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Abstract – In recent years the discrepancy between the 

required knowledge and the available knowledge for 

obtaining the situation awareness aboard Royal 

Netherlands Navy ships has increased. This paper 

presents a methodology to automatically classify objects 

in the mission environment based on user defined 

mission information in order to close this gap. The 

cornerstone of this methodology is the Confidence 

Interval (CI) based on Gaussian distributed 

measurements. To solve the classification problem 

effectively we describe how such a CI can be constructed 

for any number of variables. A mission planner has 

been implemented where operators can define a mission 

and where objects in the environment are automatically 

classified based on those mission parameters. 

 

Keywords: Classification, Confidence Interval, 

Reasoning with uncertainty. 

 

1 Introduction 

In recent years the classification process aboard naval 

warships has become increasingly difficult. There are 

several reasons for this. Firstly, because the operational 

theatre has changed from blue to littoral waters, which 

means that sensor performance is unpredictable due to 

rapidly changing meteorological conditions and due to the 

geographical conditions at the current location. The latter 

also enables hostile forces to stay hidden longer, which 

reduces reaction time what in turn makes the classification 

problem extremely difficult. 

Not only has the environment become more complex, the 

missions themselves have become more complex as well. 

Currently, missions involve peacekeeping, counter drug 

operations or enforcing trade embargos. These missions 

are also characterised by an asynchronous threat and much 

media attention, which have been proven to be of much 

influence during a recently held exercise ‘Noble Midas’ 

described in [1]. The first makes the classification itself 

harder whereas the latter gives high pressure not to make 

mistakes. 

A third aspect is the discrepancy between the knowledge 

available and required for the classification task. Where 

sensor systems are becoming increasingly complex, much 

knowledge is needed to properly set the sensor controls to 

operate optimally in any given situation. Due to budget 

cuts however, there is a strive to reduce the ship’s 

complements as well as the available training time. 

In short we observe that having a good and timely 

classification has become increasingly important as well as 

increasingly difficult to obtain; a decision support system 

is therefore needed. Having good classification solutions 

for all objects in the environment is important for 

obtaining and maintaining situation awareness. 

This paper describes how the system can combine 

measurements to automatically find a classification 

solution. In section two the background of this study is 

given as well as how this work is related to ongoing 

research. In section three the classification model that we 

use will be discussed briefly. Based on the modelling we 

use, section four will describe how confidence intervals 

can be constructed for any number of Gaussian distributed 

variables. These intervals are related to the mission 

information, which is described in section five. The 

implemented mission planner in which the classifiers 

operate is discussed in section six. Finally, sections seven 

and eight will outline future work and present the 

conclusions. 

2 Background 

The research presented in this paper is conducted based on 

the results of the STATOR
1
 project: a collaboration 

between the Royal Netherlands Naval College, the 

International Research Centre for Telecommunications 

and Radar of the Delft University of Technology and 

Thales the Netherlands. Focus of this project was the 

management of sensor suites and the fusion of the data 

provided by that sensor suite. The goal is to develop a 

decision support system where the operator can 

communicate with the sensor suite as a whole in 

operational terms. In so doing no technical settings are 

required directly from the operator. More detailed 

information on this overall concept can be found in [2]. 

2.1 Sensor Management 

Previous research showed that the basis for sensor 

management is reducing uncertainty in the compiled 

picture, [3]. On the basis of the uncertainties residing in 
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this compiles picture, sensors could be tasked in order to 

reduce uncertainty as much as possible. 

Decisions the sensor manager needs to make are: 1) which 

task should be performed and 2) which sensor should be 

used for any of these tasks given the environment and 

mission constraints. Both questions are not easily 

answered. This paper will therefore focus on the first task 

of choosing the appropriate task to perform, also called 

sensor tasking. More specifically, this paper focuses on the 

sensor tasks that are required to optimise the classification 

of objects. 

2.2 Sensor Tasking 

The goal of deploying sensors is to obtain and maintain a 

representation of the world in the command and control 

system. Such a representation, called (common) 

operational picture, consists of detected and/or expected 

objects. Sensors in general can measure a wide variety of 

attributes, amongst others: position, speed, acceleration, 

identity and classification. All mentioned attributes are 

important in the military work-domain. For most of these 

attributes uncertainty reduction seems quite straight-

forward. Reducing classification uncertainty however, is 

more difficult. In order to find a mechanism that can 

generate sensor function requests we need to further look 

at the classification process itself. 

2.3 Classification 

Having a correct and timely classification solution is of 

vital importance to mission success in any work-domain. 

Therefore, optimising the sensor suite to facilitate the 

classification process is equally important. Before this can 

be done however, we need to describe 1) how the 

classification space needs to be modelled, 2) what a good 

classification solution is and 3) what a timely solution is. 

The answer to the first question is described in more detail 

in section three, but here we will shortly state what 

classification is: classification tries to recognise the 

observed object in as much detail as possible. When this is 

done the object attribute type is accurately known in the 

(common) operational picture. 

A good classification is the solution where the uncertainty 

in the class information does not cause uncertainty in the 

risk; in this research the notion of risk from [4] is used. 

E.g., the distinction between two sea skimming missiles 

causes only a little reduction in risk uncertainty, 

distinguishing between an airliner and a fighter does 

reduce uncertainty in risk. Besides the advantage of risk 

uncertainty reduction, a good classification also improves 

on radar performance in tracking, [5]. 

In the military domain the starting point is to assume the 

worst-case scenario. With incoming objects this means 

that at a certain point in time precautionary actions must 

be taken. Before this happens, a classification solution 

could negate the necessity of actions thus preventing 

collateral damage. A timely solution is therefore the 

solution that reduces enough class uncertainty for deciding 

on appropriate actions in time. 

A good and timely solution as described here, places 

constraints on the modelling of the classification space. In 

other words, to answer the first question, the answers to 

the other two questions need to be taken into account. The 

next section will therefore discuss the details of a 

classification model in more detail. 

3 The Model 

In this study we used the classification model described in 

[6]. This model uses three hierarchical classification 

levels. At the highest-level superclasses are defined. In 

our application these classes represent the different 

domains: air, surface, subsurface. Included in the 

superclasses are the sub-domains land and sea. The Venn 

diagram of this highest level is given in Figure 1. 

sealand subsurface

surface

air

 

Figure 1 Venn diagram of the five different domains. 

The middle level consists of generic classes such as 

fighters and helicopters. Finally, at the third level specific 

classes are described. 

The goal in the classification process is to assign a class at 

the appropriate level of detail as mentioned in the previous 

section. Since each class exists in an attribute space, we 

can map the available knowledge we have about an object 

onto the sets of classes and see where the best fit occurs. 

In order to do this, we need to know: 

1) what the object looks like in such an attribute 

space; and 

2) how uncertainty in single measurements can be 

combined to find the uncertainty regions in the 

multi-attribute space. 

 

In general, the measurement and its related uncertainty 

produce a confidence interval given a certain percentage; 

some value on that confidence interval is the actual value 

with the given percentage of probability. 

The amount of overlap between such a confidence interval 

and the class gives the amount of support the system has 

for a classification solution. Examples of classifying 

objects based on multiple kinematic attributes can be 

found in [7] and [8]. 



4 Confidence Intervals 

Reasoning about objects and comparing them with a 

database of known and expected classes means that 

confidence intervals (CI) need to be calculated on the 

basis of measurements. In this section we will first show 

how such CI’s are constructed for two and four variables 

based on a tracking example. We will then proceed by 

giving the general formulas for n variables. 

4.1 Two variables 

To solve the problem of where an object is in 2D 

Cartesian coordinates with a radar system, we have to 

combine range and bearing information. These 

measurements have an amount of uncertainty and the 

resulting Cartesian position has a resulting uncertainty 

region. For small uncertainties in the individual 

measurements a well fitting assumption can be made about 

the uncertainty region in Cartesian coordinates. When 

uncertainties increase, such assumptions become less 

accurate. An exact solution to find the boundaries of the 

CI becomes necessary in those cases. 

Let us look at the problem of finding the uncertainty 

region in Cartesian coordinates by combining uncertain 

range (r) and bearing (b). In this example a Gaussian 

distribution on both measurements is assumed. Since the 

conversion from polar coordinates to Cartesian 

coordinates is a standard mathematical operation, we will 

only look at the combinations of range and bearing that 

form the boundary of the CI. To find this CI-boundary we 

need to solve equation (1). Since we only look at the 

Gaussian distribution itself, we can say that this approach 

works for any combination of two Gaussian distributed 

variables. 
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For notational purposes we define the following: 

 

xp  
Gaussian probability density function of 

variable x; 

r Range; 

b Bearing; 

xµ  Mean value of variable x; 

xσ  Standard deviation of variable x; 

α  Boundary value. 

 

To solve equation (1) we use the definition of the error 

function (erf, equation (2)), to solve the integral over the 

Gaussian distribution. The definition of this erf-function 

can be found in [9]. Using equation (2) we can solve the 

boundary condition and we find equation (3) for the CI-

boundary. This however, is not enough to find the exact CI 

region. Finding that region means that we need to find all 

combinations of the variables that satisfy the boundary 

condition, equation (4). 
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To solve equation (4) we define range as rrr ρσµ +=  

and bearing as bbb βσµ += . After basic mathematical 

operations we find equation (5). 

 
222 2αβρ =+          (5) 

 

We then find equation (6) for the combinations of range 

and bearing that constitute the outer limits of the 

confidence interval. Using this equation we can easily 

draw the CI-region in Cartesian coordinates without 

making any assumptions on the shape of this region. In 

equation (6) the inverse error function is denoted by 
1−erf . 
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4.2 Four variables 

When reasoning about objects usually more than two 

variables are used. To illustrate this, we will include 

possible movement by the object from the previous 

example. This movement consist of a speed (s) and a 

course (c), both Gaussian distributed. Given the previous 

measurements of these four attributes we now want to find 

the CI-region at the next time step. To find this region we 

will again need to determine the boundary condition first, 

equation (7). Since we are solving the distribution, the 

solution can be used in any field. 

Note that the use of equation (7) assumes independency 

between the four variables, which does not hold in actual 

tracking problems. Since we only use the tracking example 

to illustrate how uncertainty regions can be calculated 

based on independent variables, we will discard the 

dependencies in this work. For actual tracking 

implementations, already developed tracking algorithms 

will be used. 
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Similar to equation (2) for two variables we find equation 

(8) as the relation between CI and the CI-boundary. When 

we define: 

rrr ρσµ += ; 

bbb βσµ += ; 

sss ϑσµ += ; 

ccc γσµ += ; 

 

we find equation (9). 

 
22222 4αγϑβρ =+++         (9) 

 

Now, define 224 βρ +=A  and 224 γϑ +=B  which 

produces ( )pA sin22 ⋅= α  and ( )pB cos22 ⋅= α . This in 

turn produces: 
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   with π2...0=p  and π2...0=t . 

 

Now, assume the example as given in Table 1. Using 

equation (6) we find the uncertainty region (the dotted 

line), shown in Figure 2, given the available range and 

bearing measurements. Using the results from this section 

we can also find all possible positions at the next time 

step, indicated by the solid lines in Figure 2. To find the 

entire CI-region we simply take the outer limits of all solid 

lines, producing Figure 3. 
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Figure 2 Given the CI of the current position, the CI for 

the next position can be found by combining all solid 

lines. 

Table 1 Last known kinematic information 

 µ  σ2  
Range 10 3 

Bearing 90 10 

Speed 10 1 

Course 180 8 
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Figure 3 The CI-regions for the current position and the 

outer limits of the next expected position. 

 

In Figure 2 and Figure 3 the squares indicate the position 

where the probability density is at a maximum for the 

current time step given the range and bearing. The 

triangles indicate the maximum probability density for the 

next time step given the course and speed. 

In the two previous sections we used a tracking example to 

illustrate how Gaussian distributed measurements can be 

combined to find a combined CI-region. In the next 

section we will give the formulas in a more generic way. 

4.3 n Variables 

In the previous sections we discussed reasoning with two 

or four variables, illustrated with a tracking example. Note 

that this approach is not relevant for actual tracking due to 

the relatively small uncertainties and the high update rates. 

We choose this description because of its evocative 

nature. However, in the tracking example the use of two or 

four variables seems enough whereas in the classification 

space more combinations of multiple attributes need to be 

made to come to a good classification solution as 

described in section 2.3. 
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Figure 4 The boundary value for an increasing number of 

variables given several confidence intervals. 

A method is therefore needed to find out how independent 

measurements can be combined to find a confidence 

interval for the combination of n attributes. Firstly, the 

boundary value needs to be computed using equation (10). 

Each attribute ix  has a possible value that can be 

constructed using the mean value, 
ix

µ , and the variable 

part, 
ix

ξ , of the standard deviation, 
ix

σ , on the basis of 

the measurements of that attribute, equation (11). 
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When combining equation (10) and equation (11) we find 

that the confidence interval is given by equation (12). 

Using basic mathematical operations we find the condition 

for the combinations of 
ix

ξ  that fall within the confidence 

interval, equation (13). Figure 4 shows the boundary value 

against the number of variables for various CI’s. 

Utilising the combination of the CI-region found using 

equation (13) with classes in the same attribute space we 

can determine which attribute’s uncertainty causes the 

most classification uncertainty. This can be used in sensor 

management concepts to generate sensor function requests 

in order to reduce this uncertainty, the second stage of the 

three-stage-sensor manager described in [10]. 

5 Mission knowledge 

In the previous section we discussed confidence intervals 

that enable us to compare measurements with expected 

classes in the environment. The question is: how does the 

system know what classes to expect in different 

operational theatres? Operator input seems a logical 

answer. By setting mission parameters during the mission-

planning phase, the system can adapt its settings to 

optimise the classification process. During mission 

execution this will lead to a different role of the operator: 

instead of solving different classification problems the 

operator can now monitor the system and adjust it where 

needed. Since monitoring tasks instead of performing 

them takes less people, such a decision support system fits 

into reduced manning concepts. It also enables the 

operator to operate on the tactical level of warfare and 

enables the operator to communicate with the system in 

operational terms. Furthermore, it enables working with 

adaptive levels of automation, [11], since the operator can 

choose to have the system do the classification or do it by 

himself. Of course, they can also cooperate to find a good 

solution. How such cooperation is achieved is discussed in 

[6]. 

Instead of focussing on the operator as a classification 

source, here we will focus on the role of the operator in 

the mission-planning phase. Operators can indicate certain 

regions where some classes are expected, or indicate 

certain subsets of attributes that are mission-specific. For 

instance, due to the mission environment a certain class of 

ships can only have a limited maximum speed. In the next 

section we will discuss a prototype of such a mission 

planner that was developed. 

6 Mission Planning 

A mission planner was developed to see if classification 

algorithms could be combined with changing mission 

information. A screenshot of the planner is given in Figure 

5. 

 

 

Figure 5 A screenshot of the mission planner as 

implemented. 

Using this planner the operator can indicate where objects 

are more likely to appear and can indicate per class what 

the restrictions are. A restriction on a class e.g., can be 

where air lanes are located in the mission environment. All 



these settings can be altered and the classifiers will 

automatically adapt their findings to this new information. 

In Figure 5 the right side of the screen is used to present 

the information of an object the operator selects. At that 

time the current classification solution is also given by the 

system. Figure 6 shows the upper right corner of the 

planner in more detail. For the different attributes two 

values are displayed: firstly, the measurement and 

secondly, twice the standard deviation. In this screen the 

operator can use the buttons shown next to the 

classification solutions to alter the predefined information 

on the different classes. This, of course, holds only for the 

two lower hierarchical levels and not for the superclasses. 

In the example used in figures 5 and 6 we can see that 

based on the available information an object is classified 

as a patrol boat. However, since uncertainties are taken 

into consideration the possibility of the object being a 

helicopter is still open. Furthermore, we see solutions from 

the different hierarchical levels from the classification 

model. 

Since the uncertainty region of the position is mainly at 

sea, the land-classes are not shown to the operator. The 

distinction between land and sea in this implementation is 

kept simple. Looking at the RGB
2
-values on the map, 

wherever the blue-component is the biggest value of the 

three: we consider it to be sea, else it is land. Of course, in 

future implementations a Geographic Information System 

will be used to improve upon this. For now, we consider 

this accurate enough since we want to prove the 

classification concepts and not improve performance. 

 

 

Figure 6 Object information and the current classification 

solutions for the selected object. 

                                                 
2
 RGB: The additive colour model where Red, Green and 

Blue are combined to form the various colours 

 

Figure 7 Altered object information and the new 

classification solutions for the selected object. 

 

When changing the available information the classification 

algorithms recalculate and find a new solution. The object 

from Figure 6 e.g., is given an altitude of four metres. The 

classifiers adapt and find a new solution, as shown in 

Figure 7. Since the altitude was increased, the new 

solutions are mainly classes from the air domain. Ships 

however, still appear in the list of solutions due to the 

uncertainty regions of combined attributes. 

Note that in both cases the displayed values are 

normalised. All values assigned to the different classes in 

the mission database sum up to one. Reason for this 

normalisation lies in the chosen combination rule for 

operator input. This combination rule is taken from 

Dezert-Smarandache theory (as explained in e.g. [12]), 

which is explained for the classification domain in [6]. 

7 Future Work 

The work presented in this paper is part of ongoing 

research conducted by the Royal Netherlands Navy. 

Additions to the classification solution are therefore 

expected in the near future. Firstly, by combining the 

combination rules presented in [6] with the classification 

algorithms presented here. Secondly, we will incorporate 

the mission planner and classification algorithms with the 

simulation environment presented in [3]. 

We will expand the simulation environment to enable it to 

cope with more than a single mission. In the future this 

extended environment will enable us to test the 

classification algorithms in a serious gaming ([13]) 

simulation. The simulator will also be altered so the 

mission scenarios can be changed run-time. Tests can be 

done to see how operator performance changes due to the 

new classifier support systems. 



8 Conclusions 

Due to the increasing complexity of missions that are 

executed by the Royal Netherlands Navy and the increased 

discrepancy between available and required knowledge, 

the demand for decision support systems has grown 

rapidly during the last few years. Classification of objects 

is essential for obtaining situation awareness and requires 

an efficient and effective support system. 

This paper shows that kinematic measurements can be 

used in the classification of objects. More importantly 

even, the uncertainty in those measurements can be 

included in the reasoning about classification solutions. 

An additional bonus of this system is that the operator can 

predefine the mission and therefore has more time during 

mission execution for tactical tasks. Due to the flexible 

set-up of the system, the pre-set information can be altered 

during run-time if the operator receives new intelligence 

about the mission environment. 
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