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Abstract—Where users and agents, each with their own world
model and expertise, work together it is essential to interpret
both their beliefs correctly. It is therefore important to keep
track of the differences of opinion that occur in such a way
that it is understandable for both the agents as well as the user.
This paper proposes a generic and flexible way for the user to
interact with agents using a integrated world model. To enforce
the user’s opinion a User Preference Redistribution rule (UPR)
is proposed. Through a realistic numerical example we show the
validity of this model and the new UPR in contrast to other belief
conditioning rules.

Index Terms—Conflict redistribution, Belief Conditioning,
Human-Agent Interaction

I. INTRODUCTION

In many situated problems, information from different
sources needs to be combined in order to find a solution.
A general example of this is a system in which an agent
must interact with another agent (as in a Multi-Agent System
(MAS)) or with an user. This interaction could be in the form of
cooperation; i.e., they work together to find a solution. It could
also be that the MAS tries to find a solution and that the user
only indicates specific regions of interest within the solution
space. This paper focusses on the latter situation where the
user may exclude parts in a hierarchical solution space. In
Fig. 1 the architecture is represented where the user interacts
with a dedicated agent that combines the agents’ belief with
the user’s confirmations.

These principles are applied to a classification task where
multiple agents assign belief to labels with varying specificity
in the solution hierarchy, which is referred to as multi-
label learning in [1], [2], and [3]. For the use of MASs in
classification see e.g., [4] and [5]. In these different domains
of (multi-label) classification, the structure of the solution
space is mostly assumed to be fixed. Other approaches like
ID3 by Quinlan, [6], and the approach of Taylor et al., [7],
use machine learning techniques to model the solution space.
Regardless of how the model was obtained, it is usually
assumed that once determined, this model is fixed during run-
time. In the case of multi-label learning, it is also enforced
that each label has exactly one parent label at the next level
in the hierarchy.
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Figure 1. Different agents reason on the incoming data while an interaction
agent deals with enforcing user confirmation in the integrated belief state

For the classification of the same objects in a different
context, this restriction on the solution space is undesirable.
Different users might be interested in different subsets of
labels. A flexible model for any hierarchical solution space
is required that may be altered at run-time. In order to
achieve this flexibility we propose a generic model with
multiple hierarchical levels where each element may have no
or multiple parents. By using the different subsets for belief
conditioning, the desired interaction between the MAS and the
user is achieved.

The generic model for a hierarchical solution space is
introduced in Section II. Different existing belief conditioning
rules are discussed in Section III. Section IV introduces a
new conditioning rule for enforcing user confirmations on the
solution space based on the generic model. This new approach
is tested in Section V for two examples and the results are
compared to existing conditioning rules. Section VI closes
with the conclusions.

II. THE HIERARCHICAL MODEL

Fig. 2(a) shows a general solution space for a fully free
problem, where elements A, B, and C do not have a hier-
archical relationship. Based on this model, we say that all
three elements have an equal level of specificity. In hierarchical
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(a) A generic free fusion model with 3 elements
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(b) Fusion model with fully overlapping elements

Figure 2. Two different fusion models

classification problems, some elements are fully enclosed by
others, see e.g., Fig. 2(b). Some elements in Fig. 2(b) are fully
overlapping and they therefore do not have the same level of
specificity.

The model we propose to use, is based on elements (or
labels) with different levels of specificity that may fully over-
lap. This notion is in line with previous work on classification
as discussed in [8]. Here, the domain specific approach from
[8] is generalised for any hierarchical solution space. For K
specificity levels and Nk elements on specificity level k, with
k ∈ {1, 2, . . . ,K}, we define the model M as,

M :


{θ1,1 θ1,2 · · · θ1,N1}
{θ2,1 θ2,2 · · · θ2,N2}

...
{θK,1 θK,2 · · · θK,NK

}

 .

Based on this model, the hyper-power set based on Dedekind
lattices (see [9]), denoted DΘ, is constructed using the ∩
and ∪ operators on all elements from Θ as discussed in [10]
and [11]. Since it could be that not all combinations in DΘ

are physically possible, model constraints are contained in
set ∅M, where ∅M ⊆

(
DΘ\Θ

)
holds. The theoretical case

where ∅M = ∅ is called the free model since no elements
from DΘ are constrained.

For M we define all elements on the same specificity level
to be mutually exclusive. Though this might seem odd from
a technical point of view, it is enforced to more accurately
model the way operators view the frame of discernment in
e.g., classification. On the same level of specificity an object
may be classified as either a helicopter or an airplane it cannot
be both. At a different level however it may be classified as
an air object which overlaps both of these. On yet another
specificity level, the solution might be fixed wing or rotary
wing. In itself these labels are mutually exclusive but each
agent may use labels at different specificity labels. The inte-
grated fusion model should incorporate all these overlapping
class-labels simultaneously using the same principles.

  

A B

C

D

F

E

Figure 3. Venn diagram of example frame of discernment with 6 elements

Most intersections between labels are fully overlapping
areas between elements on different specificity levels. These
overlapping elements in the branch are called child and
parent elements. Since they may occur at different specificity
levels, the a-th order ancestor of θk,n is defined as (1) with
n ∈ {1, 2, . . . , Nk}, v ∈ {1, 2, . . . , Nk−a}, for 0 ≤ k−a ≤ K
and as ∅ otherwise.

θ↑ak,n = on{θk−a,v | θk,n ∩ θk−a,v 6= ∅} (1)

For all a > 0 parent elements are found, for a < 0 child
elements are obtained, and for a = 0 the element itself is
found. These definitions assume that the rows in the model are
ordered based on specificity and on denotes the join-operator
on labels: if B = {β1, . . . , βb} and D = {δ1, . . . , δd}, then
B on D = {β1, . . . , βb, δ1, . . . , δd}.

The obtained model is a hierarchical one and each object
may be assigned more than one of these elements. In literature,
such types of classification tasks are referred to as multi-
label learning, see e.g., [2] and [12]. Here, the modelling
of the solution space is similar but differences exist since in
our model each element may have more parents at the same
specificity level.

Not all ancestors are based on a full overlap. These elements
are essential for the conditioning of belief based on the



operator preference since they provide a bridge between two
labels at the same level of specificity, see e.g., Fig. 3 where
element D and its children provide a bridge between elements
A and B. Due to this bridging function, these elements are
referred to as bridge elements.

For notational ease, the variable X refers to labels from Θ
or to combinations of labels from DΘ.

In Fig. 3, the Venn diagram of the solution space can be
written as model,

M :

 {A B}
{C D E}
{F}

 .

In this model both D and F are bridge elements providing a
bridge between their parents A and B.

No classification trees (as in e.g., [13]) have to be con-
structed using this model for classification and thus there is
no chance of getting stuck on a high level node. Another
approach to constructing a solution space was discussed by
Quinlan, [6], with the ID3 approach and by Taylor et al.
These approaches however require machine learning to train
the classification solution space. Instead, our model can be
used in combination with existing databases of class types
as a single level of specification and higher and lower levels
may be inserted throughout the process. This provides a more
flexible solution space that cannot get stuck on a high level
node and where machine learning is not required initially.

III. EXISTING BELIEF CONDITIONING

The previous section described the solution space with
different specificity levels. When multiple agents cooperate,
an interaction agent needs to combine their belief based on a
fusion algorithm like e.g., Dempster-Shafer theory ([14], [15]),
Dezert-Smarandache theory (DSmT, [10]), or any other fusion
scheme. In this paper we use DSmT, as was also done in [8],
since DSmT requires less adjustments than Dempster-Shafer
for hierarchical solution spaces.

A. Model constraints

Combining information using general combination rules
causes combined belief to be assigned to combinations of la-
bels from ∅M. Since this is undesired, belief assigned to those
elements should be redistributed. A known algorithm from
DSmT for this redistribution is the Proportional Redistribution
Rule number 6 (PCR6) for multiple sources as discussed by
Martin and Oswald in [16]. In this article, we use this rule,
and the implementation according to algorithm 3 from [16].

For the model constraints Θ\∅M = Θ should hold, i.e., no
elements from Θ are contained in ∅M, only elements from
DΘ\{Θ on ∅} are possible entries for ∅M as also stated
in Section II. Otherwise, PCR6 will give unexpected results: it
will assign belief to elements in ∅M since it was not designed
to handle such entries in ∅M.

Throughout this work mf
c (X) denotes the amount of belief

that was assigned to label X after the combination under the
free model and m`(X) denotes the amount of belief that
is assigned by agent ` to label X . When the combination
according to PCR6 is done taking ∅M into account, we denote
the combined belief on label X as mpcr6

c (X) or mc(X) for
short.

When operators indicate some part of Θ to be valid or
invalid for an object (positive and negative indications) PCR6
is no longer applicable. A new approach is needed to deal with
constraints put on elements from the frame of discernment. For
positive indications the Belief Conditioning Rules (BCR) from
[17] can be used. However, for negative indications BCRs are
not applicable either. For negative indications no redistribution
rules could found in the literature.

These operator (or user) constraints contain elements from
Θ and are denoted ∅U . The interaction agent deals with these
constraints separately i.e., in the belief combination rule ∅M
is taken into account by PCR6 and later ∅U is enforced. This
is done to keep track of where conflict during information
fusion is introduced. In other words, during the fusion process
we keep track of whether the conflict is caused by one of
the information sources or if it is introduced by operator
constraints.

Both Shafer’s conditioning rules and BCRs can be applied
for positive indications by an operator. Giving a negative
indication could be seen as a positive indication for the rest
of the frame of discernment. We therefore discuss both these
methods and compare the new UPR with these methods for
negative indications.

B. Shafer’s conditioning rule

In [15], a conditioning scheme is proposed to deal with
additional information. When a new source indicates that
the true solution lies in Xtrue ∈ Θ, new believability and
plausibility values are determined ∀X ∈ Θ according to
equations (2) and (3) respectively where Xtrue denotes not
Xtrue. Although this approach is simple to implement and
to understand, it is not considered to be objective enough
as discussed in [17]. Furthermore, with Shafer’s conditioning
rule we can redistribute plausibility and believability values
whereas we also want to redistribute belief masses themselves,
making Shafer’s rule unfit for our application.

Belnew(X|Xtrue) =
Bel(X ∪Xtrue)− Bel(Xtrue)

1− Bel(Xtrue)
(2)

Plnew(X|Xtrue) =
Pl(X ∩Xtrue)

Pl(Xtrue)
(3)

C. Belief conditioning rules

In DSmT, additional information on where the truth is, can
be dealt with using the belief conditioning rules (BCR) as
explained in [17]. There are numerous variations but all of



these are based on three subsets of DΘ that are constructed
using three rules. These three subsets are denoted D1, D2, and
D3.

The subset D1 contains the combination of all labels that
are used in the description of where the truth lies. To denote
this set of labels, [17] defines the function s(Xtrue) when the
truth lies in Xtrue. E.g., when the truth lies in element Xtrue =
X1 ∩ X2 ∪ X5, then s(Xtrue) = {X1, X2, X5}. In [17] all
combinations of the involved labels with the ∩ and ∪ operators
are denoted as D1 = PD(Xtrue).

The second subset, D2, is the sub-hyper-power set generated
with all labels from Θ\s(Xtrue) and the ∩ and ∪ operators
when the truth lies in Xtrue.

Finally, the third subset contains all elements from DΘ\∅
that are not represented in D1 and D2. This set is defined as
D3 = (DΘ)\(D1 ∪D2). All three subsets have no element in
common two by two and their union is DΘ\∅.

All BCR’s are based on the redistribution of the masses in
D2 and D3 to elements in D1. For BCR1 this is done by
proportionally redistributing the combined mass from D2 and
D3 to the elements in D1. For the other rules, BCR2–31,
redistribution is done directly to particular elements in D1

or it is done from disjoint subsets of D2 or D3 to D1 and
variations thereof, for details see [17].

Consider e.g., the free model of Fig. 2(a) and let the truth
be in A ∪B. For the different disjoint subsets we then find:

• D1 = {A,B,A ∪ B,A ∩ B, } and all combinations
contained in these elements like e.g., A ∩B ∩ C;

• D2 = {C} since s(A ∪ B) = {A,B} and therefore
Θ\s(A ∪B) = C;

• D3 = {A ∪ C,B ∪ C,A ∪B ∪ C,C ∪ (A ∩B)}.
Once these sets are constructed a BCR of choice can be used

to redistribute the masses accordingly.
However, assume that in Fig. 2(b) the operator enforces that

the solution should be found in E. In this case D3 = ∅ and
all elements from DΘ\∅M except E itself are contained in
D1. Thus, the mass from D2 = E might be redistributed to
all or some elements in D1 depending on the chosen BCR.

A problem with the BCRs arises when e.g., the truth is
considered to be in D in Fig. 3. The definitions are then
no longer clear about what to do with elements like C and
E since they could be argued to be a part of D1 (they
could be part of the description of where the truth lies,
C ∪ (A ∩D) ∪ (B ∩D) ∪E, but also to be part of D2 when
the truth is described as (A ∩D) ∪ (B ∩D). This ambiguity
is caused by the fact that BCR is developed for free models
like shown in Fig. 2(a).

IV. USER CONFIRMATION

In systems where an automated system and an operator work
together to find a solution, that operator requires different
means of exerting his influence. The operator might e.g.,
indicate where belief should be held (positive confirmation)

or where it should not be held (negative confirmation). Theses
types of constraints are not dealt with in PCR6 since that is
designed for constraints on elements from DΘ\Θ whereas ∅U
contains elements from Θ itself. Shafer’s conditioning rule
should be able to deal with this but this rule is not considered
to be objective enough, as explained in [17], nor does it operate
on belief masses.

A. Bridging elements

In [17], several BCR’s are proposed to deal with additional
information, whether this comes from an operator or another
source. However, these BCR rules deal with the situation
where a source indicates where belief should be held. Here,
we propose a different conditioning rule that deals with the
situation where elements from the frame of discernment are
excluded. The excluded elements are contained in ∅U . The
conflict K that an element X ∈ ∅U introduces, is the amount
of belief it was originally assigned to by the conditioning rule
that was used: K(X) = mc(X).

Since, in our case the operator says that these elements
should be excluded from the model, the new User Preference
Redistribution rule (UPR) states that all these constrained
elements, and of course their child elements, are assigned zero
belief, i.e., mupr

c (X) = 0, ∀X ∈ ∅U . In order to maintain
validity in the operator constraints, ∀X ∈ ∅U there is no
Xi ∈ Θ\∅U for which Xi ∩X = Xi holds. This means that
if we would constrain D in Fig. 3, then ∅U = {D,F} since
D ∩ F = F . The total amount of conflict introduced by ∅U
is found by

∑
Xj∈∅U K(Xj).∑

∀X`∈DΘ

mupr
c (X`) = 1 (4)

Since (4) should still hold, the masses that are discarded
need to be redistributed. The question becomes, where should
it be redistributed to?

The first choice is to redistribute the conflicting mass to one
of the parent labels of the excluded one with smallest DSm
cardinality that is not excluded itself. In order to find this label
we first define X↑ as the set containing all parent labels of
X ∈ Θ. This set joins all Xi ∈ Θ for which X ∩ Xi = X
holds, see (5) with X 6= Xi. E.g., in Fig. 3 we say that C↑ =
A. The smallest parent may be found using the minimum DSm
cardinal since the model enforces that a parent always has a
larger DSm cardinality than its child element. Note that this
definition of a parent differs from (1) since here, only fully
overlapping parents are considered.

In [11] the DSm cardinality is explained in detail but in
short, this cardinality expresses the number of disjoint parts
in the Venn diagram that together form X and it is denoted
CM(X).



In Fig. 3 e.g., this means that since

A = ( (A ∩ C ∩D) ∪ (C) ∪ ((D ∩A) ∩ F ) ∪ (F ∩A) ),

the DSm cardinal of A is CM(A) = 4 since it has four
disjoint parts in the Venn diagram. Likewise, CM(D) = 4
and CM(F ) = 2 holds for Fig. 3.

X↑ = on{Xi ∈ Θ | Xi ∩X = X ∧ Xi 6= X} (5)

Xu = on{Xi ∈ Θ | Xi ∩X 6= ∅ ∧ Xi ∩X 6= X} (6)

The set of bridging labels of X , denoted Xu, is determined
by joining the labels that have a non-empty intersection
but that are not fully enclosed by X , (6). E.g., in Fig. 3
Au = {D,F}. Combined with X↑ all ancestor elements for
a > 0 are found. This distinction between full parent labels
and bridges is made since full parents are the first choice to
redistribute belief to, the bridges are the second choice.

It could be that all possible bridges are constrained by the
user. In this case we use the constrained bridges to find an
unconstrained labels. Say e.g., that ∅U = {A,D} in the
example of Fig. 3. For element A we find A↑ = ∅ and
Au\∅U = ∅ (since F ∩ D = F and D ∈ ∅U ) and for
element D we find D↑ = ∅ and Du = B. We then say that
since A ∩ D 6= ∅ and since B ∩ D 6= ∅ that A→ = B. In
general, we define X→ by (7) with Xi ∈ Θ.

X→ = on{Xi ∈ Θ | Xi ∩Xu 6= ∅ ∧ Xi ∩X = ∅} (7)

Should it occur that even this X→\∅U = ∅, we then
redistribute K(X) to Θ\∅U .

We now have four possible areas where the mass could be
redistributed to. The area that will be used for the redistribution
of the belief assigned to the now constrained element X is
denoted X∗ and is determined by (8). In essence, the first
choice is to use the smallest full parent. If all full parents re-
ceive negative confirmation from the user, bridges are chosen.
Should these also receive negative confirmation, the bridges
are used to find generic labels that have no intersection with
the constrained label. Finally, should these labels also receive
negative confirmation, the mass is redistributed to all labels
from Θ that are not in ∅U .

X∗=



min
Xi∈(X↑\∅U) CM(Xi) if X↑\∅U 6= ∅

⋃
Xi∈(Xu\∅U )

Xi if
X↑\∅U = ∅
Xu\∅U 6= ∅

max
Xi∈(X→\∅U ) CM(Xi) if

X↑\∅U = ∅
Xu\∅U = ∅
X→\∅U 6= ∅

Θ\∅U otherwise

(8)

Using (8) we can determine where conflicting mass is to
be redistributed. Of importance for the runtime behaviour of
the algorithm is that the most computationally intensive part
— i.e., calculating X↑, Xu, and X→ — can be done off-line
∀X ∈ Θ. In contrast, for BCR the disjoint sets are based on
∅U which is presented by the user at runtime, enforcing the
computation of BCR to be done during runtime. When UPR is
used in an on-line system and ∅U 6= ∅, (8) can be run with
low computational costs.

Having identified where conflict should be redistributed to,
the next step is to determine how to redistribute.

B. Redistribution of conflict

Since our approach is redistribution, each element that is
unconstrained keeps the belief value that was assigned to them
by the combination rule (in our case by PCR6). Belief mass
is added to those elements obtained by (8). Conflicting mass
is redistributed to all elements within that area proportional
to their assignment based on PCR6. This proportionality is
applied to ensure that initial differences between elements are
kept after this redistribution. If e.g., two elements were as-
signed 0.01 and 0.02 belief mass and 0.1 is to be redistributed
to them. If this would not be done proportionally it would
result in 0.06 and 0.08 belief mass. Since this is a distortion
of the original difference in belief assignment we redistribute
it proportionally, obtaining 0.043 and 0.086. In this way, the
fact that one element was assigned twice as much belief as
the other is maintained after applying UPR.

mupr
c (X) = mc(X) +

∑
X∩X∗j =X

∀Xj∈∅U

N`,j(X) · K(Xj) (9)

The redistribution is done ∀X ∈ ∅U and we therefore
obtain (9) for the UPR rule which is defined ∀X ∈ DΘ\∅U .
In (9), N`,j denotes the factor used to redistribute belief
proportionally to element X` from Xj . I.e., it redistributes
belief proportional to the original assignment made on the
element compared to the total amount of belief assigned to all
labels where belief is redistributed to (10).

N`,j(X) =
mc(X)∑

X∩X∗j =X

X /∈∅U

mc(X)
(10)

V. EXAMPLES

For the two illustrative numerical examples in this section
we consider the joined model as shown in Fig. 4. This model
is the resulting Venn diagram when the world models of the
different agents as well as the user are combined. For the
example we have chosen a generic model with 4 specificity
levels with various full parents and bridges. Problems that
may be modelled in this manner are e.g., multi-label clas-
sification tasks, intent-recognition where similar actions may
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Figure 4. Venn diagram of a generic joined world model

point to different intentions, and crisis response. The focus of
the examples is on negative confirmation since the positive
confirmation is dealt with in the combination rule itself (the
user’s belief is treated the same way as an agent’s by the
interaction agent).

A. Example 1

For the first example the operator gives a negative confir-
mation on element X17. In BCR terms: the truth is in X18

since X17∪X18 encloses the entire frame of discernment and
both elements are mutually exclusive. For BCR the mass from
the dark coloured parts is then redistributed to all light grey
coloured parts in Fig. 5(a). The set D1 in BCR contains all
elements that are enclosed in this entire light grey coloured
part of the Venn Diagram. Some ambiguity however exists for
elements like X1, this element alone should be in D2 since
it has no common part elements involved in D1. However,
one could argue that since X1 = X1 ∩X14 and since X14

is involved in D1 — X18 ∩ X14 ∈ D1 — this should be an
element in D3. This shows the constraints of using BCR which
is not able to deal with solution spaces with fully overlapping
labels as already stated in Section III-C.

Besides the questions on how to construct the disjoint
sets required for BCR, a choice has to be made on which
specific BCR will be used. A possible solution would be to
choose BCR1 since this rule treats elements from D2 and D3

exactly the same solving the ambiguity between these sets in
our classification model. Using this rule, we redistribute the
summed mass from the dark coloured region proportionally to
all light grey coloured parts.

The same colour scheme is used to indicate what masses
are set to zero and where the mass is redistributed to. A big
difference is that UPR only constrains full child elements of
X17. This means that ∅U = {X1, X5, X9, X11, X17} and the
UPR can be applied directly. Results from BCR1 and UPR
for this example are shown in table I where mc(.) denotes
the combined belief (by e.g., PCR6) before negative user

confirmation. We see that UPR produces quite different results
than BCR. Where BCR1 now assigns most belief to the specific
label X6, the UPR spreads the belief assignments over more
generic labels. Based on the available information, this is
considered preferable.

B. Example 2

Again in the example of Fig. 4, assume that the operator
indicates that the object under consideration is not X9. Using
the dark colour for constrained parts in the Venn Diagram and
light grey for the parts where mass is distributed to, we obtain
Fig. 5(c) for BCR and Fig. 5(d) for UPR.

For BCR, D1 now contains all parts of the Venn diagram
with exception of X9. Thus, the belief assigned to this part
is proportionally redistributed to all other parts according to
BCR1. In this example, the same ambiguity exists on whether
X9 should be in D2 or D3 as was the case in example 1.

Using UPR however, the mass is redistributed to the smallest
parent element and its child elements according to equa-
tions (8) and (9). For both these methods the results are shown
in table II. Here, the UPR seems to focus the redistributed
mass better than BCR. The latter simply redistributes the mass
to all other elements that originally received a non-zero mass,
whereas UPR only assigns it to the smallest full parent and its
siblings.

Although a choice for a different BCR could influence this,
we note that in BCR the decision to redistribute mass to an
element is made based on the DSm cardinality where in UPR
this decision is based on the relevance to the element that
received a negative confirmation.

More examples have been considered but are omitted from
this paper and only two illustrative examples are presented.

Table I
RESULTS WHEN X17 RECEIVES NEGATIVE CONFIRMATION

i mc(Xi) mbcr1
c (Xi) m

upr
c (Xi)

6 0.1 0.666 0.122
8 0.1 0 0
9 0.2 0 0

10 0.1 0 0.122
11 0.1 0 0
13 0.15 0 0.483
15 0.1 0 0.222
17 0.1 0 0
18 0.05 0.333 0.05

Table II
RESULTS WHEN X9 RECEIVES NEGATIVE CONFIRMATION

i mc(Xi) mbcr1
c (Xi) m

upr
c (Xi)

6 0.1 0.125 0.1
8 0.1 0.125 0.1
9 0.2 0 0

10 0.1 0.125 0.1571
11 0.1 0.125 0.1571
13 0.15 0.1875 0.2358
15 0.1 0.125 0.1
17 0.1 0.125 0.1
18 0.05 0.0625 0.05
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(a) Negative confirmation on X17 for BCR
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(b) Negative confirmation on X17 for UPR
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(c) Negative confirmation on X9 for BCR
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(d) Negative confirmation on X9 for UPR

Figure 5. Venn diagrams in which the negative confirmation is dark grey and mass is redistributed to the light grey area

Future work will focus on more tests with operators using
real data.

VI. CONCLUSIONS

When multiple agents need to solve a large and complex
problem, an amount of disagreement inevitable when they
have different world models and expertise. The involvement
of an user in the MAS makes it even more complex. A joined
hierarchical world model provides a solid framework for all
parties involved in the problem solving to express their belief
stated in an uniform way. Furthermore, this model may be
expended by either the agents or the user during run-time.

We presented a new mechanism for the user to eliminate
certain parts of the solution space by negative confirmation
while the system keeps track of the conflict this produces
in the background. This new UPR redistribution scheme uses
knowledge about the solution space to transfer belief. This in
contrast to e.g., BCR that mostly utilises (DSm) cardinality.
Furthermore, the new UPR is based on subsets that may
be constructed off-line since they are independent of which
element needs to be constrained. This means a performance
gain computationally compared to BCR where the three disjoint

sets are constructed based on where the truth is. For real-time
systems this performance gain is essential.

Based on a numerical example we showed that the new
UPR assigns mass to the elements closest to the constrained
element. With BCR, masses are transferred based on the
cardinality without utilising the specific model knowledge that
is available.
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