
The Windmill Method for Setting up Support for Resolving  SparseIncidents in 

Communication Networks (Extended Abstract) 

 

Duco N. Ferro 

Almende B.V. 

 Rotterdam, The Netherlands  

duco@almende.org 

 

Catholijn M. Jonker 

Man-Machine Interaction group 

Delft University of Technology 

Delft, The Netherlands 

c.m.jonker@tudelft.nl 

Alfons H. Salden 

Almende B.V. 

 Rotterdam, The Netherlands  

alfons@almende.org

Abstract— This paper introduces the Windmill method for 

constructing situation sensitive communication support 

systems for organizations consisting of a network of 

autonomous professionals involved in standard duties 

encountering occasional incidents of a time-critical nature for 

which they have to call for help. The Windmill method is based 

on statistical data filtering techniques for ranking incidents 

and available communication resources among which human 

personnel according to their expected frequency, availability, 

location, skills and experience. It is especially useful for 

domains in which the human workforce changes over time and 

incidents are relatively sparse with respect to location and 

frequency of occurrence.  

communication networks; recommender technology; incident 

management; Professional Task Setting with Incidents; instance-

based learning 

I.  INTRODUCTION  

In domains such as security & surveillance, traffic & 
transport, medical care and the military, hundreds of 
professionals are spread over a network consisting of 
various groups across different organizations to perform 
various standard tasks at different places and move from one 
location to another over time. Such tasks are by nature 
urgent, local, incident prone and require the deployment of 
resources in terms of personnel, materials, and 
infrastructure. These tasks often interfere with and depend 
on each other, as performing these tasks typically involves 
the activities and knowledge of other people at other 
locations, thus leading to non-local emergent effects. For 
ease of reference we will call such a setting a Professional 
Task Setting with Incidents, PTSI for short.  

PTSI is not the same as general crisis/incident 
management. PTSI concerns frequent disruptions of routine 
tasks by relatively small incidents, whereas crisis 
management and incident management during crises deals 
with large and disastrous events [12]. Such disasters often 
entail a collapse of key infrastructures. In addition, crises 
occur less frequently than PTSI related incidents However, 
organizations specializing in PTSI are typically called in to 
help in crisis management situations.  

Incidents threaten the performance of both individuals 
and the organization as a whole. Handling contingencies 
requires the right knowledge to be exchanged and 
rescheduling or canceling planned activities. For instance, 
security firms in the private sector offer their clients 

surveillance services as a way to protect property from theft 
and vandalism. As a deterrent, surveillance routes are 
scheduled by these firms such that the different premises are 
frequently visited [13]. The surveillants, however, have to 
cancel or delay their schedule intermittently to respond to 
incoming alarms elsewhere or to assist one of their 
colleagues in need of help [5]. 

In particular, situation assessment, coordination and task 
assignment to members of different organizations is vital to 
satisfy the intra- and inter-organizational goals given those 
interdependencies. Especially, when individuals are not co-
located, information and communication technology should 
be called upon to coordinate the actions aimed at handling 
incidents. 

Incident management in PTSI needs to be effective at all 
stages without requiring an unsupportable overhead in 
communication and processing amongst people and data 
sources. In crisis situations this management is often 
severely obstructed by lack of adequate information about 
the availability, whereabouts and expertise/quality of 
resources. For example, typically a central communication 
point (e.g., a regional dispatch center), which is deployed to 
deal with unexpected events, classifies incoming incidents 
and propagates them as a request across organizations to 
find proper assistance. During crisis situations such a central 
communication point may become a bottleneck or single 
point of failure. Furthermore, it may lack the information to 
send the request, including the relevant event data, to the 
proper group of people. 

One of the aims in general incident management and in 
PTSI is to reduce the time needed in the different

 
phases: 

preparedness, prevention, detection time, communication 
time, travel time and clearance time and recovery [11],[7]. 
The motivation for this paper is to improve communication 
with respect to the response times and resolve times in PTSI 
and to advance the research on automated Incident 
Management Systems (IMS) Error! Reference source not 
found. by offering a method for embedding machine 
learning and data mining techniques to manage 
communication networks. 

We introduce the Windmill method that supports the 
development of communication support systems for incident 
management in PTSI. Windmill specializes in developing 
systems that create situational awareness in domains where 
knowledge retention is typically low, due to personnel 
changes, and the sparseness of incidents with respect to time 
and location.  



The remainder of this paper is organized as follows. 
First, we present a problem analysis of incident management 
in PTSI domains. Next, the Windmill method is introduced 
and formalized in the fourth section to develop a sufficient 
set of communication support algorithms to handle incidents 
efficiently and effectively. In the last section, we briefly 
discuss the contribution of our work, as well as intended 
extensions of our work and that of others. 

II. PROBLEM  ANALYSIS 

An incident is defined as “an occurrence or event, 
natural or human-caused, that requires an emergency 
response to protect life or property” [12]. Incident 
management in general depends heavily on communication 
between all parties involved for coordination, task 
allocation, resource allocation, and information sharing; this 
is also true for incident management in PTSI.  

For use throughout this article, we define the following 
typical concepts in PTSI. Typically there is a set of actors A 
representing the professionals comprising mobile 
professionals P, team-leaders TL and operators D of a 
central communication point (i.e., a dispatch center). 
Together actors are responsible for a set of tasks, denoted by 
T . The tasks are divided over a set S of work shifts on a 

corresponding set R of routes such that a set of objects O is 
visited sequentially on each route. In order to resolve 

incidents of type I ⊆ T (e.g., a burglar alarm in a mobile 

security setting) starting at time-point t at object o ∈ O, the 
actors engage in communication meetings (i.e., calls and 

telephone conferences). Each meeting m ∈ M starts at time-
point t

start 
and ends at a time point t

end and is associated with 
an expected incident management performance in terms of, 
for example, the response time (including the expected 
travel time from one object o

1 
to the incident location o

2
). 

Meetings can be ranked by their expected performance. 
Such incident-specific and context-dependent (e.g., the 
incident object) communication meetings result in a change 
of shifts S, consisting of planned, active and finished shifts.  

The dispatch centers are used for the coordination of 
activities in PTSI. As a consequence, during incident 
management these centers are likely to form a 
communication bottleneck, with the risk of a single point of 
failure (see Fig. 1). Important for such centers is the span of 
control they have, i.e., the number of people that a single 
supervisor can successfully manage and coordinate from 
such a center. The span of control can be increased if each 
incident takes less time to handle; especially, if the “easy” 
incidents can be handled without intervention (only 
monitoring) of the dispatch centre.  

In PTSI the main body of personnel is mobile; moving 
from one task to the next, often in predefined routes, else in 
response to a range of incoming tasks. As a result, if an 
incident occurs, those with experience for such an incident 
might not be on the scene. This spatio-temporal character of 
PTSI makes it hard to determine whom to call to handle the 
incident.  

Another complication for some PTSIs is that personnel 
changes relatively quickly, either taking different positions 

in the organization, or leaving the organization altogether. 
As a result, knowledge retention in the human part of the 
organization is low. To some extent, this also holds for 
PTSIs in which people work in shifts; the best person to 
deal with a particular incident might not be at work at all, 
and may be not available for communication. 

A final aspect of incidents in PTSI is the spatio-temporal 
sparseness of incidents. Although the frequency of the 
different types of incidents is high, the occurrence of these 
incidents over time and space is sparse. As a consequence 
not every employee has experience with all incidents in all 
locations. 

 
Figure 1.  Communication network of actors in MHS security. Larger 

vertices are dispatch operators and team leader. Smaller vertices are guards. 

Currently, situational awareness of those that operate a 
communication point, such as dispatch center, is only 
supported by providing data and information on 
whereabouts of the personnel, key performance indicators 
concerning their activities and actual spatio-temporal 
information on the unexpected events at hand [8]. For most 
of the time, operators still have to rely on their own 
situational awareness to decide who to call. They cannot 
reliably predict who has the most relevant expertise and who 
is near the incident. This results in ineffective delegations of 
tasks causing an overall incident management delay. 

In professional PTSI organizations, information on 
personnel, other organizations, the ICT infrastructure, 
application usage and performance is stored in a 
continuously updated (centralized or distributed) database. 
However, some knowledge in such organizations is 
distributed over the personnel and is exclusively available 
through communication. 

III. WINDMILL APPROACH 

We developed the Windmill approach by mapping the 
difficulties and the opportunities of problems with a time-
critical component to a set of aspects (each hierarchically 
ordered), such that locally available knowledge is applied 
immediately (being the top ranked knowledge in all 
aspects). For the example, in mobile human surveillance 
security surveillance, the aspects involve the location of the 
incident; spatio-temporal availability of personnel; the 



expertise of personnel; expected travel time of selected 
personnel to the location of the incident; and feedback and 
performance. If that does not supply a solution, statistical 
learning, and activity spreading is used progressively over 
the hierarchy to more and more general but still grounded 
knowledge.  

The Windmill concept is based on the idea that the set of 
aspects corresponds to the set of blades on a windmill, see 
Fig. 2. Per blade/aspect, the knowledge available is 
hierarchically ordered according to its relevance. The centre 
of the mill, where all the blades meet at the axis, represents 
the most relevant instance corresponding to a particular 
incident, which actually denotes the core of the problem by 
the most detailed description available. Moving up the 
blades, to the outside, the position on the blades corresponds 
to knowledge that is decreasingly relevant to the specific 
instance and can be considered to be more general. The 
fantail of the windmill (that which keeps it directed to the 
wind) represents the defined performance criteria set for 
estimating and evaluating the performance of potential 
communication. The milling itself stands for the 
performance of these potential communication connections; 
the fasters the milling, the better the performance. The 
adaptability with respect to different time-scales and 
generality of information is represented in the blades of the 
windmill. 

  
Figure 2.  Windmill & a Blade in more detail 

For PTSI our mapping to blades of the Windmill is as 
follows: Because of the time-critical nature and the spatio-
temporal character of the incidents, the best solution is a 
local one, meaning that the PDA of the professional on 
scene uses information stored in the PDA to recommend a 
solution. Also, information available from on-site 
information sources, for instance, from an alarm console, 
can be incorporated in the recommendation process. 

For PTSI, the main aspects relate to the characterization 
of the incident in terms of the location of the incident; the 
availability of personnel (including spatio-temporal 
attributes); the expertise of personnel; expected travel time 
of selected personnel to the incident; and feedback (implicit 
and explicit).  

Degradation overtime of the expertise of personnel is 
taken into account. That is, if someone once was an expert 
in handling an incident of a certain type, and that 
professional has not handled such an incident in a long time, 
than that person is no longer considered an expert for that 
type of incident. The degradation speed is modelled in 
Section  IV.  

The Windmill approach exploits the opportunities of 
PTSI: the latently existing knowledge in databases and the 
knowledge distributed over the personnel of the 
organization. The databases are used to bootstrap the 
system, and for occasional re-bootstrapping the system. The 
distributed knowledge is used in two ways: the system uses 
explicit feedback by the personnel to improve its 
recommendations, and by contacting the PDA’s of 
personnel in reach. Finally, implicit feedback is obtained 
about the adequacy of the recommendations by evaluating 
the way the incident was handled, as well as by evaluating 
overall performance of the system. Overall evaluation is 
essential, since local actions, can have non-local effects, in 
worst case a cascade of other incidents.  

In such a way a communication support system can be 
developed that extracts this knowledge and makes it 
available in the form of situation-sensitive recommendations 
of whom to contact given an incident. By incorporating a 
communication set-up system, see [10], the communication 
lines to the recommended employees can be set up 
automatically and the employees can be provided with the 
proper situation- and incident-specific information. After the 
incident, the actors are asked to provide feedback on the 
quality of the incident support. Learning and spreading the 
induced communication activity patterns will show that 
significant improvements in the quality of assignment actors 
to incidents can be achieved. 

IV. COMMUNICATION SUPPORT 

In this section, we define our Windmill approach for the 
problem of recommending communication by introducing 
the basic elements of the PTSI. We show how each 
solutions to an incident can be associated with an estimated 
performance measure. Also, we discuss and tackle the issue 
of sparseness and spatio-temporal dynamics arising when 
estimation is performed while taking into account the 
context and spatio-temporal characteristic related to the 
incident and possible solutions.  

A. Communication Elements in PTSI  

Our Windmill approach is on the one hand based on the 
personalization of the recommendation of communication 
networks – this personalization is achieved by empirically 
modeling a so-called feedback rating function.  

On the other hand our approach is based on applying 
solutions fitting to new incidents that occur using implicit 
key performance indicators. Past communication activities 
are analyzed in terms of the original incident I that caused 
this communication, the available group configurations that 
were eventually contacted and the circumstances in which 
this took place. 

Using the Windmill approach requires logged data for 
analysis and bootstrapping purposes. These logged data 
should include the performance of past solutions to incident 
and task handling, each associated with the communication 
session instigating the solution, the nature of the incident 
itself and the spatio-temporal context in which the solution 
was achieved.  We define such collections of logged data by 
a set L consisting of a finite number of events. Each event e 



is represented by a tuple (a, g, τ, c, t) where the components, 

a ∈ A, g ∈ G, τ ∈ T, c ∈ C and t ∈ T, denote the following: 

• A is a set of actors in charge of a task,  

• G is a set of groups having participated in incident 
related communication, strictly G=2

A
, 

• T  is a set of tasks including incidents in set I, 

• C is a power set of context elements, and 

• T is a set of time points. 
The goal of communication support is to find a suitable 

group g for a specific actor a, that is working on at task τ, 

such as an incident i ∈ I, while taking into account the 
context c and the time t at which this takes place. 

B. Performance Estimation 

To determine the usefulness of suggested solutions to 
handle an incident, we introduce the concept of a 
performance measure indicating to which extent the 
requirements for incident management in PTSI where met. 
Subsequently, we discuss the estimation of performance 
candidate solutions. Estimation is needed, because the 
performance function is only partially known. 

1) Performance of Incident Solutions 

Each incident or task handled by an actor a ∈ A can be 
associated with a performance measures established 
afterwards. The performance v associated with each event is 
given below by Function 1. 

 v: A × G × T × C × T → � (1)  

Usually function v is normalized on a range between 0 

and 1:  higher values still correspond with more desirable 

outcomes and lower values do to less desirable outcomes.  

The performance function comprises measurement of, 

for instance, the operational performance (e.g., response 

times) individual judgments (i.e., ratings) or the workload. 

The precise definition of the performance is dependent on 

the actual application domain. For instance, if arrival times 

are paramount for some PTSI organization, then this is 

reflected in the logged data storing the performance 

measurements. 

Performance can only be measured after the incident has 

been handled. Incidents that occur in a new or unique 

context do not have an off-the-shelf solution. Therefore, an 

estimation function is introduced. 

2) Performance of Incident Solutions 

Given an incident i for which actor a is responsible at 
time point t concerning context  c,   the goal of 
recommending communication is to find a group g of actors 
to set up a meeting between a and g, such that the expected 
performance resulting from that meeting is maximized using 

a mapping h: A × T × C × T → G: 

 ( )),,,,(ˆmaxarg),,,( tcigatciah
Gg
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where a ∈ A, g ∈ G, i ∈ I, c ∈ C and t ∈ T. While L 
may contain a large set of events, it is unlikely that for any 

incident a ready and fitting solution (i.e., a group g ∈ G) can 
simply be retrieved from L that concerns the same actors 
and context. Therefore, the performance for these new 
events e’ has to be estimated using the events in L. 
Estimating performance is done by a function v. 

For estimating the performance of potential solutions, 
and as such constructing recommendation schemes that fit 
new incidents occurring, the Windmill approach allows 
comparing new events to past events. This is achieved by an 
estimation function for v that weights past solutions by their 
relevance using a relevance function δ and aggregates the 
associated performances according to its weights, see 
Equation 3. 
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where each e and e’ consists of a tuple (a, g, τ, c, t) and 
σ

n
 is a set of n scale parameters to allow, for instance, non-

linear weighing of the relevance metrics. Here n 
corresponds to the amount of elements in the tuple e = (a, g, 
τ, c, t). While applying the windmill to communication 
support, n is 5. 

Although such context-sensitive incident information 
can be used to select the right recommendation schemes, 
these incidents may be sparsely distributed over time and 
space making those schemes become unreliable, i.e., the 
recommendations schemes will be based on too few cases to 
guarantee certain accuracy. Furthermore, changes over time 
t will make those solutions obsolete. In the next sections, we 
will further detail function δ and address these issues of 
sparseness and dynamicity. 

C. Data Sparseness 

In practice only a part of the logged data is relevant for 
estimating the performance of new events. A very trivial, 
but effective way of diminishing the amount of data to 
process is to discard all events older than some time point t0.  
On the other hand too little information causes data 
sparseness to grow to undesirable levels, resulting in 
inaccurate estimation of the performance of recommended 
communication. 

Although discarding data seems effective as a way to 
deal with abundance, this does not solve problems of the 
curse of dimensionality. Reducing the amount of dimensions 
(e.g., contextual information) can alleviate the estimation 
process. That is, while any contextual element in C can be 
included in the estimation process, narrowing the number of 
aspects reduces the amount of computational effort needed 
to estimate the expected performance of potential solutions 
to a new event. 

The Windmill approach focuses on establishing a 
hierarchy of past events, associated solutions and their 
performance in terms of the relevance to a fresh incident 



occurring. To determine the relevance of each past events, 
each aspect can be weighted separately such that the 
relevance function of a pair of events is defined as the 
product of the relevance of all its pair members. This is 
defined in Equation 4. 
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Here, the relevance of an event e to a new event e’ is 
determined by the product of each member of those events 
being, for instance, an actor, the communication group, the 
actual incident or task, the context and the time of 
occurrence. Each of the relevance metrics can be weighted 
according to some weight σi corresponding with the scale 
size for that particular type of aspect. (see section D) The 
data instrinsic scale σi  can be learned by iteratively 

validating the function ν̂  against a set of training data.  

By allowing each aspect to contribute to the estimation 
of the candidate solution’s performance independently of 
the exact composition of elements, also events that have 
never occurred in reality can be assigned an expected 
performance based on strong correlations between the 
different observables. For instance, if we assume that actors 
a1, a2, a3 visited object o1 and, also, that actors a1 and a2 
visited object o2, using some correlation as relevance 
measure, (i.e., a1 and a2  performances at o1 and o2 show 
some correlations), we can propagate the performance of 
a3’s visit to o1 to estimate a3  performance at o2 using the 
relevance together with the scale σi. 

 

D. Spatio-Temporal Dynamics 

In order to arrive at grounded relevance measures (i.e., 
similarities) the Windmill approach proposes to aggregate 
and to distribute of the logged performance measurements. 
It proposes to continuously do this dependent on the 
measured properties of the incidents and the observed 
contexts, among which those of alternative communication 
groups, such as response times and experience in relation to 
incidents.  

1) Statistical Learning 

The Windmill approach embraces statistical learning 
techniques [15], correlation-based filtering approaches such 
as collaborative filtering(viz., [2] and [6]) and link-
prediction techniques (viz., [3] and [9]). Those techniques 
are in particular useful in capitalizing on the statistical 
similarities and the changes therein amongst the preference 
and performance schemes of actors a with respect to another 
group of actors g over incident space I, context space C and 
time domain T.  

Learning is finding a function ν̂  that minimizes the 

error between ν and ν̂ for all log events in L by adjusting 

the weights or even by altering the relevance metrics used 
(e.g., by using a evolutionary algorithm). The learning can 
be applied both in an on-line and off-line fashion. 

The relevance measures determined can be calculated in 
advance. Stored relevance schemes can be updated regularly 
in the background and for each element a top k list of most 
relevant neighbors can be kept. By repetitively applying 
expectation maximization on the events with respect to their 
performance, we retain primal incident-specific and 
contextual personalized hierarchies of ordered 
communication support schemes for the particular 
application domain: 

{ }),,,,(),,,,,(ˆ),,,,(),,,,( tcgavtcgavtcahtca ττττ  (5) 

These schemes identify for all new incidents a number 
of possible groups to communicate with, an estimated 
performance and, if available, the real performance as 
determined after resolving the incidents. Note that such a 
recommendation scheme hierarchy is still dynamic over 
incident and context classes and at larger time-scales, and 
that it may even evolve.  

2) Activation Spreading 

To enhance the estimation of the performance of 
incident solutions under the temporal dynamics and changes 
in other aspects, we propose an activation spreading 
approach with respect to the relevance measure between 
new and past events [4]. The spreading of the performance 
data across potential regions of (a, g, τ, c, t) space has to be 
corroborated by grounded similarity measures between the 
individual elements or classes of that space. For example, 
incidents may fall in a similar class allowing aggregation, 
weighing, normalizing and ranking of the performance data 
as in previous section.   

However, how and to which extent this data concerning 
individual space elements or segments is exchanged and 
combined is not a trivial thing. Especially the fact that this 
data becomes obsolete makes it a cumbersome task for 
people to assess new situations. 

In order to resolve these problems, the Windmill 
approach drives on a data-driven technique in which the 
spreading function is governed by an equation generating a 
so-called scale-space, viz.[14], of the performance function, 
that is: 

 )(ˆ)(: Σ×××××→××××Π TCIGAvTCIGAv  (6) 

For example, some security objects are visited by 
particular guards more often than other guards. These 
guards are therefore more acquainted with these objects. 
The experience of an actor a, in dealing with a particular 
type of incident I with respect to a particular security object 
c, is time-dependent. This experience is associated a given 
decay factor or typical temporal scale of alarm handling 
performance. Together with the other aspects all this can be 

expressed in terms of a scaled performance functionν̂ . This 

scaled function takes into account the multi-set of scales 
Σ=(σ1,…, σn) for the different event types. The relevance 
measure associated withν̂  can be defined as follows: 
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in which t’ is a starting time and δ 
a,g,τ,c,t 

: F × F � [0,1]; 

F = A � G � T  � C � T are relevance functions between 

different instances (i.e., observable) of one PTSI aspect. In 
order to measure the degree of correspondence between 
these observables, a Kendall correlation is calculated for 
each pair within the same class by ordering the guards by 
visiting frequencies to a particular location weighted by the 
recentness of the visit, viz.[5]. 

 Note that the space F is a topological space with a non-
Euclidean or rather affine metric. The space and time 
aspects might be associated with, for instance, a Minkowski 
metric, but the performance function can also be induced 
using other non-Euclidean relevance or similarity metrics. 
This entails that the activation spreading process – 
eventually node and link creation - ensures that those 
observed performance measurements for pairs of events are 
aggregated that are most similar. The scale parameter 
determines to which extent similar events will influence 
each other and therewith will resolve sparseness or even 
incompleteness.   

V. DISCUSSION 

The Windmill method enables the development of 
incident-specific and context-sensitive personalized 
communication support systems for incident management 
organizations faced with uncertain, rare, dynamic and time-
critical incidents. It embraces agent modeling, statistical 
learning and activation spreading techniques using 
appropriate scale-space theories for analyzing the dynamic 
communication network topology over time induced by 
appropriate performance measures.  

We aim to integrate the communication system 
presented in this paper in the normal procedures of day to 
day surveillance work, indeed first-responders. It will as 
such not suffer from sparseness, contextual and volatility 
issues [5]. Furthermore, we aim to further explore the 
relationship between multi-agent system emergency 
operations and emergency planning and plans, in which 
local MAS operations would be more appropriate than using 
centralized IMSs.  

Concerning the statistical learning and activation 
spreading methods in this paper we employed classical 
scale-space methods in order to quantify and predict missing 
links in communication networks. In order to capture and 
propagate the asymmetry in the connectivity and preference 
relations amongst actors and nonlinearity in the 
communication network dynamics and evolution, we will 
study and report in upcoming articles on the performance 
function and associated data-consistent scale-space 
governing equations.      

Last but not least, we aim to apply our Windmill method 
to other problems, such as knowledge management support 
across organizations or creating socially intelligent ICT 
support networks for, for instance, the elderly. 
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