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Abstract—When intelligent systems reason about complex
problems with a large hierarchical classification space it is hard
to evaluate system performance. For classification problems,
different evaluation criteria exist but these either focus on a
belief expressed on all possible, mutually exclusive labels (soft
classification) or they are based on the set of labels that are
returned by a classifier (hard classification) for hierarchical
labels. Measures to evaluate a classifier that assigns belief on all
labels when these are hierarchical related however are lacking.
This paper puts forward two new criteria for evaluation of soft
output for hierarchical labels using a generic and flexible model
of the solution space. The first criterion gives information on the
accuracy of the system and the second on the robustness. Results
with these new criteria are compared to existing criteria for a
hierarchical classification task with different classifiers.

Index Terms—Ontology modelling, Classification, Performance
evaluation

I. INTRODUCTION

In situated applications of intelligent systems, the used
world model is important. This holds especially for applica-
tions where a (complex) classification solution space needs to
be examined to find the desired answer. Hierarchical labels
in classification increase the complexity of the solution space
in contrast to solution spaces with mutually exclusive labels.
Furthermore, different classifying agents may have a different
world model and/or expertise. Getting one classification out of
such a set of classifying agents requires the agents to cooperate
and a good strategy for handling the possibly conflicting
individual classifications.

The different classifying agents (CAs) assigned to execute
a classification task, perform their task based on their own
world-view, expertise. The agents might even use different
sensors. An integrating agent (IA) has three important tasks
in such a MAS. The first is finding a integrated world model
to correctly combine beliefs held by the individual CAs.
Secondly, it should combine the provided user information
with the beliefs held by the CAs. Lastly, it will have to
estimate individual classification performance of the various
CAs to justify ignoring certain agents’ belief in some scenarios.
This paper uses such a MAS architecture for classification,
see figure 1, and presents new criteria to evaluate system
performance.
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Fig. 1. System architecture

Yang proposes several measures for hierarchical classifica-
tion, [1]. Though these criteria provide a good starting point
for hierarchical solution spaces, they need to be expended
since they assume that each label only has exactly one parent.
Here, a more generic model is used with multiple parents.
Furthermore, these criteria assume classifiers that produce
labels (hard classifiers) instead of classifiers that assign a
degree of belief on all labels in the classification space (soft
classification).

We propose performance criteria that operate on different
hierarchy levels and that can cope with soft classifiers. Using
this approach means that performance no longer is represented
by a single value but by performance measures on each
specificity level. The advantage is that more insight is given
in the strengths and weaknesses of the individual agents and
the classification system as a whole. With these new measures
different set-ups for the MAS are evaluated for a multi-class
problem.

Section II explains why new test criteria are needed. Since
the new criteria are based on a hierarchical classification space,
this model is discussed in Section III and Section IV introduces
our new criteria. The test scenario we use is discussed in
Section V. The CAs and the IA used in testing are briefly



0.14
s @) @- e

0.08

generic
0.06

0.04

. el
specific g0

(a) Solution with agent /

Fig. 2.

discussed in Section VI. Results based on traditional test
criteria and results based on our new criteria are given in
Section VII. Finally, Section VIII closes with some concluding
remarks.

II. TRADITIONAL EVALUATION

In Fig. 2 the classification solution of two different CAs in a
maritime domain is shown. These CAs assigned a normalised
belief based on position on a sea chart and measured speed.
Although cA 2, Fig. 2(b), assigned much of its belief, namely
0.233, to the correct solution (an Air Defence and Command
Frigate), it also assigned much belief (0.793) to a wrong label.
In contrast, CA I (Fig. 2(a)) has spread its belief over more
generic labels, but all of them ships. In that sense, CA / admits
to not having an exact solution whereas CA 2 suggests a more
definitive answer, since it assigns belief to specific classes.
Given the information that was available to both CAs, the
latter seems more realistic since a specific distinction cannot
be made based on only that information.

Comparing the output of CA I with that of CA 2 with an
error-estimation criterion leads to the conclusion that cA 2
has better performance since it finds the right solution. For
practical purposes however, the output of CA [ is more
desirable since it admits having uncertainty on various types of
ships. This keeps a worst-case scenario (namely frigates which
are considered be more of a threat) open that would be (wrong-
fully) neglected using the output of CA 2. A test criteria for
classifiers operating on non-exclusive classes should therefore
take into account how CAs (or other classifiers) spread their
belief over classes. This is accomplished by examining the
entries in the confusion matrix (M) in more detail. Whereas
the more traditional approach focusses mainly on the diagonal
of M.

In multi-label learning (see e.g., [2]) the F} measure as
proposed by Yang, [1], is usually used. This criterion is
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based on recall and precision. Recall is defined as the number
correctly found labels divided by the number of correct labels.
The precision is defined as the number of correctly found
labels divided by the number of found labels. Re-writing these
quantities for soft normalised classifier output means that for
both recall and precision the denominator equals /. Thus the
F} metric equals the precision (or the recall). All three metrics
then have equal value which reduces their added value. New
metrics are therefore needed for soft classifiers that are still
based on a hierarchical solution space.

III. SOLUTION SPACE

The model for the solution space we use, is based on labels
with different levels of specificity that may fully overlap.
These different specificity levels lead to a hierarchical solution
space. For K specificity levels and Ny elements on specificity
level k € {1,2,..., K}, each label in the solution space is
denoted 0, , with n € {1,2,..., Nj} and all elements at the
same level of specificity are mutually exclusive.

The non-exclusive elements in the model are called child
and parent labels. Since they occur at different specificity
levels, the a-th order ancestor element is given by (1) with
v € {1,2,...,Ni_y}, for 0 < (k—a) < K. In (1), x
denotes the join-operator on label names. For notational ease
we will further refer to labels as 6; where a mapping €2 is
used: i = Q(k,n) =n+ Y"1 N,

01, = X {Or—aw | Bk N Ok—an # 2} )

When a new CA is introduced that uses a different world
model, this should be inserted into the model at the appropriate
specificity levels. The parent and child elements should also be
indicated. Fitting a new world model into the existing model
could either be done by an operator or e.g., by an IA using
the methodology described by Taylor et al. in [3].



IV. NEwW METRICS

Section II showed that the diagonal of a confusion matrix
does not give enough information. The criterion F} that is
usually applied in multi-label situations does not necessarily
give the required information because the classifiers can be
soft. Two new metric types are therefore introduced based on
the entire confusion matrix: confusion metrics and distance
metrics. These metrics are inspired by the notion of the loss
function from e.g., [4] and [5].

A. Confusion metrics

For evaluation of multi-label learning systems, the loss
function counts the number of labels in the right branch of
the classification tree that are found. This loss function may
be used in various ways, see e.g., [4], [5], and [6].

These methods use the knowledge of parent and child
relations. It seems logical to do something similar for soft
classification. We look at the relevant values in the confusion
matrix and sum those values. These confusion metrics examine
the confusion between non-exclusive classes at different speci-
ficity levels. When classifying a car with ground truth “2000
Volvo V70 T5” e.g., the confusion values of all “Volvo” types
except the “2000 Volvo V70 T5” itself are summed. Since many
different subsets of cars are possible, this is repeated for each
specificity level in the world model obtaining multiple values,
e.g., for “station-wagon”, or “5-door car”.

In contrast to the loss function approaches, these confusion
values are not summed over all the different ancestral orders.
Instead, the a-th order ancestor confusion, denoted B, (6;), on
label 6; is calculated by (2) where j # ¢ holds.
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In (2) the confusion matrix is denoted M and a single
values M; ; represent the mean value of belief a classifier
assigns to label 6; when the correct label is 6;. For overall
classifier evaluation, the mean value of the a-th order ancestor
confusion over all labels is examined, B,. For hard classifiers
with exclusive classes the mean value of the diagonal of the
confusion matrix is often used, [7]. This value is produced by
By.

B. Distance metrics

Equation (2) indicates the total amount of confusion with
the a-th order ancestors. Fig. 2 however shows, that this
metric does not give all information. When a CA is wrong, it
would be preferable that its confusion is evenly (or uniformly)
spread over the child elements in the right branch. Our second
criterion type, the distance metric, therefore determines the
root-mean-square (RMS) distance of confusion values in the
branch to the mean value for each specificity level.
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The RMS distances for the a-th order ancestor confusion is
denoted d, and is computed using (3) for each label ; with
j # i. In order to calculate the mean value, the number of
children elements of the a-th order ancestor are required. For
notational ease, the number of labels in that set is denoted
P,(6;). To determine overall classifier performance the mean

value over the class labels is determined, d,,.

V. TEST SCENARIO

To show the effectiveness of our evaluation criterion, we
evaluate different classifiers with traditional evaluation criteria
and with our new criteria. We use simulated data of a multi-
class problem with non-exclusive classes. The classes are
chosen to be very similar, since this also is the case in real-
world applications such as ship recognition in maritime do-
mains, crisis response, security systems and medical diagnostic
systems.

A. Classification space

We created an integrated world model with 32 labels divided
over 4 specificity levels, see the Venn Diagram in Fig. 3. For
each of these labels some behaviour has been described where
these descriptions are more specific for labels on more specific
levels. For the least specific level, k = 1, uniform distributions
are used whereas at the most specific level Gaussian or Laplace
distributions are used. In general, when specificity increases,
the (excess) kurtosis (see e.g., [8]) of the membership fields
increase as well.

B. Train and test data

Train and test data is generated based on the membership
fields that describe possible and normal behaviour. For each
specific and generic class in the database 60 objects are



randomly generated, leading to a total of /620 objects of which
33% is used for training and the rest for testing.

VI. THE AGENTS

To compare the different evaluation criteria, we evaluate
three different types of CAs, namely

1) caAs that are based on standard trained classifiers ([7]),
called trained CAs or TCAS,

2) CAs that are based on standard trained classifiers where
different CAs are trained for different specificity levels,
called model-based trained-CAs or MBTCAS,

3) CAs based on the model-based (MB) classification ap-
proach from [9]; referred to as model-based CAs, or
MBCAS.

Two different integrating agents (IAs) are also considered, the
first uses a model-driven combination rule. The second using
a voting mechanism for the combination of belief.

A. (MB-)Trained classifying agents

For training the TCAs, different classifier techniques are
used:

o 3-Nearest Neighbour (3-NN) classifiers;
o Linear Distance Classifiers (LDCs); and
o Dissimilarity Classifiers (D1SCs).

The MBTCAs are all based on LDCs based on initial test
results. Each of these MBTCAs operates on a single specificity
level in the integrated model of the classification space.

Classifier performance depends on the number of features
that are used and feature evaluation is used to determine the
most informative attributes, [7]. Based on initial results, the
3-NN and the DISCs, are trained for two features, the LDC
for three. For training and testing these classifiers the Pattern
Recognition Toolbox' is used.

B. Model-Based Classifying Agents

A MBCA can be run for each membership field. Each MBCA
works on the same principle: determine a Confidence Interval
(denoted CT) based on known information and see how well
this fits the membership field, [9]. These MBCA use the known
dependencies between attributes to calculate a fitness whereas
approaches like [10] use new models to deal with dependant
attributes after which training is required.
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A membership field (I'x) of class X is described by J
attributes. This field is a function of the values y; that are
determined for those attributes. For each value of the CI, a
boundary value « is determined, see [9] which finds (4) for

'From the Pattern Recognition Group of Delft University of Technology,
www.prtools.org

Gaussian distributed information about y; where erf denotes
the error function, [11]. Based on this boundary value, a
contour line for a given CI is determined consisting of ;
values that constitute each contour line. Integrating over the
contour line, sums the membership on the C'I, this summed
membership is denoted ®x and is a function of y; that
describes the contour line given «, (5). The total fitness on
class X, is the integral over o of the summed membership
values weighed by normalisation weight factor (W («)). For
the boundaries of this integral we know that o € [0, c0) since
CI € [0,...,1]. This fitness is denoted m(X) and is given
by (6).

Bx(a) = gﬁb I'x (7)) Ay )
N

m(X) = /000 W(a)®x (o) da (6)

C. Integrating Agent

In this work we use two different types of IAs. The first
is rather simple, it takes the average values of all CAs on the
various labels in the integrated world model. This could mean
that the added value of this world model is degraded. The
required time for the IA however is still feasible for real-time
application when combining the opinions of multiple CAs.

The second type of 1A utilises the world model to calculate
combined belief on the classification solution. The Propor-
tional Redistribution Rule number 6 (PCR6) from [12] is used
to achieve this, [13]. This rule uses the Dezert-Smarandache
framework (see e.g., [14]) which can handle hierarchical
solution spaces as well as conflicting and uncertain sources.

VII. RESULTS

Six system set-ups are evaluated on the various evaluation
criteria. Each of the three types of classifiers from Section VI
are combined with both combination mechanism.

A. Error estimation

The error estimate is determined by counting how many
test objects are not classified correctly based on the hard
classification output. These error estimates are shown in Fig. 4
for the different system set-ups. All set-ups show a high error
estimation rate. This is not unexpected since the class labels
are very specific and the error estimation criterion does not
take less generic answers into account.

B. Confusion

Traditionally, M is examined to compare classifiers in more
detail. Fig. 6 shows M for the three types of CAs combined
with PCR6. In figures 5(a) and 5(b) the downside of only
considering the mean value of the confusion matrix diagonal
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becomes apparent. This metric might be high because some
classes are classified with a high precision whereas others are
never classified correctly. In Fig. 5(c) the overall mean on the
diagonal is low, but roughly the same for all classes, which
might be desirable when robustness is desired.

For the system using MBTCAs an additional downside is
visible in the confusion matrix. Distinct vertical lines show
up in the visualisation of the confusion matrix. This means
that despite the information, the agents have a certain bias for
a small amount of classes.

C. New confusion metrics

Fig. 6 shows the mean branch confusion, B,. In this figure
we see some interesting results when looking at the mean
amount of wrongly labelled data from this approach. In Fig. 4
the highest error-rate was for the MBCAs combined with PCR6,
the highest mean value in the confusion matrix on wrong
labels however is assigned by TCAs combined with the voting
IA. Second worst on this criterion is the system with the
MBTCAS. Remarkable, since this scored best based on the
error-estimation criterion.

In Fig. 6 the advantage of PCR6 over a simple voting
strategy is also visible. That this effect occurs most with the
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TCAs is expected. These do not take the interrelations between
labels into account whereas the MBCAs and the MBTCAs do.
The knowledge of the solution space that PCR6 uses therefore
has most effect on the TCAs. In general, the more knowledge
of the model is used by the CAs, the less difference between
the voting algorithm and PCR6 occurs.

D. Distance metrics

In Fig. 7 the results are shown for the RMS deviations.
These results support the conclusions that the MBTCAs do not
give the best results and that the MBC yield the best results
looking at how belief is spread over less specific classes. They
also show a smaller RMS deviation on the diagonal of the
confusion matrix. This means that this system set-up has a
stable performance on all classes. In contrast, the TCAs are
only good at classifying a limited number of classes.

The overall conclusion is that the MBC combined with PCR6
has best performance. This fits well with the expectations
since trained classifiers focus on dissimilarities — based on
the assumption of exclusiveness — that do not occur in the
solution space. The MB approaches however do not search for
dissimilarities but utilises the non-exclusiveness of classes.
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VIII. CONCLUSIONS

Existing performance criteria are either based on soft clas-
sifier output for exclusive solution spaces, or hard classifier
output in hierarchical ones. However, criteria that can cope
with the complexity of hierarchical solution spaces and that
can deal with soft classifier output did not exist yet.

Based on a generic hierarchical solution space we showed
that such criteria can be found. For each specificity level a
criteria is introduced for both accuracy and robustness. A
numerical example in which various types of agents with
different types of integrating agents were compared based on
the new criteria as well as existing ones. The results showed
that using the right criteria results in different conclusions on
system performance.
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