
Ontology-based Business Activity Monitoring Agent 
 

Duco N. Ferro 

Almende B.V., 

The Netherlands 

duco@almende.org 

Mark Hoogendoorn 

Department of Artificial Intelligence, 

Vrije Universiteit Amsterdam,  

The Netherlands 

mhoogen@cs.vu.nl 

Catholijn M. Jonker 

Man-Machine Interaction group, 

Delft University of Technology, 

The Netherlands 

C.M. Jonker@tudelft.nl 

 
 

 

Abstract 
Business Activity Monitoring (BAM) and Business 
Intelligence (BI) solutions are both intended to provide 
insight into the activities and performance of the 
enterprise. Deployment of such systems requires 
extensive tailoring to the enterprise, best left to experts. 
The dynamics of the enterprise demands a solution to the 
maintenance of BAM/BI solutions. This paper presents an 
Ontology-based BAM-Agent, called OBAMA that 
supports the maintenance of the system in light of 
changing business processes. Furthermore, for the 
formulation of aspects and properties to be monitored, it 
combines the expressive power of SQL, and TTL (a 
temporal trace language of first order logic). OBAMA 
helps in the preparation of regular assessment reports on 
the enterprise, taking into account key performance 
indicators as set by its operation manager. The paper 
describes the architecture, the combination of SQL, and 
TTL techniques for monitoring, and provides description 
of its kernel processes. OBAMA’s performance in a 
surveillance company is presented. 

 

1. Introduction 
 
Business activity monitoring (BAM) is software that 
supports the monitoring of those activities that are 
implemented in computer systems. It is intended to 
provide real-time summaries of business activities to 
operations managers and upper management, and to 
detect and warn of impending problems [10]. This 
technology is a competitive differentiator for companies. 
Since the emphasis is on analysis, analysis tools are of the 
utmost importance [8].  The need for more complex 
forms of analysis on the huge relational data sets 
companies collect is growing along with the technology 
to support the analytical process. These more complex 
forms of analysis can be eloquently represented in 
constraints, and extended forms of first order logic. 

However, in current practice, solutions to the problem are 
implemented in ad-hoc and difficult to maintain 
procedural code that accesses the data through embedded 
SQL programming. Lohfert et al., [6] propose to use more 
elegant solutions that involve the use of declarative 
languages that integrate constraint modeling with 
database access in transparent ways. 

In this paper we present a way of validating complex 
temporal properties formulated in TTL against log data of 
the system. The TTL-techniques assist in the monitoring 
process of the complex temporal properties. A 
preprocessing step is performed on the original dataset, to 
significantly reduce the size of the search space. 

Furthermore, the paper advocates an ontology-based 
approach to assist the users in formulating their properties 
in terms of TTL. The advantage of using ontologies is a 
reduction in the number of errors made in specifying the 
intended properties and constraints for analyzing the 
business processes.  

The approach is demonstrated for the example domain 
of Mobile Human Surveillance in private security, for 
which an ontology and decision support system is 
presented in [4].  In this domain a security company plans 
frequent visits by security guards to their client premises 
to deter and observe illegal activities, such as theft and 
vandalism. In addition, personnel of the security company 
act upon alarms (e.g., burglar alarms) by sending a guard 
for further inspection. The requirements with respect to 
all of these tasks (e.g., the maximum response time) are 
specified as part of a contractual agreement. Monitoring 
the performance of these processes is crucial to safeguard 
overall performance of the security company. 

This paper is organized as follows. First of all, in 
Section 2 the techniques used within the agent to enable 
monitoring of the performance indicators are introduced. 
Thereafter, Section 3 presents the overall architecture of 
the agent. The evaluation of the architecture in the 
domain of the case study (private security) is addressed in 
Section 4, and Section 5 is a discussion.  



2. Formulating Properties  
 

The core of OBAMA consists of the specification and 
monitoring of key properties within the business 
processes of the company. In order to formulate these, 
two approaches are used. First, the logical format to be 
used is specified, thereafter the more common SQL 
format is briefly addressed. 

 

2.1. Temporal Trace Language  
 
The first language used to specify properties to be 
verified upon an organization is TTL (for Temporal Trace 
Language, cf. [1]) that features an automated checker. 
This predicate logical temporal language supports formal 
specification and analysis of dynamic properties, covering 
both qualitative and quantitative aspects. TTL is built on 
atoms referring to states of the world, time points and 
traces, i.e. trajectories of states over time. In addition, 
dynamic properties are temporal statements that can be 
formulated with respect to traces based on the state 
ontology Ont in the following manner. Given a trace γ 
over state ontology Ont, the state in γ at time point t is 
denoted by state(γ, t). These states can be related to state 
properties via the formally defined satisfaction relation 
denoted by the infix predicate |=, comparable to the Holds-
predicate in the Situation Calculus: state(γ, t) |= p denotes 
that state property p holds in trace γ at time t. Based on 
these statements, dynamic properties can be formulated in 
a formal manner in a sorted first-order predicate logic, 
using quantifiers over time and traces and the usual first-
order logical connectives such as ¬, ∧, ∨, ⇒, ∀, 
∃. Below, the properties and the results of the verification 
upon the representative traces are shown. 

Specifying such behavior in TTL is not a trivial 
matter, often documents describing the goals of the 
company as well as procedural specifications can be used 
as a basis for such a behavioral description. However, 
such a specification typically lacks sufficient detail to 
obtain a complete behavioral description. Therefore, a 
three step process is specified to formalize these 
properties. 

First of all, informal behavior descriptions are 
translated into a semi-formal format. This is a necessary 
step to structure the precise property more easily. For 
instance the following property can be specified for the 
mobile surveillance case: 

 

“in case an alarm is received, this alarm should eventually be 
accepted by someone.” 

 

When looking at the informal rule, it can be seen that 
such a rule can easily be translated into a semi formal 
format of the if-then form: 
       
     if an alarm A for object O is received at time t 
     then there should be a time point t’ greater than t and  
             smaller than t + MAX_TIME at which this alarm is   
             accepted 

 

As can be seen, variables have now been introduced 
into the rules.  
 

Table 1. Sort definition 

Sort Explanation 
ALARM An identifier of an alarm 
OBJECT An identifier of an object 

 
Table 2. Predicate definition 

Predicate Explanation 
alarm_received: ALARM x OBJECT An alarm with particular id 

has been received for a 

particular object. 
alarm_accepted: ALARM x OBJECT An alarm at a particular 

object has been accepted. 
 

The second step in the formalization process is to 
define an ontology suitable for this particular organization 
which is based upon the semi-formal rules that have been 
distinguished, and the terms that occur in such rules. For 
example from the rule as presented above the ontology 
elements presented in Table 1 and Table 2 can be 
extracted. For more information on the ontology, the 
reader is referred to [4]. 

The final step in the process is to translate the semi-
formal rules into formal ones using the ontology which 
has been created. Take for example the semi-formal rule 
which was specified previously. In formal format using 
TTL this rule can be expressed as follows: 

 
∀t:TIME, A:ALARM, O:OBJECT 

 [ state(γ, t) |= alarm_received(A, O) & 

  ⇒ ∃t’ > t  [t’ < t + MAX_DUR  & 

       state(γ, t’) |= alarm_accepted(A, O) ] ] 

 

2.2. Structured Query Language  
 
The second language used for specifying properties to be 
monitored at an organization is the structured query 
language (SQL), a widely accepted standard 
programming language for querying and manipulating 
databases often used by users with no or little formal 
training in informatics [3]. Its applications range from 
simple retrieval in web-interfaces to complex functions 
that aggregate the stored data into useful information. 
These are important reasons to support the formulation of 
properties by SQL in OBAMA.agent. 

 

2.3. Pre-Processing SQL  
 
In business settings many data storage solutions, 
including the storage of logging data, are based on SQL. 
In order to verify properties using TTL upon the 
information stored within the company databases, certain 
pre-processing is required. Hereby, the pre-processing 
part takes care of generating a set of traces upon which 
the properties specified in TTL can be verified. Consider, 
for instance, a SQL table holding logged data with a 



Figure 1. Agent Architecture 
column representing the timestamp at which each event 
occurred. Thus, for each table holding a relation ship R ⊆ 
A

1 
× … × A

n 
× TIME the following observation could be 

used to produce a corresponding temporal trace: 
 

    state(γ, TIME)  |= R(A1,…, An)  ⇔  πA1,…, An,TIME(R)  
 

The mechanism used here is to execute simple SQL 

queries that deliver the desired information for the trace, 

and thereafter convert the results to the appropriate TTL 

trace format. 

 

3. OBAMA Agent Design  
 
The languages for the specification of properties to be 
monitored and validated form the basis of the component-
based design of the OBAMA agent shown in Figure 1. 

Note that the design approach followed is the DESIRE 
approach (cf. [2]). Hereby, the components are 
represented as boxes, which each have a small square on 
the left side indicating the component input, and a small 
square in the right side indicating the output. The lines 
between the components indicate information links, and 
finally, the solid lined box indicates the boundaries of the 
OBAMA agent. In the figure, it can be seen that the agent 
consists of three main components. Each of these 
components is discussed in a separate subsection. 

 

3.1. Setting Properties 
 
The first component concerns the setting of the properties 
that ought to be monitored. This component becomes 
active when the agent is first used to fill the initial set of 
properties. Hereby, the user needs to specify a number of 
elements for each property: 
• The property itself using one of the approaches 

specified in Section 2. This is performed using a 
dedicated user interface. An example of the user 
interface for the specification of TTL properties is 
shown in Figure 2 (i.e., the property expressed in 
Section 2.1). Note that a new approach to specify 
these properties can be easily inserted into the 
component. 

• The report interval (how frequently reports should be 
generated for the property). 

• The responsible user. 
• Whether this property should be continuously 

monitored and users should be informed immediately 
in case of deviations. 

• How frequent the agent should request updates of the 
property specification.  

In case all of this information is provided, the property is 
forwarded to the monitoring of properties component. 

Figure 2. Example of property specification screen of the agent 



3.2. Monitoring of Properties 
 

After the properties and the required information 

accompanying these properties are known, the component 

monitoring of properties starts to reason. In case of 

properties that need to be monitored continuously, the 

component does so. In case of properties that only need to 

be considered after a particular interval these are only 

evaluated at the appropriate time points. Hereby, the 

component retrieves the necessary information from the 

SQL database, and, in the case of TTL properties, does 

some pre-processing (see Section 2.3). In case 

information is discovered that needs to be communicated 

to the user, the information is forwarded to the 

component informing user. 

 

 3.3. Informing User 

 
The final component within the agent is the component 
for informing the user. Hereby, the appropriate user is 
selected, and informed using the same interface as used in 
Section 3.1. In case the user is not responding, the 
OBAMA agent will inform the superior of the user. 
 

4.  Experiments 
 
In order to test the agent designed, we have conducted an 
extensive case study within the private security domain. 
First, a selection of the properties that have been inserted 
into the OBAMA agent by users will be shown. 
Thereafter, the results of the OBAMA monitoring 
component that are forwarded to the user are shown. 

4.1. Properties 

 
Below, a number of properties that have been identified 

for the case study are shown. The first property (P1) 

specifies the most important performance indicator for the 

company, namely the average response time for alarms. 

The user decided to specify the property in SQL which is 

expressed in Figure 3. 

The second performance indicator, P2, expresses the 

property concerning the presence of patrollers at an object 

for which an alarm has been received. This has been 

specified in TTL because the query became too complex 

to oversee well enough when using SQL. 

 
P2: Patroller leaving before contact person 

A patroller leaves before the contact person arrives if an alarm is 

received at time point t, and the alarm is accepted at t1, and the 

patroller leaves the alarm at t2, whereas there is no intermediate 

time point at which the patroller has left the alarm, and there 

exists t3 which is within a certain duration MIN_TIME from 

leaving the alarm. Hereby MIN_TIME indicates the minimum 

time required to perform a task. 
 

 Formally: 
 

P2(m:TRACE, t:TIME) ≡≡≡≡    

∃A:ALARM, O:OBJECT, P:PERSON, t2:TIME > t:TIME, t1:TIME 

≥ t:TIME 
[ state(m, t) |= alarm_received(A, O) & 
  state(m, t1) |= alarm_accepted(A, O) & 
  state(m, t2) |= leaves_alarm (P, O) & 

  ¬∃t0:TIME < t2 
     [t0 > t & state(m, t0) |= leaves_alarm(P, O) ] & 

  ∃t3:TIME > t2, O2:OBJECT_CODE ≠ O 
     [ t2 + MIN_TIME > t3 & [state(m, t3) |= leaves_alarm(P, O2) | 
                                         state(m, t3) |= leaves_object(P, O2)] 
 

A third example of a property which has been verified is 

the response time to status checks. The status check 

basically is a request from a patroller whether he/she has 

set the alarm of an object correctly. The property counting 

the response time to status checks has been defined in 

TTL and is expressed as follows: 
 

P3: Status check response time 

The average status check response time is the sum of the 

response times of the individual status check response times, 

divided by the total number of status checks in the trace. 

 
P3(m:TRACE) ≡≡≡≡    

∑t:TIME, case(status_check_received(m, t), 
   ∑t2:TIME case(no_check_response_yet (m, t, t2), 1, 0)), 0) / 
        number_of_status_checks 

 
Here, the case(x,y,z) is a special TTL construct for counting 
and indicates that if x is the case, y is added to the sum, 
and otherwise z is added. 

 

SELECT AVG(service_times.time_to_service) 
FROM ( 
 SELECT 
  SUBSTRING(a.log_text,16,6) AS alarm_request, 
  SUBSTRING(c.log_text,19,6) AS alarm_service, 
  a.log_time AS alarm_request_time, 
  c.log_time AS alarm_service_time, 
  MIN( ( UNIX_TIMESTAMP(c.log_time) -      
    UNIX_TIMESTAMP(a.log_time))/60)  
     AS time_to_service 
 FROM v_logbook a  
 LEFT JOIN v_logbook c  
 ON SUBSTRING(c.log_text,19,6)=SUBSTRING(a.log_text,16,6)  
 WHERE a.log_type=18  
  AND a.obj_type=9  
  AND a.log_text like 'alarm aanvraag %'  
  AND a.log_time  BETWEEN '2007-02-20T12:00:00.000'   
  AND      '2007-02-24T12:00:00.000'  
  AND c.log_type=18 
  AND c.obj_type=9  
  AND c.log_text like 'ter plaatse alarm%'  
  AND c.log_time  BETWEEN  '2007-02-20T12:00:00.000'   
  AND       '2007-02-24T12:00:00.000'  
  AND c.log_time > a.log_time  
  AND (( UNIX_TIMESTAMP(c.log_time) -      
    UNIX_TIMESTAMP(a.log_time))/60) < 4*60 
 GROUP BY alarm_request,alarm_request_time 
 ORDER BY alarm_request_time,alarm_service_time 
) service_times 

Figure 3. SQL specification of property P2 



 

4.2. Monitoring Results 

 
After having identified the properties, these were inserted 

into the OBAMA agent that started the monitoring 

process. All properties were set to regular report 

properties for which a weekly report should be generated. 

The following results were found by OBAMA:  

  

P1: Average response time 

The average response time was 23.6 minutes 

 

P2: Patroller leaving object before contact person 

With a minimum task time of 5 minutes, 7.9% of the cases 

the security guards left the alarm early. 

 

P3: Status check response time 

The average duration of status check responses was found 

to be 41.6 minutes. 

 

5. Discussion 

 
In this paper we introduce the power of TTL [1] and its 
tools to handle complex spatio-temporal properties in the 
context of Business Activity Monitoring and Business 
Intelligence. The OBAMA agent we created for this 
purpose has been developed in the domain of mobile 
surveillance security in which spatio-temporal 
information is essential for the business.  

The simple, but effective design of the OBAMA agent 
makes it easy to maintain, and extend with future 
functionality. Its ontology-based nature enabled the 
support of the user in formulating properties by a 
incremental refinement method, as presented in [5]. This 
approach has been fully integrated in the TTL parts of 
OBAMA.  

Finally, the rich tools for SQL proved essential not only 
for the more standard properties to be monitored, but also 
to do the necessary preprocessing for the more complex 
properties for which the user needs to use the TTL 
components of OBAMA.  

More research has been conducted within the area of 
monitoring business processes. In [7] an approach is 
presented whereby web services are used to monitor the 
business process, and measure performance indicators. 
The disadvantage of such an approach is however that the 
whole information system of the company needs to be 
based upon a web-service, which is certainly not always 
the case. Our agent architecture works based upon 
existing techniques within companies, and can in the 
future easily be extended with for instance the ability to 
utilize a web-service architecture. A language to specify 
organizational performance indicators is presented in [9]. 
Such a language can be used as an input ontology for our 

OBAMA agent to allow users to start off with generic 
language constructs already. 

In our future work we intend to further investigate the 
nature of spatio-temporal properties relevant in different 
domains and organizations. We wonder if it would be 
possible to represent/compute the dynamic properties in 
one Temporal SQL-like language.  This would bring us a 
step closer to having a single SQL-like language for 
OBAMA agents.  

 

Acknowledgment 

The authors would like to thank James J. Lu for his 

comments on an early version of this paper.  

 

6. References 
 
[1] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, 

A., and Treur, J. (2008). Specification and Verification of 

Dynamics in Agent Models. International Journal of 

Cooperative Information Systems. In press, 2008. 

[2] Brazier, F.M.T., Dunin-Keplicz, B.M., Jennings, N.R. and 

Treur, J.: 1997, Formal Specification of Multi-Agent 

Systems: a Real World Case, in Lesser, V. (ed.), 

Proceedings First International Conference on Multi-

Agent Systems, ICMAS’95, MIT Press pp. 25-32; extended 

version in: M. Huhns and M. Singh (eds.), International 

Journal of Co-operative Information Systems, IJCIS vol. 

6(1), 67-94, (1997), special issue on Formal Methods in 

Co-operative Information Systems: Multi-Agent Systems. 

[3] Elmasri, R. and Navathe, S. B.,(1994). Fundamentals of 

Database Systems (2nd Ed.). Benjamin-Cummings 

Publishing Co., Inc. 

[4] Ferro, D.N., and Jonker, C.M., (2008). Filtering Algorithm 

for Agent-Based Incident Communication Support in 

Mobile Human Surveillance. In: Proceedings of MATES 

2008, to appear.  

[5] Herlea Damian, D.E., Jonker, C.M., Treur, J., and 

Wijngaards, N.J.E., Integration of Behavioural 

Requirements Specification within Compositional 

Knowledge Engineering. Knowledge-Based Systems 

Journal. Vol. 18, 2005, pp. 353 – 365. Kochar, H., 

(2005/12/25), Business Activity Monitoring and Business 

Intelligence. In: ebiz, The Insider’s Guide to Business and 

IT Agility.  

[6] Lohfert, R., Lu, J.J., and Zhao, D, (2008). Solving SQL 

Constraints by Incremental Translation to SAT. In: N.T. 

Nguyen et al. (Eds.): proceedings of IEA/AIE 2008, LNAI 

5027, pp. 669–676. 

[7] McGregor, C. and Kumaran, S., (2002) Business Process 

Monitoring Using Web Services in B2B e-Commerce. In: 

Proceedings of the IPDPS 2002 Workshops, pp. 0219b 

[8] Negash, S., and Gray, P., (2008). Business Intelligence. In: 

Burstein, F., and Holsapple, C.W. (eds.) Handbook on 

Decision Support Systems 2. Springer Berlin Heidelberg, 

pp. 175—193.  

[9] Popova, V.N., and Treur, J., A Specification Language for 

Organisational Performance Indicators. Journal of Applied 

Intelligence, vol. 27, 2007, pp. 291-301. 



[10] Wikipedia. Business Activity Monitoring. 

 


