

6. IMPACT ON OUTCOME DEVIATION
In this section, we present experimental results that show how the

value of the δ-parameter in the checking procedure relates to the

distribution of the outcome deviation. These results show that

there is a direct relation between the size of δ and outcome

distribution.

Additionally, we investigated the influence of the discretization

per issue under consideration on the outcome distribution. In the

experiments we performed, the possible values for each issue were

reduced by discretizing the space to 10, 15, 20, and 25 values. In

the results below, the discretization parameter is indicated by k.

Maybe somewhat surprisingly the different values for k used in

the experiments do not have such a big impact on the outcome

distribution.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.2
0

-0
.1
6

-0
.1
1

-0
.0
7

-0
.0
2

0.
0
2

0.
0
7

0.
1
1

0.
1
5

0.
2
0

0.
2
4

M
o
re

Difference in outcome

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.01

15-0.01

20-0.01

25-0.01

Figure 4. The distribution of outcome deviations for 5 issues

and δδδδ = 0.01. The various lines relate to different k-values.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.2
0

-0
.1
6

-0
.1

1

-0
.0
7

-0
.0
2

0
.0

2

0
.0

7

0
.1

1

0
.1

5

0
.2

0

0
.2

4

M
o
re

Difference in outcome

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 5. The distribution of outcome deviations for 5 issues

and δδδδ = 0.02. The various lines relate to different k-values.

Outcome distribution

0

5

10

15

20

25

30

35

40

45

-0
.2
0

-0
.1
6

-0
.1
1

-0
.0
7

-0
.0
2

0
.0

2

0
.0

7

0
.1

1

0
.1

5

0
.2

0

0
.2

4

M
o
re

Difference in outcome

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.03

15-0.03

20-0.03

25-0.03

Figure 6. The distribution of outcome deviations for 5 issues

and δδδδ = 0.03. The various lines refer to different k-values.

In order to assess the impact of adding the checking procedure to

the negotiation algorithm, we performed experiments with 3, 4, 5,

and 6 issues. Finally, for the δ-parameter of the checking

procedure we used the values 0.001, 0.005, 0.01, 0.02, 0.03, and

0.05. In total, we performed over 44.000 experiments in which the

outcomes were compared with the original space: 12.000 for 3

issues, 12.000 for 4 issues, 12.000 for 5 issues, and 6.000 for 6

issues. Comparisons of negotiation outcome for spaces of higher

dimensionality were not feasible.

The higher the number of issues n and the higher the

discretization parameter k, the longer it takes to do the exhaustive

search (it takes kn steps). Also, for spaces with more that 5 issues

and high discretization factors, the memory requirements become

unmanageable. As a result, the number of experiments with 6

issues was lower than those with 3, 4 and 5 issues. To investigate

the scalability of the proposed approach, we ran 500 experiments

with 10 issues for δ=0.02 and each k-value, so 2000 experiments

in total. The results for 10 and 50 issues are presented in Section

8.

The experimental results relating the value of δ to the outcome

distribution are depicted in Figures 4 to 6. We do not show all

results but only those for δ-values of 0.01, 0.02, and 0.03 which

most clearly demonstrate the impact of different values on the

distribution and also define the turning points where decreasing

this parameter further does not have a very big impact anymore

(see also Figure 10) and decreasing it results in significantly

worse outcomes. In Figures 4 to 6, on the x-axis the outcome

difference is set out. The outcome deviation may be bigger than

the value of the δ-parameter since errors may accumulate over

multiple rounds in the negotiation. The y-axis refers to the

percentage of experiments having particular outcome differences.

The different lines correspond with different values of the

discretization parameter k. For each combination of a particular

number of issues, δ-value, and k-value, 500 experiments were run.

In general, as is to be expected since δ is supposed to control the

error introduced by the approximation, the experimental findings

show that smaller values for δ result in negotiation outcomes that

are closer to the outcomes in the original space. A positive value

with respect to difference in outcome means that the negotiation

outcome was improved compared to the outcome obtained when

using the original space.

The findings illustrated in Figures 4 to 6 are as follows. For δ =

0.01 (see Figure 4) the standard deviation ranges from 0,0327 to

0,0442, and the average outcome difference ranges from -0,0066

to 0,0015. For δ = 0.02 (see Figure 5) the standard deviation

ranges from 0.0350 to 0.05806 and the average outcome

difference ranges from -0.0142 to 0.0010. Finally, for δ = 0.03

(see Figure 6) the standard deviation ranges from 0,0499 to

0,0717, and the average outcome difference ranges from -0,0199

to -0,0151.

7. IMPACT ON COMPUTATIONAL COST
Including the checking procedure implies that the bid

determination part might need iterations to find an appropriate

bid. The previous section shows that smaller δ–values lead to

better outcome deviations, and it stands to reason that the smaller

the value, the higher the number of iterations needed. To get more

insights into the frequency with which the need for iterations

causes high computational costs, a series of experiments have

been performed. The algorithm was tested for 4, 5, 6, and 10

issues, with the discretization value k varying over {10, 15, 20,

25} and δ varying over {0.005, 0.001, 0.03, 0.02, 0.01}. Each test

was performed 500 times with randomly generated original utility

spaces.

Figures 7, 8, and 9 show the results for 5 issues, the results for

other values are not shown, since they do not provide additional

insights. In these pictures, on the x-axis the logarithmic costs are

set out. The y-axis refers to the frequency with which an

experiment had such a logarithmic cost, with respect to the total

number of experiments. The different lines refer to different k-

values. In Figure 11, Section 8 the same analysis is presented for

10 issues with δ = 0.02.

Computational costs

0

10

20

30

40

50

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.0

1
0
.0

M
o
re

Logarithmic computational cost

P
e

rc
e

n
ta

g
e

 o
f

e
x

p
e

ri
m

e
n

ts

10-0.01

15-0.01

20-0.01

25-0.01

Figure 7. Computational costs for 5 issues and δδδδ = 0.01. The

different lines refer to different k-values.

Computational costs

0

10

20

30

40

50

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.0

1
0
.0

M
o
re

Logarithmic computational cost

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 8. Computational costs for 5 issues and δδδδ = 0.02. The

different lines refer to different k-values.

Computational costs

0

10

20

30

40

50

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.0

1
0
.0

M
o
re

Logarithmic computational cost

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.03

15-0.03

20-0.03

25-0.03

Figure 9. Computational costs for 5 issues and δδδδ = 0.03. The

different lines refer to different k-values.

The results clearly show the expected increase of high

computational costs for higher δ–values: higher percentages for

higher computational values. However, when looking at the areas

underneath the lines, another interesting observation can be made.

In Figure 7, for δ = 0.01, the bulk of the area underneath the lines

ends approximately at ln(x) = 6. In Figure 8, for δ = 0.02 the bulk

ends at ln(x) = 4, and in Figure 9, for δ = 0.03 at ln(x) = 2.

Evidently, the number of iterations needed is bounded.

8. TRADE OFF
Combining the results of the outcome analysis of Section 6 and

the computational cost analysis of Section 7 shows that the need

for a small outcome difference has to be balanced against

computational costs. In this a setting for the k, and δ parameters is

chosen that balances accuracy against efficiency. The approach

with these parameter settings is shown to be still efficient for a

large numbers of issues.

Sections 6 and 7 show that accuracy and computational cost

increase as δ decreases. To find a good balance between accuracy

and cost, an integrated analysis has been performed for the usual

combination of parameters: the number of issues ranging over {4,

5, 6, 10}, k ranging over {10, 15, 20, 25} and δ ranging over

{0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. Note that δ=1

corresponds to a setting in all checks are successful and, therefore,

no iterations are necessary.

Computational costs vs. outcome deviation trade-off

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Computational costs

O
u

tc
o

m
e
 d

e
v
ia

ti
o

n

δ=0.02δ=0.05 δ=0.03δ=1.00

δ=0.01 δ=0.005 δ=0.001

Figure 10. Computational cost and outcome deviation for 5

issues and k=10

Figure 10 presents the trade-off between negotiation outcome

accuracy and the computational costs. Each point on the solid line

of the chart represents the average of a series of experiments

where δ varies over {0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}.

Computational costs

0

10

20

30

40

50

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.0

10
.0

M
or

e

Logarithmic computational cost

P
e
rc

e
n

ta
g

e
 o

f
e
x
p

e
ri

m
e
n

ts

10-0.02

15-0.02

20-0.02

25-0.02

Figure 11. Computational costs for 10 issues and δδδδ = 0.02. The

different lines refer to different k-values

The dashed lines represent the spread of the negotiation outcome

deviation. The top line is an average + standard deviation and

bottom line is the average - standard deviation.The results show

that a good compromise is a δ–value of 0.02: for δ < 0.02 the

costs increase, for δ > 0.02 the outcome approximation gets

worse. Furthermore, the standard deviation drops off at this value,

but does not decrease further for even smaller δ-values.

To analyse the scalability of the modified negotiation algorithm

we performed a series of negotiations with 10-issues.

Unfortunately, it is no longer possible to use exhaustive search as

a benchmark for the negotiation outcome efficiency due to the

extremely large utility space (1110 to 2610). Figure 11 shows

computational cost for 10-issues negotiation for δ = 0.02 and

various k-values. The figure suggests that the most of the

randomly generated utility spaces remain tractable for the

negotiation algorithm with the δ-checking procedure.

9. CONCLUSION
The paper proposes a δ-checking procedure that handles the short

comings of multi-issue negotiation systems that base their

operations on approximations of utility spaces with issue

dependencies. In case the issues are interdependent, no efficient

method exists to compute bids during a negotiation, even if the

agent tries to guess the profile of the opponent [7]. To mitigate

this problem, either mediators may be used, or the utility space

corresponding to the interdependent issues can be approximated

so that issues are no longer interdependent. The WAID-method

presented in [5] is such an approximation method.

However, using an approximation always comes with a risk. In the

case of multi-issue negotiation, the risk is that a bid is proposed

(and accepted by the other party) that seems to have a good utility,

but in fact, in the original utility space has a much lower utility.

The δ-checking procedure proposed in this paper offers a way to

avoid this risk at the cost of additional computations.

Experimental results show, however, that a tradeoff can be made

between the accuracy of the bids and the computational overhead

this entails. If the δ-parameter in the checking procedure is set to

0.02, the utility of the bids made is at most 0.02 away from the

real utility, on a scale from 0 to 1. Moreover, using this value for

the δ-parameter, the negotiation algorithm including the δ-

checking procedure can handle high-dimensional utility spaces.

As experimental results show, the negotiation outcome obtained

in this manner only slightly deviates from the outcome obtained

without approximation.

To conclude, in this paper an effective balance is found of

accuracy versus efficiency for multi-issue negotiation with issue

dependencies in which the dependencies are removed by

approximation.

10. REFERENCES
[1] Bar-Yam, Y., 1997. Dynamics of complex systems, Addison-

Wesley (Reading).

[2] Davies, R., and Smith, R.G., 1983, Negotiation as a

metaphor for distributed problem solving, in Artificial

Intelligence, 20, 1, pp. 63 – 109.

[3] S. S. Fatima, M. Wooldridge and N. R. Jennings, 2006, On

efficient procedures for multi-issue negotiation”, in: Proc.

8th Int Workshop on Agent-Mediated Electronic Commerce,

Hakodate, Japan, 71-84.

[4] Favati, P., Lotti, G., Romani, F., 1994. Theoretical and

Practical Efficiency Measures for Symmetric Interpolatory

Quadrature Fromulas, in BIT Numerical Mathematics,

Volume 34(4).

[5] Hindriks, K., Jonker, C.M., Tykhonov, D., 2006, Eliminating

Interdependencies between Issues for Multi-Issue

Negotiation, In: Cooperative Information Agents X, Lecture

Notes in Computer Science, Volume 4149, pp. 301-316.

[6] Jonker, C.M., and Treur, J., 2001, An Agent Architecture for

Multi-Attribute Negotiation, in Proceedings of the 17th

International Joint Conference on AI, IJCAI'01, ed-ited by B.

Nebel, pp. 1195 – 1201.

[7] Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y., 2002,

Negotiating Complex Contracts, in Autonomous Agents and

Multi-Agent Systems, AAAI Press (Bologna).

[8] Lai, G., Li, C., Sycara, K., and Giampapa, J., 2004,

Literature Review on Multi-attribute Negotiations, Technical

Report CMU-RI-TR-04-66, Carnegie Mellon University,

Robotics Institute.

[9] Pardalos, P.M., and Vavasis, S.A, 1991, Quadratic Pro-

gramming with One Negative Eigenvalue Is NP-Hard, in:

Journal of Global Optimization, 1:15 – 22.

[10] Raiffa, H., 1996, Lectures on Negotiation Analysis, PON

Books, Program on Negotiation at Harvard Law School, 513

Pound Hall, Harvard Law School (Cambridge).

[11] Robu, V., Somefun, D.J.A., La Poutre, J.A., 2005, Complex

Multi-Issue Negotiations Using Utility Graphs, in Pro-

ceedings of the Fourth International Joint Conference on

Autonomous Agents and Multi-Agent Systems

(AAMAS’05), Utrecht, pp. 280-287.

[12] Rosenschein, J.S., and Zlotkin, G., 1994, Rules of Encoun-

ter: Designing Conventions for Automated Negotiation

Among Computers, MIT Press.

[13] Thompson, Leigh, 2000, The Mind and Heart of the Nego-

tiator, Prentice-Hall.

[14] Wang, I-J., Chong, E. K. P., and Kulkarni, S. R., 1996,

Weighted Averaging and Stochastic Approximation, in

Proceeding of the 35th Conference on Decision and Control,

Kobe, Japan, December 1996, pp. 1071-1076.

