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ABSTRACT 

Searching for good bids in a utility space based on multiple, 

dependent issues in general is intractable. Tractable algorithms do 

exist for independent issue sets, so one idea is to eliminate the 

dependencies by approximating the more complex utility space 

with issue dependencies. It has been shown that an approximation 

may give reasonable results when some structural features of the 

negotiation domain and preference profile are exploited. Of 

course, there is a risk that approximation results in significantly 

different negotiation outcomes. In this paper, we present a 

checking procedure to mitigate this risk and show that by tuning 

the parameters of this procedure the outcome deviation can be 

controlled. These parameters allow for a trade-off between 

computational cost and accuracy of negotiation outcome. Based 

on experimental results we propose specific values for the 

parameters of the checking procedure that provide a good balance 

between computational costs and accuracy. Additionally, we show 

how different values of these parameters influence the 

computational costs of negotiating multiple issues with 

dependencies. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 

--- intelligent agents, multi-agent systems. 

General Terms 

Algorithms, Performance, Economics, Experimentation, Theory. 

Keywords 

Efficient multi-issue negotiation, issue dependencies, tunable 

algorithm, approximating utility spaces. 

1. INTRODUCTION 
Negotiation is a process by which a joint decision is made by two 

or more parties (cf. [10]). The parties or agents first express 

conflicting demands and then move towards agreement by a 

process of concession making. During the negotiation both agents 

make various offers, called bids, to each other that more or less 

match with their own preferences. The negotiation outcome is 

either a failure, or a deal, i.e., a bid accepted by all parties. If 

multiple issues are at stake then these issues may need to be 

negotiated simultaneously and the bids made may vary on each of 

these issues. 

One of the complicating factors in a computational approach to 

negotiation is that the value associated with a bundle of multiple 

issues may not be a simple function of the value associated with 

individual issues. In [10], Raiffa explains how to mathematically 

model a preference profile of an agent that can be used during the 

negotiation to determine the utility of exchanged bids. The 

representation of an agent’s preferences by mathematical 

functions, called utility functions, which map values of issues to 

the utility of bids, i.e. bundles of issue values, allows the 

development of software support for negotiations. In negotiation 

domains with issue dependencies which influence the overall 

utility of a bid, however, the utility space is non-linear in the 

issues (cf. [1]). In [7], Klein et al. show that in that case there is 

no efficient method to compute alternative bids during a 

negotiation, even if the agent tries to guess the opponent’s profile. 

Some proposals have been made to reduce the computational 

complexity of multi-issue negotiation with issue dependencies. 

For example, [7] propose the use of a mediator which may be 

more computationally efficient when both agents in a negotiation 

reveal their preferences to this mediator. An alternative, 

interesting option is to investigate the complexity of the utility 

space itself and try to eliminate the dependencies between issues. 

In [5], an approximation method is proposed to eliminate issue 

dependencies, see Figure 1. This method exploits some structural 

features of preference profiles of agents to approximate the 

original profile. The resulting approximated utility function 

without dependencies can be handled by negotiation algorithms 

that can efficiently deal with independent multiple issues and have 

a polynomial time complexity (see e.g. [6]). 

It is clear that the method proposed in [5] removes the 

computational intractability of multi-issue negotiation with issue 

dependencies by transforming the original profile input to one that 

can be linearly decomposed. Tested over numerous random spaces 

of interdependent issues, the negotiation outcome using this 

approximation is reasonably good, see [5]. The negotiation 

outcome, however, does not only depend on the preference profile 

but also on the process of negotiation itself. It is to be expected 

that the risk of obtaining a bad outcome due to the use of an 

approximation cannot be avoided completely even if the 

approximation is quite good. 

In this paper, we analyze the risk of a bad negotiation outcome 

when using an approximation of the agent’s preference profile. It 

turns out that in some domains this risk may still be unreasonably 

high. The results show that using the approximated space a bid 

might be proposed that in the original utility space would have a 

too low utility. The risk of such an erroneous bid can be quite 

high and, as a consequence, the risk of obtaining a bad negotiation 

outcome is significant. In order to control this risk, we therefore 



also have to look at the process of negotiation. More precisely, we 

investigate a way to incorporate a method to control the risk of an 

erroneous bid in the negotiation algorithm itself. This paper 

presents a checking procedure to control the risk of erroneous 

bids which can be incorporated in any negotiation algorithm. 
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Figure 1. Multi-issue negotiation with issue dependencies 

using approximated utility spaces 

Of course, this checking procedure introduces some additional 

computational costs. A procedure that completely eliminates the 

risk of erroneous bids, moreover, would make the negotiation 

process intractable again. One of the main contributions of this 

paper is that it shows that a trade-off can be made between 

computational efficiency and approximation accuracy, which is 

directly related to the negotiation outcome. The parameters of the 

checking procedure allow the tuning of a negotiation algorithm to 

increase either the computational efficiency or decrease the risk of 

erroneous bids. Derived from experimental results, we propose 

specific values for these parameters that ensure a reasonable 

balance between computational costs and outcome deviation (in 

terms of utility) in many domains. Finally, we present 

experimental results that show that the approach of adding a 

checking procedure to the negotiation algorithm is scalable and 

allows an agent to negotiate about high-dimensional utility spaces. 

The paper is organized as follows. First, some of the basic notions 

to model preference profiles that characterize our approach to 

multi-issue negotiation are introduced. In section 3 a brief 

overview of the approximation method for eliminating issue 

dependencies is presented. Then in section 4 the outcome 

deviation that results from using an approximated space as input 

for a negotiation algorithm is analyzed and the need for an 

additional method to prevent erroneous bids is argued for. In 

section 5, the negotiation algorithm is adapted by incorporating a 

checking procedure. Successively, the performance of this adapted 

negotiation algorithm is investigated. Experimental results are 

presented that confirm that a significant improvement can be 

obtained by incorporating the checking procedure. The impact of 

the checking procedure is analyzed in Section 6. The impact of on 

the computational tractability of the negotiation algorithm is 

investigated in Section 7. Section 6 shows that by varying certain 

parameters of the method a trade-off can be made between 

outcome deviation, caused by erroneous bids, and computational 

costs. Furthermore, specific values for these parameters of the 

checking procedure are proposed to obtain a good balance. 

Finally, section 9 concludes the paper. 

2. MODELING ISSUE DEPENDENCIES 
The overall utility of a set of independent issues can be computed 

as a weighted sum of the values of each of the issues by 

associating an evaluation function with each issue variable (see 

e.g. [6, 10]). The properties of the utility function are derived 

from these evaluation functions which map issue values on a 

closed interval [0; 1]. This model, represented in equation (1), can 

be used for issue values that are numeric (e.g. price, time) as well 

as for issue values that are discrete (e.g. colors, brands). 
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Equation (1) cannot be used, however, for modeling dependencies 

between issues and equation (1) needs to be generalized to 

equation (2) (cf. also [1]). Of course, the value of an issue does 

not need to depend on all other issues and subsets of dependent 

issues will have to be considered to model individual examples. 
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The representation of a utility space with non-linear issue 

dependencies as in equation (2) is similar to the model proposed 

in [7]. The main difference is that instead of considering only 

binary issue values, we allow multi-valued, discrete, as well as 

continuous issue ranges. 

The complexity of a utility function determines the computational 

complexity of the negotiation process. One of the main problems 

in dependent multi-issue negotiation is the computational 

complexity associated with searching for appropriate bids in the 

corresponding utility spaces. In case a utility function of multiple 

issues is non-linear in these issues, i.e. there are issue 

dependencies, finding a particular bid in the utility space is 

intractable. 

3. APPROXIMATING UTILITY SPACES 
To experimentally determine the need for, and later, to assess the 

effectiveness of including our checking procedure in negotiations 

in which approximated utility spaces are used, we need a 

functioning approximation method and an implemented 

negotiation strategy. 

This section provides a brief overview of the WAID-

approximation technique of [5]. The WAID-method transforms a 

utility space with issue dependencies into a space without such 

dependencies to meet the input requirements of efficient multi-

issue negotiation algorithms, see Figure 1. The WAID-method is 

explained only to the detail necessary to understand the problem 

of approximations and in order to understand that using a checker 

in the negotiation algorithm would diminish the risk of erroneous 

bids. More details can be found in [5]. 

The main idea of the WAID-method is that structural features of 

the negotiation domain and utility functions with issue 

dependencies can be exploited to approximate a preference profile 

and eliminate issue dependencies. It also seems that humans tend 

to simplify the structure of their preferences and prefer to 

negotiate one issue at a time [13]. 

Formally, the objective of the WAID-method is to transform a 

utility space u(x1,…,xn) based on dependent issues as represented 

by equation (2) to a utility space u’(x1,…,xn) without such 

dependencies that can be represented by equation (1). The 

transformation consists of approximating each of the evaluation 

functions evi(x1,…,xn) by a function ev’i(xi) in which the 

influence of the values of other issues xj, j≠i, on the associated 

value evi(x1,…,xn) have been eliminated.  



The heart of the WAID-method is a weighted averaging 

technique. The dedication of WAID to utility spaces for 

negotiation shows in it’s exploitation of some general and, if 

available, additional domain specific insight into negotiation. 

These insights concern the relative importance of bids and what 

utility can reasonably be expected of an outcome of a negotiation. 

The WAID-method looks only into the utility space of the agent 

and does not require any information about the opponent It 

consists of 4 steps. The first step is to estimate an expected 

outcome utility, called m-point. The m-point later serves as a 

focus point for the approximation. Secondly, an evaluation of the 

type of approximation that best fits the case at hand is made. This 

second step is not elaborated here. Third, the actual 

approximation is computed. In the last step the difference of the 

original and approximated utility space is determined. Depending 

on this analysis, negotiators can decide to use the approximation 

or not in their negotiation algorithm. 

Estimate an Expected Outcome Utility 

In the first step, the expected utility of the outcome is estimated. 

This estimate is called the m-point and is used to define a region 

in the utility space where the actual outcome is expected to be. 

The m-point is used to feed information about the final goal of 

negotiation, i.e., the utility of the outcome, into the approximation 

technique used to transform the utility space.  

For multi-issue negotiation in general we may assume that the 

expected outcome of the negotiation is located somewhere in the 

open utility interval (0.5; 1), say 0.75. Lower than 0.5 would not 

be accepted by the agent, and 1 is the maximal utility. The 

approximation should be most accurate in that interval, and 

especially around the m-point, because those points are most 

important for getting a good negotiation outcome. An experienced 

agent or one with additional knowledge about the domain can 

narrow the interval of the m-point. 

Choice of Weighting Function 

The next step is to define a weighting function ψ. An agent may 

be more or less uncertain, about its estimate of the m-point and 

therefore, also of the corresponding interval. The weighting 

function ψ is chosen such that the approximation is most accurate 

in the region(s) of the utility space corresponding to that interval.  

Computing the Approximation 

The third step is to calculate an approximation of the original 

utility space based on non-linear issue dependencies using the m-

point and the weighting function as defined in the previous steps. 

The result of this step is a utility space that can be defined as a 

weighted sum of evaluations of independent issues, i.e., of the 

form of equation (1). The WAID-method multiplies each 

evaluation value with its corresponding weight and then averages 

the resulting space by integration. Additionally the weighting is 

normalized over the interval of integration, see equation (3). V 

denotes the range of integration and is a volume of n-1 

dimensionality build from the issue dimensions {x1,x2,…,xi-

1,xi+1,…,xn}. Of course, not all issues have to depend on all others 

and some issue variables may be dropped from the equation in 

that case. The approximation technique can be applied 

sequentially for each issue variable which involves dependencies 

between issues.  
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There are no strict restrictions for types the utility spaces with 

issue dependencies to be approximated by the WAID method. The 

only restriction is that the utility function with the dependencies 

must be integrable  as well as the product of the utility function 

and the weighting function. 

The approximation of the utility space modeling an agent’s may  

more or less differ from the original utility space, but always will 

introduce errors in the associated utility of a bid. As a result, in a 

negotiation, bids selected by using the approximated space may 

deviate from the actual utility in the original space. Such bids in 

turn may become a final deal. If the deviation is quite big, 

however, the outcome may not be acceptable in the end to the 

agent. But how big is that risk? To understand the risks, 

experimentation is necessary. To be able to experiment, 

comparable negotiations must be performed with the original and 

with the approximated utility space. To be comparable, a 

particular negotiation strategy must be applied in both cases. The 

next section discusses such a strategy and presents the results of 

its application in a thorough experiment to understand the risks of 

using an approximated space. Since the risk is real, we then 

investigate in Section 5 and after whether a controlled trade-off 

between computational complexity and accuracy of the 

negotiation strategy can be incorporated into a negotiation 

algorithm. 

Negotiation Algorithm Used by Agent B 

Initialization: set initial utility to maximum of U’B. 

1 Evaluate bid bid
A
(i) received from opponent A: 

Accept and end negotiation if UB(bidA
 (i))>UB(bidB(i)) 

2 
Compute concession and target utility: 

Concession γ = β*(1-µ/ UB(bidB
 (i)))*( UB(bidA

 (i))-UB(bidB(i))) 

Target Utility τ = UB(bidB
 (i))+γ 

3 
Determine a next bid: 

Find a bid bidB(i+1) such that U’B(bidB
 (i+1)) = τ 

4 Send bid to opponent. 

Table 1. ABMP negotiation algorithm for approximations 

 

4. NEGOTIATION ALGORITHM 
The negotiation algorithm that is used plays a key role in 

obtaining a good negotiation outcome. The approximation of a 

preference profile allows an agent to more efficiently compute 

good bids during negotiation, but does not in itself provide a 

guarantee that against arbitrary opponents a good negotiation 

outcome will be reached. More insight is required to assess the 

effects of using approximations of real preference profiles. 

As a first step, therefore, we analyze the effects of using 

approximated utility spaces as substitutes for the original spaces. 

To perform such an analysis, we use a negotiation algorithm that 

corresponds to the ABMP-strategy of [6], but other strategies 

could have been used as well. The algorithm is outlined in Table 

1. It is assumed that negotiation proceeds between agents A and 

B. In Table 1, the perspective of agent B, that uses the 



approximated space U’B, is provided. The original space of agent 

B is indicated by UB. 

The negotiation strategy can be outlined in the following way. In 

step 1, any previous bid of the opponent A is evaluated and 

accepted if it exceeds the bid of agent B in the last round. If an 

agreement cannot yet be reached, the ABMP-strategy determines 

a next bid to offer in two steps: the strategy first (step 2) 

determines the target utility for the next bid based on a 

computation of a concession step, and then (step 3) determines a 

bid that has that target utility. Step 3 of the strategy is very 

efficient for utility spaces without issue dependencies. It is in this 

step that the approximated utility space U’B has to be used. Note 

that the approximated utility space U’ is only used in the 

initialization and in step 3 since its purpose is to speed up the 

negotiation. In the other steps the computations that involve the 

original space are computationally cheap. In step 4, finally, the 

computed bid is sent to the opponent for evaluation. 

The ABMP negotiation algorithm is used to assess the outcome 

deviation that may occur when an approximated space is used 

instead of the original space during a negotiation. In the 

experiments that were performed agent A also uses a variant of 

the ABMP strategy but does not approximate any issue 

dependencies in its utility space. Instead it uses exhaustive search 

through its utility space in step 3 to determine a next bid given a 

suitable discretization of this space (i.e. using small enough 

steps).To compare outcomes for utility spaces of medium size, the 

same negotiation is performed again with agent B using 

exhaustive search in step 3. Of course, exhaustive search can only 

be used for utility spaces of medium size due to exponential time 

costs and memory limitations. It is, however, imperative to use it 

if we want to calculate outcome deviation. In the experiments, 

spaces with up to a number of 5 issues and a number of 

discretization steps of at most 25 have been used (see also Section 

6 and 7). Agent A always begins the negotiation by proposing an 

initial bid. 

To analyze the impact of the weighted averaging method on the 

negotiation outcome a probabilistic experimental setup has been 

used. The negotiation outcomes obtained by using the 

approximation method are compared with those obtained using 

the original utility space. The experimental results are obtained 

from utility spaces modeled by multivariate quadratic 

polynomials. These polynomials may have multiplicative terms 

xixj which represent issues. It is well-known that solving such 

quadratic programming problems is NP-hard, see e.g. [3]. In the 

experiments utility spaces have been randomly generated. The m-

point parameter that has to be fixed in order to apply the WAID-

method is determined for each utility space by a Monte-Carlo 

method. 

The main result of the experiments performed shows that the 

distribution of negotiation outcome deviations is similar to a 

normal distribution with a mean value close to zero. Figure 2 

presents the distribution of outcome deviations for a negotiation 

about 4 issues. The deviation is a result of using the approximated 

space in the negotiation strategy instead of performing an 

exhaustive search to find a good bid in the original space. As can 

be seen in figure 2, the bell-shaped distribution (average = -0.02; 

standard deviation = 0.09) means that the negotiation over the 

approximated space tends to produce the same result as the 

negotiation over the original space using exhaustive search. This 

demonstrates that one may expect to obtain reasonable outcomes 

when negotiating with approximated spaces instead of non-

approximated spaces.  

Even though this result shows that approximating the original 

utility space to remove issue dependencies may result in quite 

reasonable outcomes compared to those obtained otherwise, it 

also shows that there is quite a high chance of deviating 

significantly. In fact, for the 4 issue case figure 2 shows that there 

is a quite high probability of obtaining outcomes that are worse by 

up to 33%. Additionally, the curve is not really symmetrical and 

shows a tendency towards negative deviations. As an illustration, 

the probability of obtaining a result that is worse than 10% equals 

0.196. It is clear that in many domains such a high risk will be 

unacceptable. 

The main conclusion thus is that additional measures need to be 

taken to reduce this risk. The benefit of using approximated 

spaces is clear: issues can be negotiated independently which 

makes the negotiation tractable. But a balance has to be found 

between the computational costs and the risk of significantly 

deviating negotiation outcomes. Ideally, we would like to be able 

to make a tradeoff between costs and outcome deviation to obtain 

the right balance and control the risk of bad outcomes. 
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Figure 2 – Distribution of negotiation outcome deviation for 

approximated spaces vs. original spaces for 4 issues (k=15) 

5. PROCEDURE FOR CONTROLLING 

NEGOTIATION OUTCOME DEVIATION 
In this section we propose a parameterized procedure that can be 

used to control the probability of large outcome deviations. The 

parameters of this procedure can moreover be used to influence 

the tradeoff between the accuracy of the negotiation outcome and 

the computational efficiency of the negotiation strategy. In the 

next sections, experimental results are presented that allow the 

tuning of these parameters. 

In the negotiation algorithm the bid selection procedure is the 

source of the deviation of the negotiation outcome. In particular, 

in step 3 of the algorithm in Table 1 the approximated space is 

used instead of the original space which gives rise to outcome 

deviations. To avoid approximation errors that are too big, we 

propose to add a checking procedure in this step which compares 

the utility of a bid in the approximated space with the utility in the 

original space. The checking procedure can be always executed by 

the agent because the original utility space with the issue 



dependencies and the approximated one belong to the agent by  

the definition.  

The absolute error as a result of the approximation can be 

computed simply by subtracting the utility in the approximated 

space from the utility in the original space as in equation (4). 

( ) ( ) ( )nnn xxxuxxxuxxx ,...,,,...,,,...,, 212121
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This equation gives the error associated with the utility of any bid 

that is proposed during the negotiation. In order to get as close as 

possible to a negotiation outcome that would result if the original 

space would have been used, one approach is to minimize this 

error for each bid that is offered to the opponent during the 

negotiation. 

The proposed procedure can be found in Table 2. The step to 

determine a next bid is refined and an iterative procedure is 

incorporated to check whether the difference in utility stays below 

a certain threshold δ. As before, in step 3a a bid is computed that 

matches a certain target utility. In step 3b, however, now a check 

has been incorporated that checks whether ∆(bid)< δ, that is, 

whether the absolute approximation error stays below a threshold 

δ. This additional check itself is computationally cheap, since it 

involves only a simple calculation using equation (4). If ∆(bid) > 

δ, a bid bid’, which utility differs minimally from the previously 

computed bid, is searched for, until ∆(bid’)< δ. This iterative 

procedure for finding an appropriate bid is called δ-checking. 

The additional check is used to avoid the risk of proposing bids 

with (very) low utilities in the original space that have (much) 

higher utilities in the approximated space. The concessions made 

in step 3 thus are controlled by a parameter δ to ensure that they 

are not too big. The value of the parameter δ has to be determined 

for every negotiation case depending on the acceptable level of 

losses that can be caused by the error and the available 

computational power. 

Negotiation Algorithm Used by Agent B 

Initialization: set initial utility to maximum of U’B. 

1 Evaluate bid bid
A
(i) received from opponent A: 

Accept and end negotiation if UB(bidA
 (i))>UB(bidB(i)) 

2 
Compute concession and target utility: 

Concession γ = β*(1-µ/ UB(bidB
 (i)))*( UB(bidA

 (i))-UB(bidB(i))) 

Target Utility τ = UB(bidB
 (i))+γ 

3 Determine a next bid: 

3a Find a bid with target utility 

Find a bid bidB(i+1) such that U’B(bidB
 (i+1)) ≈ τ 

3b Compare bid utility in approximated and original space 

Check whether |UB(bidB
 (i+1)) – U’B(bidB

 (i+1))|<δ 

3c 

If not, find next candidate for the bid and repeat step (3b): 

Find next candidate bid bidB(i+1) such that U’(bidB(i+1)) ≈ τ 

and utility with previous bid only differs minimally. 

4 Else, send bid to opponent. 

Table 2. Negotiation algorithm with δδδδ-checking procedure 

A few remarks about implementing step 3c are in order. Currently, 

we use a simple approach and a discretization of the approximated 

evaluation functions is used. Using these discretized evaluation 

functions, a distance between the target evaluation value and each 

issue value can be calculated as follows: 

( ) ( )( ) ( ) ( )iiiii xtevxevxtevxevd −=,  (5) 

The impact of adding the δ-checking procedure to the negotiation 

algorithm on the outcome distribution is significant, as is shown 

by figure 3. The experimental setup is exactly the same as that for 

figure 2 but the negotiation algorithm used by agent B now 

includes the checking procedure. It shows the outcome 

distribution for a threshold of δ=0.01.  

Clearly, the outcome distribution curve in figure 3 is more 

symmetrical than in figure 2 and more clustered around the mean; 

it has a mean=-0.00016 and a standard deviation of 0.045. A more 

detailed analysis of the relation between δ and the outcome 

deviation is presented in the next section. 

The δ-checking procedure introduces additional search again into 

the computation of a bid. Various heuristics could be applied 

again, however, to minimize the amount of search. For example, a 

limit on the number of iterations could be introduced for spaces of 

high dimensionality to ensure a bid would be found within a 

reasonable amount of time. (The probability of finding an 

appropriate bid is high in high-dimensional spaces close to the m-

point.) The relation of the value of the δ-parameter and the 

computational cost is analyzed in more detail using experimental 

results in Section 7.  
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Figure 3 – Outcome distribution with checking procedure for 

approximated spaces vs. original spaces for 4 issues (k=15) 

6. IMPACT ON OUTCOME DEVIATION 
In this section, we present experimental results that show how the 

value of the δ-parameter in the checking procedure relates to the 

distribution of the outcome deviation. These results show that 

there is a direct relation between the size of δ and outcome 

distribution. 

Additionally, we investigated the influence of the discretization 

per issue under consideration on the outcome distribution. In the 

experiments we performed, the possible values for each issue were 

reduced by discretizing the space to 10, 15, 20, and 25 values. In 

the results below, the discretization parameter is indicated by k. 

Maybe somewhat surprisingly the different values for k used in 

the experiments do not have such a big impact on the outcome 

distribution. 
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Figure 4. The distribution of outcome deviations for 5 issues 

and δδδδ = 0.01. The various lines relate to different k-values. 
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Figure 5. The distribution of outcome deviations for 5 issues 

and δδδδ = 0.02. The various lines relate to different k-values. 
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Figure 6. The distribution of outcome deviations for 5 issues 

and δδδδ = 0.03. The various lines refer to different k-values. 

In order to assess the impact of adding the checking procedure to 

the negotiation algorithm, we performed experiments with 3, 4, 5, 

and 6 issues. Finally, for the δ-parameter of the checking 

procedure we used the values 0.001, 0.005, 0.01, 0.02, 0.03, and 

0.05. In total, we performed over 44.000 experiments in which the 

outcomes were compared with the original space: 12.000 for 3 

issues, 12.000 for 4 issues, 12.000 for 5 issues, and 6.000 for 6 

issues. Comparisons of negotiation outcome for spaces of higher 

dimensionality were not feasible.  

The higher the number of issues n and the higher the 

discretization parameter k, the longer it takes to do the exhaustive 

search (it takes kn steps). Also, for spaces with more that 5 issues 

and high discretization factors, the memory requirements become 

unmanageable. As a result, the number of experiments with 6 

issues was lower than those with 3, 4 and 5 issues. To investigate 

the scalability of the proposed approach, we ran 500 experiments 

with 10 issues for δ=0.02 and each k-value, so 2000 experiments 

in total. The results for 10 and 50 issues are presented in Section 

8. 

The experimental results relating the value of δ to the outcome 

distribution are depicted in Figures 4 to 6. We do not show all 

results but only those for δ-values of 0.01, 0.02, and 0.03 which 

most clearly demonstrate the impact of different values on the 

distribution and also define the turning points where decreasing 

this parameter further does not have a very big impact anymore 

(see also Figure 10) and decreasing it results in significantly 

worse outcomes. In Figures 4 to 6, on the x-axis the outcome 

difference is set out. The outcome deviation may be bigger than 

the value of the δ-parameter since errors may accumulate over 

multiple rounds in the negotiation. The y-axis refers to the 

percentage of experiments having particular outcome differences. 

The different lines correspond with different values of the 

discretization parameter k. For each combination of a particular 

number of issues, δ-value, and k-value, 500 experiments were run. 

In general, as is to be expected since δ is supposed to control the 

error introduced by the approximation, the experimental findings 

show that smaller values for δ result in negotiation outcomes that 

are closer to the outcomes in the original space. A positive value 

with respect to difference in outcome means that the negotiation 

outcome was improved compared to the outcome obtained when 

using the original space. 

The findings illustrated in Figures 4 to 6 are as follows. For δ = 

0.01 (see Figure 4) the standard deviation ranges from 0,0327 to 

0,0442, and the average outcome difference ranges from -0,0066 

to 0,0015. For δ = 0.02 (see Figure 5) the standard deviation 

ranges from 0.0350 to 0.05806 and the average outcome 

difference ranges from -0.0142 to 0.0010. Finally, for δ = 0.03 

(see Figure 6) the standard deviation ranges from 0,0499 to 

0,0717, and the average outcome difference ranges from -0,0199 

to -0,0151. 

7. IMPACT ON COMPUTATIONAL COST 
Including the checking procedure implies that the bid 

determination part might need iterations to find an appropriate 

bid. The previous section shows that smaller δ–values lead to 

better outcome deviations, and it stands to reason that the smaller 

the value, the higher the number of iterations needed. To get more 

insights into the frequency with which the need for iterations 

causes high computational costs, a series of experiments have 

been performed. The algorithm was tested for 4, 5, 6, and 10 

issues, with the discretization value k varying over {10, 15, 20, 

25} and δ varying over {0.005, 0.001, 0.03, 0.02, 0.01}. Each test 

was performed 500 times with randomly generated original utility 

spaces.  

Figures 7, 8, and 9 show the results for 5 issues, the results for 

other values are not shown, since they do not provide additional 

insights. In these pictures, on the x-axis the logarithmic costs are 



set out. The y-axis refers to the frequency with which an 

experiment had such a logarithmic cost, with respect to the total 

number of experiments. The different lines refer to different k-

values. In Figure 11, Section 8 the same analysis is presented for 

10 issues with δ = 0.02.  
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Figure 7. Computational costs for 5 issues and δδδδ = 0.01. The 

different lines refer to different k-values. 
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Figure 8. Computational costs for 5 issues and δδδδ = 0.02. The 

different lines refer to different k-values. 
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Figure 9. Computational costs for 5 issues and δδδδ = 0.03. The 

different lines refer to different k-values. 

The results clearly show the expected increase of high 

computational costs for higher δ–values: higher percentages for 

higher computational values. However, when looking at the areas 

underneath the lines, another interesting observation can be made. 

In Figure 7, for δ = 0.01, the bulk of the area underneath the lines 

ends approximately at ln(x) = 6. In Figure 8, for δ = 0.02 the bulk 

ends at ln(x) = 4, and in Figure 9, for δ = 0.03 at ln(x) = 2. 

Evidently, the number of iterations needed is bounded. 

8. TRADE OFF 
Combining the results of the outcome analysis of Section 6 and 

the computational cost analysis of Section 7 shows that the need 

for a small outcome difference has to be balanced against 

computational costs. In this a setting for the k, and δ parameters is 

chosen that balances accuracy against efficiency. The approach 

with these parameter settings is shown to be still efficient for a 

large numbers of issues.  

Sections 6 and 7 show that accuracy and computational cost 

increase as δ decreases. To find a good balance between accuracy 

and cost, an integrated analysis has been performed for the usual 

combination of parameters: the number of issues ranging over {4, 

5, 6, 10}, k ranging over {10, 15, 20, 25} and δ ranging over  

{0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}. Note that δ=1 

corresponds to a setting in all checks are successful and, therefore, 

no iterations are necessary. 

Computational costs vs. outcome deviation trade-off
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Figure 10. Computational cost and outcome deviation for 5 

issues and k=10 

Figure 10 presents the trade-off between negotiation outcome 

accuracy and the computational costs. Each point on the solid line 

of the chart represents the average of a series of experiments 

where δ varies over {0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 1}.  
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Figure 11. Computational costs for 10 issues and δδδδ = 0.02. The 

different lines refer to different k-values 



The dashed lines represent the spread of the negotiation outcome 

deviation. The top line is an average + standard deviation and 

bottom line is the average - standard deviation.The results show 

that a good compromise is a δ–value of 0.02: for δ < 0.02 the 

costs increase, for δ > 0.02 the outcome approximation gets 

worse. Furthermore, the standard deviation drops off at this value, 

but does not decrease further for even smaller δ-values.  

To analyse the scalability of the modified negotiation algorithm 

we performed a series of negotiations with 10-issues. 

Unfortunately, it is no longer possible to use exhaustive search as 

a benchmark for the negotiation outcome efficiency due to the 

extremely large utility space (1110 to 2610). Figure 11 shows 

computational cost for 10-issues negotiation for δ = 0.02 and 

various k-values. The figure suggests that the most of the 

randomly generated utility spaces remain tractable for the 

negotiation algorithm with the δ-checking procedure. 

9. CONCLUSION 
The paper proposes a δ-checking procedure that handles the short 

comings of multi-issue negotiation systems that base their 

operations on approximations of utility spaces with issue 

dependencies. In case the issues are interdependent, no efficient 

method exists to compute bids during a negotiation, even if the 

agent tries to guess the profile of the opponent [7]. To mitigate 

this problem, either mediators may be used, or the utility space 

corresponding to the interdependent issues can be approximated 

so that issues are no longer interdependent. The WAID-method 

presented in [5] is such an approximation method.  

However, using an approximation always comes with a risk. In the 

case of multi-issue negotiation, the risk is that a bid is proposed 

(and accepted by the other party) that seems to have a good utility, 

but in fact, in the original utility space has a much lower utility. 

The δ-checking procedure proposed in this paper offers a way to 

avoid this risk at the cost of additional computations. 

Experimental results show, however, that a tradeoff can be made 

between the accuracy of the bids and the computational overhead 

this entails. If the δ-parameter in the checking procedure is set to 

0.02, the utility of the bids made is at most 0.02 away from the 

real utility, on a scale from 0 to 1. Moreover, using this value for 

the δ-parameter, the negotiation algorithm including the δ-

checking procedure can handle high-dimensional utility spaces. 

As experimental results show, the negotiation outcome obtained 

in this manner only slightly deviates from the outcome obtained 

without approximation. 

To conclude, in this paper an effective balance is found of 

accuracy versus efficiency for multi-issue negotiation with issue 

dependencies in which the dependencies are removed by 

approximation. 
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