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Abstract— Information about the opponent is essential to 

improve automated negotiation strategies for bilateral multi-

issue negotiation. In this paper we propose a negotiation 

strategy that exploits a technique to learn a model of opponent 

preferences in a single negotiation session. An opponent model 

may be used to achieve at least two important goals in 

negotiation. First, it can be used to recognize, avoid and 

respond appropriately to exploitation, which differentiates the 

strategy proposed from commonly used concession-based 

strategies. Second, it can be used to increase the efficiency of a 

negotiated agreement by searching for Pareto-optimal bids. A 

negotiation strategy should be efficient, transparent, maximize 

the chance of an agreement and should avoid exploitation. We 

argue that the proposed strategy satisfies these criteria and 

analyze its performance experimentally. 

Multi-issue negotiation; opponent modelling; Bayesian 

learning; negotiation strategy; Tit-for-Tat 

I.  INTRODUCTION  

In bilateral negotiation, two parties aim at reaching a 
joint agreement, by exchanging various offers using e.g. an 
alternating offers protocol. Two basic, constitutive facts 
about negotiation define the basic dilemma each negotiator 
has to face: (1) each party aims to satisfy its own interests as 
best as possible, but (2) in order to reach an agreement one 
has to take ones opponent’s preferences into account as well. 

In the literature on automated negotiation, typically, 
concession-based strategies have been proposed. An agent 
that uses a concession-based strategy selects as the next offer 
it will make an offer that has a decreased utility compared 
with the last offer made. The utility that is being decreased is 
the utility from the agent’s own perspective without any 
guarantee that such a decrease will also increase the utility 
from the other party’s perspective. A well-known example of 
such a strategy is the time-dependent strategy which 
decreases utility simply as a function of time [6]. Although 
motivated by fact (2) above, such strategies do not explicitly 
take the opponent’s preferences into account, and, as a result, 
will most likely be inefficient in complex negotiation 
domains. Moreover, time-dependent strategies can be 
exploited by the other negotiating party and as such do not 
adequately take fact (1) above into account. 

The solution to these problems is to explicitly take the 
preferences of an opponent into account. The benefits of 
doing so are that it enables a search through the outcome 
space for outcomes that are mutually beneficial and that it 
allows classifying and recognizing the type of move an 

opponent has made. In order to do so, two key questions 
need to be addressed: How can an agent obtain information 
about opponent preferences? And: How can an agent exploit 
information about opponent preferences effectively? 

In this paper we consider single session negotiations, i.e., 
negotiators cannot learn from repeated sessions with the 
same opponent. As negotiators typically are not willing to 
reveal their preferences to avoid exploitation, information 
about opponent preferences needs to be obtained from the 
behaviour of that opponent. The first question is addressed 
by means of opponent modelling techniques, several of 
which have been proposed, see e.g. [2, 13]. We use a 
technique based on Bayesian learning here that is able to 
effectively learn opponent preferences during a single 
negotiation session [4].  

This paper shows how opponent preferences can be 
strategically exploited in negotiation. It is organized as 
follows. Section 2 discusses related work. In Section 3 a 
design of a negotiation strategy that explicitly uses opponent 
preferences is introduced. The theme of Section 4 is the 
algorithm of the proposed negotiation strategy. Its 
effectiveness is validated in Section 5 by way of 
experimental results. Section 6 concludes the paper. 

II. RELATED WORK 

In this Section we first discuss related work on 
negotiation strategies, and then we briefly discuss related 
work on learning and introduce the technique we used in our 
experiments.  

The literature on negotiation strategies is extensive and 
we only discuss some examples to illustrate the variety of 
ideas that have been proposed to design such strategies. In 
[6] a range of decision functions that may be used to define a 
negotiation strategy are discussed, focussing on different 
aspects that may be relevant in a negotiation such as time 
and the behaviour of an opponent. As no single tactic or 
decision function seems to be “right” in arbitrary negotiation 
settings, an approach proposed in [10] aims at combining 
different types of such negotiation tactics from [6] in a single 
strategy. An evolutionary algorithm is used to compute a 
next offer that adjusts the weights associated with each of the 
individual tactics. This approach is not suitable for the one-
session closed negotiation situation we are focussing on. To 
begin with it requires a substantial number of negotiations to 
learn appropriate weights associated with the tactics. 
Moreover, the preference profiles of both parties must be 
made public in order to calculate the fitness during the 



learning phase. As a result, the weights learned to combine 
the strategies only yield efficient negotiations in negotiation 
setups that are one-session and closed.  

The negotiation strategy of [7] can be used in one-session 
closed negotiation setting. It postpones concessions by using 
domain knowledge to offer bids that increase the utility (and 
thus acceptability) for the opponent without decreasing the 
utility associated with the offer for the agent making the 
offer. Such offers increase the chances of a proposed trade-
off that is good for both parties. Nevertheless, this strategy 
concedes even if the opponent does not.  

The concession-based negotiation strategy of [8] 
determines the size of its next concession mainly on the basis 
of the utility gap between the last bids of the agent and the 
opponent. The next bid configuration, however, is based 
purely on the agent’s own preference profile and thus 
reaches no win-win outcomes. Its time-dependent nature 
means that it can be exploited by the opponent.  

To tackle the problem of exploitation, in [6], a number of 
variants of Tit-for-Tat tactics are discussed that belong to the 
family of so-called behaviour-dependent tactics. These 
tactics, however, do not use an opponent model and only 
vary utility of the agent’s own perspective consistently. 
These tactics thus are blind to the preferences of an 
opponent. The behaviour generated by such a tactic therefore 
is not transparent and may be hard to understand from the 
opponent’s point of view. With Axelrod [1984], we consider 
transparency an important feature of any strategy, which has 
motivated the design of the strategy introduced here. 
Transparency may be achieved by using available knowledge 
about the preference profile of the opponent, as explained in 
Section 3. 

Various approaches to learning in a negotiation context 
have been based on forms of Bayesian learning, e.g. [4, 13]. 
For the negotiation situations we are focusing on, we need a 
technique that is able to learn the opponent profile during 
one session, such as the Bayesian learning technique 
introduced in [4], which we chose as a building block in this 
paper. 

III. NEGOTIATION STRATEGY DESIGN 

The preferences of an opponent can be used in at least 
two ways. First, it can be used to propose efficient Pareto-
optimal offers. Finding such offers requires that the Pareto 
frontier can be approximated which is only feasible if a 
reasonable model of the opponent’s preferences is available. 
Second, it can be used to recognize and avoid exploitation. 
The strategy we propose is inspired by a classification of 
negotiation moves as described in [3] and the Tit-for-Tat 
tactic, discussed in [1] and – in a negotiation context – in [6].  
As learning techniques will not provide perfect models of an 
opponent’s preferences a strategy should be robust with 
respect to such imperfections. We return to this last point in 
the Section 5. The design of the negotiation strategy 
proposed in this paper is based on a number of observations 
and criteria that we want the strategy to satisfy. The main 
criteria are that the strategy should be efficient, transparent, 
maximize the chance of an agreement and should avoid 
exploitation. 
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Figure 1. Classification of negotiation moves 

 
The first observation relevant to the design of our 

strategy is that the availability of information about the 
preferences of an opponent enables an agent to classify the 
moves its opponent makes. Here, we use a classification of 
moves proposed in [3] and illustrated in Figure 1. The move 
classification is presented from the perspective of agent A. 

Given that agent A’s last offer is marked by the arrow 
“Current Bid of Agent A”, the agent has a number of choices 
for making a next negotiation move. A silent move does not 
change utility of either party significantly. A concession 
move decreases own utility but increases the utility of the 
opponent. A fortunate move increases utility for both parties 
whereas an unfortunate move does the opposite. Note that a 
fortunate move can only be made if the current bid is not 
already on the Pareto frontier. A selfish move increases own 
utility but decreases the opponent’s utility. Finally, a nice 
move increases the opponent’s utility but does not change the 
agent’s own utility. 

 

Utility of Agent B (opponent)

U
ti
lit

y
 o

f 
A

g
e

n
t 

A
 (

m
e

)

matches

Next bid on 

the Pareto

Pareto 

efficient 
frontier

Mirroring 

axis

Utility of Agent B (opponent)

U
ti
lit

y
 o

f 
A

g
e
n
t 
A

 (
m

e
)

matches

Next bid on 

the Pareto

Pareto 

efficient 

frontier

Mirroring 

axis

 
    a        b  

Utility of Agent B (opponent)

U
ti
lit

y 
o

f 
A

g
e

n
t 

A
 (

m
e

)

matches

Next bid on 

the Pareto

Pareto 

efficient 

frontier

Mirroring 

axis

 Utility of Agent B (opponent)

U
ti
lit

y
 o

f 
A

g
e

n
t 
A

 (
m

e
)

matches

Next bid on 
the Pareto

Pareto 

efficient 

frontier

Mirroring 

axis

 
   c         d 

Figure 2. Example responses for an (a) unfortunate move, (b) selfish move, 

(c) concession move, and (d) fortunate move. 

 
Based on this classification a simple suggestion would be 

to “mirror” each move of an opponent by making a similar 
move, which would implement a Tit-for-Tat-like tactic. The 
basic idea of a Tit-for-Tat strategy in a multi-issue 
negotiation context would be to respond to an opponent 



move with a symmetrical one. That is, “match” the move as 
depicted in Figure 2 by mirroring it in the diagonal axis. 

First note that each type of move would indeed result in a 
response move in the same class. In particular, responding to 
a concession move of the opponent with a concession move 
itself arguably is one of the most reasonable responses one 
can make. All rational negotiation strategies will attempt to 
make concession moves at some point during a negotiation. 
Moreover, the “mirroring” strategy would avoid exploitation 
as a selfish move of the opponent would result in a selfish 
response move. Such a response would be a signal to the 
opponent: “I am prepared to make a concession towards you 
only if I get something in return. If you pull back I’ll do the 
same”.  

A mirroring strategy would, however, be too simplistic 
for several reasons. A mirroring strategy is not rational in the 
case of an unfortunate move, as there is no reason to 
decrease the agent’s own utility without increasing the 
chance of acceptance of the proposed bid by the opponent. 
Furthermore, observe (compare Fig. 2) that unfortunate 
moves move away from the Pareto-optimal frontier, and thus 
would not satisfy our efficiency criteria. 

In order to remove these deficiencies, we propose to first 
mirror the move of the opponent and thereafter make an 
additional move towards the Pareto frontier, i.e. a move 
towards the approximated Pareto frontier that is computed 
using the learned opponent model and the agent’s own 
preference profile. There are multiple ways to do this and the 
choice is not straightforward. What is clear is that the move 
towards the Pareto frontier should not further decrease the 
agent’s own utility as this would invite exploitation tactics. 
Furthermore, it also does not seem rational to further 
decrease the opponent’s utility as this would result in selfish 
moves to arbitrary moves of the opponent. 

The final observation that motivated our choice is that 
increasing the agent’s own utility by moving towards the 
Pareto frontier actually minimizes the chance of reaching an 
agreement when this strategy would be used by both parties, 
which would violate one of our design criteria for a 
negotiation strategy. To explain this, consider two agents that 
would mirror an opponent’s move and then, seen from the 
perspective of Agent A in Figure 2, would move straight up 
towards the Pareto frontier (Agent B would move right) 
which would only increase own utility. The other agent in 
this case would consider such a move a selfish move and 
respond similarly, thereby minimizing the chance of 
reaching an agreement. Of course, this line of reasoning 
depends on the quality of the opponent model but presents a 
real problem. To resolve it, the strategy we propose only 
increases the opponent’s utility when moving towards the 
Pareto frontier in order to maximize the chance of an 
agreement. The resulting strategy consists of two steps: first 
mirror the move of the opponent and then add a nice move to 
propose an efficient offer (i.e., search for a bid on the 
approximated Pareto frontier that is on the same iso-curve as 
the bid obtained by mirroring, see Figure 2). This strategy we 
call the Mirroring Strategy (MS).To gain a better 
understanding of MS, it is instructive to discuss some of the 
response moves MS generates. Figure 2 shows examples of 

responses to an unfortunate, selfish concession and fortunate 
move. The response to an unfortunate move is to mirror this 
move and add a nice move, which results in a concession 
move (see Figure 2a). This is a reasonable reply as such a 
move may be interpreted as an attempt (that failed) to make a 
concession move by the opponent (due to the lack of 
information about the preferences of its opponent). Such a 
move which is the result of misinformation should not be 
punished, we believe, but an attempt instead should be made 
to maintain progress towards an agreement.  

The response to a selfish move either results in a 
fortunate move or in a selfish move. Figure 2b shows the case 
resulting in a fortunate move. It should be noted that a 
fortunate move is only possible if the previous move the 
agent made was inefficient. This means that in that case the 
opponent model must have misrepresented the actual 
preferences of the opponent. In such a case, where our 
previous move was based on misinformation, we believe it is 
reasonable to not punish the opponent with a selfish move 
and give the opponent the benefit of the doubt in such a case. 
If, however, the previous move would have been efficient, a 
selfish move most likely would be replied to with a selfish 
move (since there would be no room to make a nice move 
towards the Pareto frontier), and it is reasonable to send a 
clear signal to the opponent that such moves are 
unacceptable. 

Finally, both a concession move as well as an unfortunate 
move of the opponent would be replied to with the same type 
of move (see Figure 2c and 2d). Moreover, if there is room 
for a nice move towards the Pareto frontier, in both cases the 
step would be bigger than that made by the opponent, 
increasing the utility of the opponent even more and thereby 
again increasing the chance of acceptance as early on in a 
negotiation as possible. 

As discussed, a negotiation strategy should be efficient, 
transparent, maximize the chance of an agreement and 
should avoid exploitation. It is clear that MS aims to be as 
efficient as possible, which only depends on the quality of 
the learning technique for modelling opponent preferences. 
Performance of the learning algorithm used in MS was 
studied in [5]. The study concludes that the learning 
algorithm can learn the most important aspects of the 
opponent preferences in a range of negotiation settings. MS 
does not aim at exploiting the weaknesses of an opponent 
strategy. Instead it aims for restoring efficiency whenever an 
opponent strategy is not able to do so and aims at a fair 
outcome (see also Section 5 below). MS is transparent as it is 
proposes a simple response strategy by mirroring an 
opponent’s move and then adding a nice step. The signals 
thus send by negotiation moves are easy to interpret by an 
opponent. In particular, MS only punishes an opponent in 
reply to a selfish move and only does so when the model of 
opponent preferences matches the actual preferences of that 
opponent. As a result, MS not only avoids exploitation but 
also is a nice strategy. MS is nice even when an opponent 
makes unfortunate moves which are interpreted as 
“mistakes” on the opponent’s part. The strategy moreover 
maximizes the chance of an agreement as early as possible, 
which is achieved by the move towards the Pareto frontier 



that always maximizes the utility of the opponent relative to 
a particular utility for the agent itself. 

IV. MATHCING STRATEGY ALGORITHM 

Here we present the MS strategy in 6 algorithmic steps, 
including the steps needed for learning an opponent model. 
The algorithm is presented in Figure 3. As is usual, MS starts 
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Figure 3. Matching Strategy algorithm 

by proposing a bid that has maximal utility with respect to 
the agent’s own preference profile (step 1). In step 2 a simple 
but reasonable acceptance strategy is used which is not 
particular to MS. A bid from an opponent is accepted when 
the utility of that bid is higher than that of the agent’s own 
last bid or the utility of the bid it would propose next. 
Otherwise, the agent will propose a counter-offer. In step 3, 
the bid received from the opponent is used to update the 
opponent model with the function U �(ω) of [4]. Steps 4, 5 
and 6 define MS. Step 5 mirrors an opponent’s move, after 
which step 6 determines a nice move towards the Pareto 
frontier (given the opponent model computed in step 3). 

Note, that in the beginning of a negotiation the model of 
the opponent preferences is inaccurate because it has not 
been updated yet. However, this is not crucial at this stage of 
the negotiation given that both agents would start by offering 
a bid with the highest utility for themselves that is the most 
rational choice. The initial offer of the opponent is used to 
make the first update of the opponent model. The second 
move of the MS strategy can only be a concession or an 
unfortunate move because the initial offer cannot be 
improved for either player and, therefore, the other classes of 
moves are not possible. In this case the size of the first 
concession in the opponent’s utility would be determined by 
the efficiency of the learning technique. Given the fact that 
MS always tries to maximize the opponent’s utility it will try 
to make a concession move, thus signalling to the opponent 
its readiness to proceed in the same manner. 

The MS strategy is developed to avoid exploitation by 
the state-of-the-art rational strategies and tries to match the 
opponent’s moves in a transparent way as it is defined by the 
design criteria. The MS strategy is experimentally tested in a 
tournament setting against such strategies (see Section 5). To 
prevent exploitation by irrational strategies we use a 
reservation value to limit the concessions made by the MS 
strategy. The reservation value is defined in the user’s 
preference profile and represents a utility value below which 
all bids are unacceptable for the agent. 

V. EXPERIMENTAL ANALYSIS 

We test the efficiency of the MS strategy in an 
experimental setup, in which the MS strategy negotiates 
against automated negotiation strategies available in the 
literature and against human negotiators. Furthermore, this 
Section shows that the MS strategy constructed results in a 
fair agreement for both parties. 

As the negotiation setup influences the negotiation 
performance of a strategy [3], a tournament was set up to test 
MS in various negotiation scenarios consisting of a domain 
and a preference profile for both parties. In the tournament, a 
range of strategies negotiated on different domains against 
each other. The negotiation sessions were conducted 
independently from each other and the results were used to 
evaluate the performance of MS. Each strategy negotiated 50 
times against the ZI strategy (see below) and 10 times 
against other strategies in each scenario. 

Performance of a strategy may be influenced by various 
features of the domain, including the level of opposition, the 
size of the domain, and whether preferences over issues are 



predictable or not (cf. [3]). Accordingly, we have selected 
domain and preference profiles that vary with respect to 
these features, summarized in Table 1. The level of 
opposition has been measured with respect to the importance 
associated with issues and with respect to the complete 
ranking of all possible outcomes. An issue, such as price,  is  
called  predictable  when  it  is  possible  to reliably estimate 
the preference structure associated with the issue by an 
opponent. The number of issues that are unpredictable is an 
indicator of how difficult it is to learn an opponent model in 
a particular domain. 

TABLE I.  SUMMARY OF NEGOTIATION DOMAINS 

Opposition of 

preferences 

Negotiation 

Domain 

Profile Weights 

Domain 

Size 

Nr. of 

predictable 

issues 

Car 0.64 0.60 18,750 1 (5) 

Party 0.54 0.46 3,125 0 (5) 

Service orient. 0.67 0.83 810,000 4 (4) 

AMPOvsCity 0.66 0.42 7,128,000 3 (10) 

Empl. contr. 0.70 0.60 3,125 5 (5) 

 
The AMPO vs City domain [12] is the largest domain in 

our test. The Party domain developed by us is small with 
rather cooperative preference profiles. Humans tend to 
perform well on this domain. The Service-Oriented 
Negotiation (SON) domain was taken from [7]. The 
Employment contract negotiation domain was taken from 
[11]. The 2nd hand car domain was taken from [8]. 

Besides MS four other strategies were used. The Zero 
Intelligence (ZI) strategy randomly proposes bids above its 
break-off point, which was set to 0.6 in the tournament. It is 
difficult for the ZI strategy to achieve a better agreement 
than its break-off point and any effective negotiation strategy 
should be expected to at least outperform it. We use the ZI 
strategy as a baseline. It also provides a good test case for 
any learning technique. Details about the ABMP strategy can 
be found in Section 2 and in [8], for the Trade-off strategy in 
[7] and Section 2. The Bayesian Smart strategy is similar to 
the Trade-off strategy but uses the Bayesian learning 
algorithm from [4] to model opponent preferences. As the 
same learning algorithm has been used by MS, the Bayesian 
Smart strategy can be used to compare performance of MS 
with that of the Bayesian Smart. To analyze the robustness of 
MS in negotiations against humans an experiment was setup 
in which 42 subjects first negotiated face-to-face and then 
negotiated against MS that used the same profile as the 
human opponent in the first session. The Party domain was 
used for the experiment. The human subjects were able to 
familiarize themselves with a negotiation environment used 
in the experiment and practice on other domains. 

For every negotiation domain and preference profile, the 
utilities of agreements obtained by a strategy against all other 
strategies in the tournament were averaged. The ZI strategy 
was used as a baseline. Table 2 reports the percentage 
increase compared to the average utility of this strategy. 

MS shows improved performance compared with the 
benchmark Bayesian Smart strategy on all domains. The 

TABLE II.  UTILITY INCREASE RELATIVE TO THE  ZI STRATEGY 

ABMP Trade-Off

Bayesian

Smart NMS

Car 16% 12% 13% 14%

Party domain 13% 9% 13% 14%

Service Oriented 14% 17% 25% 38%

AMPO vs City 10% 13% 14% 20%

Employment contr. 11% 40% 44% 47%

Negotiation Domain

Negotiation Strategy

 
 

main reason is that MS is more robust since it matches the 
moves of its opponent and does not concede more than its 
opponent. The results show that on all domains MS 
outperforms the other strategies, except for the 2nd hand car 
domain where ABMP performs best. The differences on this 
and the Party domain are not big for all strategies. 

The most significant improvement compared to ZI is 
achieved in the Employment contract domain. This domain 
is relatively small and issues are predictable. Learning an 
opponent model is relatively easy, and important in this 
domain as it contains compatible issues (i.e., both agents 
have similar preferences with regard to such an issue). 

The results on the SON and AMPO vs City domain are 
comparable to that of the Employment domain. It is more 
difficult to reach efficient agreements in the SON domain as 
this domain is bigger and the variation of issue importance is 
much bigger. The performance of MS on the AMPO vs City 
domain is not as good mainly due to the decreasing 
performance of the learning technique in domains of high 
dimensionality. The improvement over the benchmark 
Bayesian Smart strategy is still significant in both these 
domains which shows that MS is a robust strategy even 
when the model of the opponent’s preferences is not very 
good. Improvement is caused by the fact that MS tries to 
match the opponent’s moves, which, at least with respect to 
own utility it is always able to do. Therefore, even if the 
quality of the learned model is low as it is e.g. in the AMPO 
vs City domain, MS unlike the Bayesian Smart strategy will 
concede only if the opponent does so too. 

To analyze the robustness of MS more precisely we 
consider the results on the SON domain as shown in Table 3. 
The quality of learning is high in this domain and, therefore, 
is a good choice to test the robustness of MS against various 
strategies. Table 3 lists average utility values of the 
agreements reached for each party in the tournament on the 
SON domain. We have used the standard deviation of these 
utilities as a measure of the robustness of MS. The average 
utility value of agreements is high and the deviation of the 
utility of agreements is lower for MS than other strategies, 
which confirms that MS is more robust and more difficult to 
exploit than these strategies. 

The technique used by the Trade-Off strategy to match 
the opponent’s preferences strongly depends on the 
efficiency of the strategy used by the opponent, see [3]. E.g., 
the Trade-Off strategy is not able to find Pareto efficient 
offers in settings where it negotiates against less efficient 
strategies such as the ABMP and the ZI strategy. As a result, 
the utility of outcome reached by the Trade-Off strategy is in 
average higher than that of the ZI and ABMP strategy, but its 



deviation is relatively high  (see Table 3). The learning 
technique used in the MS strategy, on the other hand, does 
not depend on the efficiency of the opponent’s strategy (see 
[5]) and, therefore, is able to achieve better results in 
negotiations against the ZI and the ABMP strategy. 

TABLE III.  UTILITY OF AGREEMENT IN THE SON DOMAIN 

ZI ABMP Trade-Off Bayesian NMS

Smart

Average 0.574 0.657 0.726 0.748 0.769

Std. dev. 0.056 0.079 0.103 0.023 0.020

Average 0.519 0.657 0.652 0.800 0.805

Std. dev. 0.030 0.066 0.134 0.044 0.043

Agent A

Agent B

Role
Utility 

Statistics

 
Furthermore, we report on the performance of MS in an 

experiment with humans. The performance of MS in an 
experiment with human subjects also shows it is a robust 
strategy. Human subjects were not able to exploit NMS on 
the Party domain. Overall human performance was very 
good and close to the Pareto frontier due to simplicity the 
domain. Even so the humans had an advantage of training in 
the first face-to-face negotiation session, still MS managed to 
improve average utility with 5%, whereas in 30% of the 
experiments the increase in utility was larger than 5%. 

TABLE IV.  AVERAGE EUCLIDEAN DISTANCE FROM AGREEMENT TO 

KALAI-SMORODINSKY AND NASH SOLUTIONS

 

 

Finally, as MS tries to match the moves of an opponent, 
it is reasonable to assume that MS typically tends to result in 
a fair outcome. This hypothesis is confirmed by Table 4, 
which shows that the agreements reached by MS are, on 
average, closer to the Nash and Kalai-Smorodinky solutions 
on all domains. The results also show that MS prefers the 
Kalai-Smorodinsky over the Nash solution.  

VI. CONCLUSIONS 

The Nice Mirroring Strategy introduced here shows that 
two important goals in closed multi-issue negotiations can be 
achieved when a reasonable estimate of the preferences of an 
opponent is available. Using a learning technique to obtain 
such an opponent model, it is possible to increase the 
efficiency of the negotiated agreement and to avoid 
exploitation by the other party. 

The design of MS has been based on a classification of 
negotiation moves developed for the analysis of negotiation 
strategies, see [3]. MS satisfies several design criteria we 
believe are important for any negotiation strategy. A 

negotiation strategy should be efficient, transparent, 
maximize the chance of an agreement and should avoid 
exploitation. MS has been shown to be efficient and fair as it 
is biased towards the Kalai-Smorodinsky solution. MS is 
transparent as it is proposes a simple response strategy by 
mirroring an opponent’s move and then adding a nice step, 
i.e. a move over the utility iso-curve towards the Pareto 
frontier. In fact, MS is a “nice” strategy as it will only punish 
an opponent in reply to a selfish move and only does so 
when the model of opponent preferences matches the actual 
preferences of that opponent. The strategy moreover 
maximizes the chance of an agreement as early as possible, 
which is achieved by the move towards the Pareto frontier, 
that always maximizes the utility of the opponent relative to 
a particular utility for the agent itself. The effectiveness of 
MS has been validated experimentally in a tournament setup, 
using domains of different characteristics and a number of 
different negotiation strategies. The results show that MS is 
able to realize significant increases in utility. In future work, 
we plan to investigate the exploitability of strategies and in 
particular MS. An important related theme for future work 
concerns acceptance criteria used by negotiation strategies. 
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ZI ABMP 
Trade-Off Bayesian 

Smart NMS 
 

Car 0.20 0.13 0.12 0.12 0.11 
Party domain 0.23 0.15 0.13 0.12 0.12 
Service Oriented 0.25 0.23 0.16 0.14 0.11 
AMPO vs City 0.20 0.15 0.13 0.13 0.12 
Employment contr. 0.26 0.26 0.14 0.14 0.14 

Car 0.19 0.15 0.14 0.14 0.13 
Party domain 0.20 0.19 0.15 0.13 0.13 
Service Oriented 0.26 0.26 0.19 0.17 0.16 
AMPO vs City 0.23 0.24 0.20 0.18 0.17 
Employment contr. 0.26 0.26 0.14 0.14 0.14 

Negotiation Domain 
Negotiation Strategy 

Distance to Kalai-Smorodinsky solution 

Distance to Nash Point 


