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ABSTRACT
Motivation – Elicitation of preferences is crucial in ne-
gotiation support. This is a non-trivial task which could 
be supported by computers.
Research approach – Experiment in which 32 partici-
pants have to order holidays using different preference 
elicitation techniques including a navigational task and 
affective scoring. The results were used as input for a 
lexicographic ordering algorithm. 
Findings/design – Traditional property rating approach 
seems most preferred by the participants and resulted in 
one  of  the  best  orderings  of  the  outcomes  space  to 
match their preferences, at least when using the lexico-
graphic algorithm.
Originality/value –  The  elicitation  process  is  ap-
proached  from an  algorithmic  perspective  as  well  as 
from a user-centred perspective for both navigation and 
affective attitude.
Take away message – A multi-angle approach gives a 
richer understanding of the process of preference elicita-
tion.

Keywords
Preference elicitation, Recommender Systems, Lexico-
graphic ordering, Affective scoring

INTRODUCTION AND RELATED WORK
The success  of  a  negotiation  depends on  the  specific 
preferences of the negotiating partners. In general, a ne-
gotiation  is  only  successful  if  both  negotiators  are 
satisfied with the final  outcome.  To reach an optimal 
agreement,  both  party’s  preferences  have  to  be  taken 
into account. Hence, an important aspect of designing 
and implementing intelligent systems that give users de-
cision support during a negotiation process is eliciting 
the users’ preferences in order to build a user preference 
model  within  the  system  (Boutilier,  2002;  Pu  et  al. 
2003; Chen and Pu, 2004).
As pointed  out  by  Rashid  et  al.  (2002)  and  Boutilier 
(2002) preference elicitation is a non-trivial task. From 

a technical point of view, the outcome space of a negoti-
ation is typically very large;  it  is  not  feasible to let a 
user specify a complete preference ordering of all out-
comes directly. Therefore, a feasible and user-friendly 
method has to be found to elicit user preferences in such 
a way that an appropriate outcome ordering can be de-
rived that resembles the user’s actual preferences.
Research in this direction has mainly been done in an 
Artificial Intelligence context (Guo, Müller, and Wein-
hardt, 2003; Dastani et al., 2001) and in usability testing 
of specific Recommender Systems (Chen and Pu 2004; 
Rashid et al., 2002; Shearin and Liebermann, 2001). 
Artificial Intelligence approaches typically focus on cre-
ating a user preference model, i.e. how the preferences 
for  each  user  can  be  represented  in  an  efficient  way 
within the system. An interface that facilitates that mo-
del  is  then added. A problem that  we see in  this  ap-
proach is that the interface design might not correspond 
to the way the user is capable of, and feels comfortable 
with,  revealing his preferences.  As Pu and colleagues 
(2003) explain,  “[…], without an adequate interaction 
model and guidance, it is difficult for users to establish 
a complete and accurate model of their preferences”. It 
is  therefore important  to look at preference elicitation 
not only from a system perspective but also from a user 
perspective.
Unfortunately,  most  user-based evaluation studies that 
were conducted on preference elicitation methods used 
for Recommender Systems focus specifically on a parti-
cular system’s interface (Chen and Pu, 2004; Rashid et 
al.,  2002; Pu et al.,  2003). In addition, many of these 
systems are used in the same domains, such as travel as-
sistance or shopping recommendations. There has been 
little research on different user-centred interaction styles 
for preference elicitation that could be used for any do-
main. 
Besides the satisfaction and the cognitive limitations of 
the user, another aspect of preference elicitation from a 
user perspective is the role of emotions. Preferences can 
be  considered  affective  constructs,  as  they  are  about 
liking versus disliking objects and properties and liking 



is a fundamental  affective quality (see e.g. Mehrabian, 
1980;  Russell,  2003).  In  addition,  emotions  influence 
the negotiation process (Barry & Oliver, 1996; Masten-
broek, 2002; Fisher & Shapiro, 2005).  Therefore,  one 
should take the emotions that might play a role into con-
sideration as well. However,  if  this influence is  to be 
dealt with in a negotiation support system, we first and 
foremost need to be able to measure emotion in a re-
liable and valid way.
An exhaustive review of the emotion measurement liter-
ature is out of scope here, but recent studies (Isomursu 
et al, 2007) show that there are currently no simple-to-
use, validated digital measurement tools that can easily 
be integrated in any application. Many approaches exist 
towards explicit emotion feedback in computerized sys-
tems. However, these approaches typically have a fun-
damental trade-off between precision and measurement 
speed/ease of use (Isomursu et al., 2007). Further, many 
methods ask a user to input categorical emotions with or 
without intensity (Desmet, 2002; Sanchez et al., 2006; 
Isomursu et al., 2007). Finally, the measurement method 
must be easy to integrate in any interface and the data 
measurements  produced by the method must  be valid 
and consistent  as  well  as usable in  the  application in 
which the measurement tool is used. 
In  summary,  a  preference  elicitation  method  should 
derive a preference ranking from the (incomplete) infor-
mation that users can provide. In this process the goals, 
cognitive capacities and emotions of the user should be 
taken into account. No single research area can address 
all  these  issues  and  the  associated  risks  and  pitfalls. 
Therefore, it is important to have a multi-angle view on 
preference elicitation especially for negotiation support 
systems. To obtain effective systems and avoid sub-op-
timization of either the system side or the user side, one 
should acknowledge that they are interrelated and fol-
low a holistic design approach.
In  terms  of  research  methods  this  implies  that  one 
should combine theoretical modelling, quantitative sta-
tistical measures and qualitative data (De Dreu and Car-
nevale, 2005; Hopmann, 2002; Moore and Murnighan, 
1999). As Buelens et. al. (2008) put it, one should trian-
gulate research methods to obtain a rich understanding 
of the problem domain. In this paper we approach pref-
erence elicitation from various angles.
 
RESEARCH QUESTIONS AND HYPOTHESIS 
Preferences over objects, situations or outcomes of ne-
gotiations are often dependent on preferences over their 
properties.  This  dependency  can  be  modelled  in  dif-
ferent ways. One common approach is that of multi-at-
tribute decision theory, in which the utility of outcomes 
is computed from weights associated with the properties 
(Keeney and Raiffa,  1993). However,  it  is difficult to 
obtain such numerical values. Therefore, various quali-
tative  approaches  to  multi-attribute  preference  defini-

tions have been proposed, such as the lexicographic or-
dering. This ordering compares two objects according to 
the property that is rated most important. Other proper-
ties will only be considered if the value of the most im-
portant property is the same for both objects. It has been 
argued that this is a natural and intuitive way to derive 
preferences  over  objects  or  outcomes from an impor-
tance ranking of properties (see for example Liu, 2008). 
This suggests that  the resulting order over  objects re-
flects the user’s real preferences. To our knowledge, this 
claim has never been confirmed by user studies. This 
paper presents a first attempt to fill this gap.
In order to extract preferences in the first place, differ-
ent interaction styles can be used for preference elicita-
tion.  Ordering or  rating properties  or  objects,  or  pro-
filing by example (Shearin and Liebermann, 2001) are 
just a few examples.  These styles influence how well 
the preferences of the user can be represented inside the 
system and also impact the user satisfaction. If the user 
is not satisfied with the interface or finds it hard to use it 
valuable information about her true preferences and also 
hidden preferences could be lost. Therefore, it is impor-
tant to find the best suited method to elicit preferences. 
As Pu and colleagues (Pu et al., 2003) point out: “sta-
ting preferences is a process rather than a one time enu-
meration of preferences that do not change over time”. 
They suggest to give the user immediate feedback of re-
sults, visual feedback and to allow the user to give any 
preference in any order. Based on these suggestions we 
investigate  whether  a  navigational  interface  where 
people can browse through the outcome space by chan-
ging any one attribute at a time and get immediate, visu-
ally supported feedback of their choices is more pref-
erred by the user than a simple interface based on order-
ing  alternatives  of  properties.  In  particular  we  would 
like  to  compare  effort,  intuitiveness,  ease  of  use and 
how much people  like the two interaction styles.  Fur-
thermore, we would like to test whether we can extract 
the same information about the user’s preferences from 
such a navigational interface as we would get from the 
explicit preferences by ordering the properties.   
Regarding affective input of preferences, our main re-
search question in this study is to find out if affective 
feedback is useful for expressing preferences. Four sub-
questions were investigated: (a) do users like to give af-
fective feedback, (b) how much perceived effort is in-
volved, (c) what is the perceived quality of the resulting 
ordered holiday lists, and (d) is affective feedback use-
ful to predict the “ideal” holiday ordering of a user as 
generated by that user. 
As argued in the introduction preference ranking meth-
ods  and  interaction  styles  for  preference  extraction 
should not be developed independently. To see how the 
interaction  between  those  components  influences  the 
end result we have tested how well different ways of ex-
tracting user preferences over properties work as input 
for the lexicographic ordering method. We would like to 



see how similar the different preference orderings, dis-
cussed in the next section, generated with this method 
are to preference orderings as specified by users.

METHOD
In order to test different methods of extracting user pref-
erences we ran an experiment that consisted of 8 order-
ing/rating tasks (tasks will be numbered throughout the 
paper), 2 comparisons of results and a final question-
naire. An overview of the ordering/rating tasks is pre-
sented in Table 1 (each task will be discussed in more 
detail below). After each task we asked participants to 
rate (on a 7 point scale) how much effort the task cost as 
well as how much they liked the task.

Task Description

A1 Order 9 property values (given at the same time)

B1 Order 27 holidays
A2 Navigation through holidays

B2 Order 3x3 property values (given three at a time)

A3 Likert rating of holidays

B3 Affective rating of holidays

C3 Likert rating of properties

D3 Affective rating of properties

Table 1. Overview of 8 preference elicitation tasks.

We chose holidays as our domain, since most persons 
can relate to holidays and have preferences about differ-
ent aspects of holidays. Each holiday has the properties 
type, location and accommodation, with respective alt-
ernative values relaxation, active and city trip, Mediter-
ranean, Scandinavia and Alps, and hotel, camping and 
apartment (Table 2).

Location Accommodation Type

Mediterranean Apartment Relaxation

Alps Hotel City trip

Scandinavia Camping Active

Table 2. Properties of holidays and the alternative values 
for each property used in the experiments.

Material
The  study  material  consisted  of  two  sets  of  9  cards 
showing one alternative value for a property of a holi-
day each, one set with and the other without pictures. 
Further,  there  were  two  sets  with  27  cards  showing 
complete holidays;  one set  with 4 pictures to give an 
orientation about what the holiday could look like, and 
one set without pictures. Furthermore, we used a com-
puter interface that included 4 different tasks. In these 
tasks participants were asked to rate one at a time either 
holidays or alternatives for properties of holidays. Ra-
ting was done using either a 9-point Likert scale from 
like to  dislike or with the  AffectButton (Figure 1). This 
interface component functions, looks and behaves like a 
button but enables a user to input dynamic (i.e. graded) 
emotions. The button itself renders a face that changes 
directly according to the mouse position in the button as 

well as the scroll wheel. The mouse coordinates within 
the button and the scroll wheel define the values on the 
affective dimensions Pleasure, Dominance and Arousal 
(PAD)  (Mehrabian,  1980)  respectively.  These  values 
can be between -1 and 1. The user can therefore select 
an affective  triplet  from the  PAD space by using the 
mouse within the button. An emotional expression that 
represents  the  PAD triplet  is  selected by clicking the 
button. We used this button to ask users about their af-
fective preference for an item (i.e. a holiday in our ex-
periment).  We  have  chosen  the  PAD  dimensions  as 
these have proven to be fundamental and independent 
variables of, amongst other things, affective attitude. As 
we  want  to  measure  a  person’s  affective  attitude  to-
wards preferences, this is a promising model.

Figure 1. Example expressions: from left to right Happy 
(PAD=1,1,1), Afraid (-1,1,-1), Surprised (1,1,-1), Sad 

(PAD=-1,-1,-1), Angry (-1,1,1)

Participants
We  tested  32  participants,  10  female  and  22  male, 
which were mainly students and researchers within the 
field  of  information technology aged between 21 and 
31. Each participant had to do all tasks the experiment 
consisted of. The order of the tasks was counterbalanced 
per participant.
Design
Navigation through the outcome space
To test  the  effect  of  navigating  through the  outcome 
space, i.e. complete holidays, two tasks were presented 
to the user. The first task is a navigation task (A2). In 
this task, the subject was presented with a random card 
with a complete holiday in the beginning and first had to 
find her most preferred holiday by changing the value of 
one property at a time to any of the 2 alternative values 
of that property. However, the subject could have a look 
at all  6 holidays related to the present one before de-
ciding which one to navigate to. The task was presented 
as a paper prototype of a mobile interface. Considering 
the small screen on such interfaces the subject could see 
only the 2 alternative values for each property at a time. 
Once the subject found her most preferred holiday the 
procedure was repeated for the least preferred holiday 
starting with the most preferred one. The cards showed 
three  property  values  of  a  holiday  and  four  pictures, 
which were used to give the participant an idea about 
the kind of holiday. 
In the second task (B2), the subject had to come up with 
a complete ordering of the alternative values of each of 
the 3 properties presented on cards with one value and a 
related picture each. Furthermore, the subject was asked 
to order the 3 properties type, location and accommoda-
tion according to importance when searching for a holi-
day.



A final questionnaire was presented to the user contain-
ing a number of questions about the  intuitiveness  and 
ease of use of these two tasks as well as more detailed 
questions about how much the subjects liked the naviga-
tion (A2) and property ordering (B2) tasks and the use 
of pictures.
Affective Feedback
In this part of the whole experiment we used a 2x2 ex-
perimental  setup, with affect  versus normal (Likert  9-
points  scale)  rating  as  one  independent  variable  and 
property  values  versus  whole  holidays  rating  as  the 
other. As such, we had four different conditions: Likert 
rating  of  holidays  (A3),  affective  rating  of  holidays 
(B3), Likert rating of property values (C3) and affective 
rating of properties (D3).  For the holiday rating tasks 
(affect  versus  Likert  scale  rating)  nine  holidays  were 
presented one by one and in random order, just as the 9 
property values in the two lists of property values.
For each condition a simple algorithm generated an or-
dered list containing 9 holidays based on the user input. 
In the Likert&Holiday case the list was ordered directly 
based on the user’s holiday preference feedback. In the 
Affect&Holiday  case  feedback  variables  pleasure, 
arousal and dominance were summed and then used to 
order the list. In the Likert&Property case the weight of 
the property value entered by the user as feedback was 
used to calculate a sum for each holiday that was to be 
ordered This sum was used to order the list of holidays. 
In the Affect&Property case the pleasure, arousal, and 
dominance feedback was summed and then used to or-
der the property values; from this property ordering a 
ordering of the nine holidays was derived. These algo-
rithms resulted in four differently sorted lists, each con-
taining the same holidays.  After  the complete experi-
ment, users were asked to score the extent to which the 
ordering of each of these four lists matched their own 
preferences (E3). They were also asked to order the four 
lists based on the same criterion.
Preference Ordering
Lexicographic  ordering  is  one  of  the  best  known ap-
proaches  to  derive a  preference ordering over  objects 
from a given ordering over properties and property val-
ues (alternatives). As input for the lexicographic order-
ing method we need the order of importance of the three 
properties, and for each property, an ordering over that 
property’s values. A holiday is preferred over another 
holiday  if  the  former’s  value  of  the  most  important 
property  is  better  than  the  latter’s  value  of  the  same 
property. If both values are the same, the alternatives of 
the next most important property are considered, and so 
on. Consider for example Table 2, and suppose that the 
properties are ordered from left to right and the property 
values from top to bottom. Then a relaxation holiday in 
an apartment in the Alps is less preferred than an active 
hotel  holiday in the Mediterranean,  because the latter 
scores better on the most important property (location), 

even though it  scores worse on both other properties. 
Likewise, a city trip in a hotel in Scandinavia is more 
preferred than an active camping holiday in Scandina-
via, since they score the same on the first property and 
the former scores better on the second.
The input needed for this preference ordering method 
was gathered in task B2 as described above.
The input described above has a two-dimensional struc-
ture; values of each property are grouped together. It is 
possible to ‘flatten’ this structure in order to express dif-
ferent property value orderings. This is done by ‘promo-
ting’  property  values  to  the  property  level.  The  new 
property  values  are  left  implicit  (they  are  booleans 
where true is better than false for every property). This 
approach also gives the opportunity to give two proper-
ties equal importance. In this case, the number of true 
properties  of  a  given  importance  level  are  compared. 
Consider for example Table 3, in which the properties 
are again ordered from left to right. An active holiday in 
an apartment in Scandinavia would be preferred over a 
citytrip  in a  hotel  in Scandinavia,  because the former 
has two of the most important properties and the latter 
only one.
active, 
Scandinavia

citytrip, 
hotel

apartment alps, 
camping

mediterranean, 
relaxation

Table 3. Example ordering of properties in a 
flattened structure.

The input needed for this was gathered in task A1, an 
ordering task of  9 cards showing one alternative of a 
holiday  property  each.  Equally  preferred  alternatives 
could be put on the same level. All cards should be laid 
out on the table from most preferred to least preferred.
The same kind of input was also derived from the rating 
of property values on a Likert scale (C3) and by means 
of the AffectButton (D3), such that the property value 
that was rated best is considered most important.
The last task (B1) consists of ordering 27 cards showing 
a complete holiday, each consisting of a combination of 
the three properties. Equally preferred holidays could be 
put on the same level. All cards should be laid out on 
the table from most  preferred to  least  preferred.  This 
user-specified preference ordering is used as a standard 
against which the orderings generated with the lexico-
graphic method from the different inputs will be com-
pared.
Besides  this  objective  comparison,  we  asked  partici-
pants to judge which of two ordered lists of 27 holidays 
better reflected their preferences: the list they specified 
themselves in task B1 or the list generated with the lexi-
cographic ordering method from the input from task A1.
Procedure
The study was conducted during 2 weeks. Each experi-
ment  took about  45 minutes and consisted of  8 tasks 
considering preference input, 2 comparisons of resulting 
lists and a final questionnaire. Before the tasks were ex-



plained and executed a general introduction was given 
about the goal  of  the experiment and the holiday do-
main.  Furthermore,  subjects  were  told  that  each  task 
stands for itself,  which means there is  no need to re-
member anything between the tasks.
The presentation of tasks to users was counter balanced 
to avoid order of presentation effects.

RESULTS AND DISCUSSION
Preference Ordering
We have used the different methods of rating and order-
ing properties as input for the lexicographic ordering al-
gorithm to investigate how well this algorithm can per-
form given a variety of inputs. These methods thus in-
clude affective rating (D3 in two ways, as explained in 
the result section on Affective Feedback) 9-points rating 
(C3),  ordering  9  property  values  (A1),  ordering  the 
properties and then 3x3 values (B2). The algorithm ge-
nerated ordered lists for each user, and these lists were 
compared with the lists that the users specified them-
selves in the 27-card ordering task (B1). 
This is essentially a comparison between two rank-or-
dered lists containing the same items. The similarity be-
tween these lists is computed in two ways. Kendall’s τ 
can be seen as a distance measure; it is based on the mi-
nimal number of switches between two adjacent items 
in one list that is needed to attain the second list. Spear-
man’s ρ is another well-known rank correlation method. 
Both measures are normalized and range from -1 to 1, 
where 1 indicates that the lists are identical, 0 no rela-
tion at all, and -1 indicates reverts ordering.
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Figure 2: Rank correlations between generated holiday 
preference lists and user-specified holiday preference lists 

(including 95% confidence interval).

Figure  2 shows  the  correlation  coefficients  averaged 
over participants between the standard list (specified by 
the participant in task B1) and the lists generated with 
the lexicographic ordering method with different types 
of user input. All correlations are significant above 0 (p. 
<  0.001),  which  indicates  that  the  generated  lists  are 
much more similar to the standard list than random lists. 
It is important to note that the best any preference order-
ing method can do is not as high as 1, since the partici-
pants were not always consistent between tasks. Hence 
the  human-specified  ‘standard’  ordering  is  not  fixed. 

Current results give rise to an estimate of around 0.9 as 
highest  attainable  score  (see  the  next  section,  square 
root of 0.81).
As the τ and Spearman results are strongly correlated (r 
= 0.99) analysis on the difference between the methods 
focused only on  τ results.  An ANOVA with repeated 
measures with  τ results as dependent variable and the 
methods as within-subject variables revealed a signifi-
cant main effect (F(2.77, 85.75) = 3.23; p. = 0.027, df 
adjusted  for  sphericity  violation  with  Greenhouse-
Geisser method) for the methods. Examining  Figure  2 
shows that both the Affect Sum (F(1,31) = 5.60, p. = 
0.024) and Affect Distance (F(1,31) = 7.64, p. = 0.010) 
method resulted in lower level of similarity on average, 
which was confirmed by a Deviation Contrast with the 
3x3 method as reference category.  
Navigation through the outcome space
Participants were asked to rate the tasks A2 (navigation 
through the outcome space) and B2 (ordering the alter-
natives for each property) on its intuitiveness, ease of 
use, effort of use, and how much they liked it. As these 
two tasks can provide similar information, it would be 
interesting  to  see  if  participants  perceived  them  dif-
ferently. Therefore a MANOVA with repeated measures 
was conducted which took the various ratings as depen-
dent measures, and the task as independent within-sub-
ject variable. The multivariate analysis found a signifi-
cant main effect (F(4,28) = 3.14; p. = 0.030) for task, 
which was only found again in univariate analysis on ef-
fort (F(1,31) = 9.02; p. = 0.005) and intuitiveness rating 
(F(1,31)  =  4.64,  p.  =  0.039).  Examining  the  means 
shows that participants rated the navigation through the 
outcome space (A2) task (M = 3.0, SD = 1.65) as more 
effortful than the B2 task (M = 2.0, SD =1.16) and as 
less intuitive (M = 4.9, SD = 1.48) than task B2 (M = 
5.6, SD = 1.32). Assuming that both input methods give 
the same information, this data suggests that the more 
traditional B2 method is  preferred.  The preference  of 
using pictures in A2 did not seem to correlate (r = 0.09; 
p.  > 0.05) with how much participants liked task A2. 
Some  participants  mentioned  afterwards  that  pictures 
helped them with imagining the holidays. These partici-
pants  rated  the  helpfulness  of  pictures  significantly 
(t(27.5) = -5.0; p. < 0.001) higher (M = 5.8, SD = 1.01) 
than those who did not mention this issue (M = 3.5, SD 
= 1.57). Likewise participants that  mentioned pictures 
as  a  distraction from their  own imagination rated the 
usefulness of pictures significantly (t(30) = 3.69; p. = 
0.001) lower (M = 3.0, SD = 1.32) than participants that 
did not make this comment (M = 5.17, SD = 1.56). 
Studying task A2 in more detail however revealed that a 
considerable  group  of  the  participants  (34%)  did  not 
consider the properties independent, which is an impor-
tant assumption when using data from ordering the al-
ternatives for each property.  For example,  in task A2 
one participant selected relaxation, Alps, and apartment 



as most preferred holiday and city trip, Alps, and cam-
ping as the least preferred holiday. For this participant 
the Alps were both in his most and least preferred holi-
day. For 11 of the 32 participants the most  and least 
preferred holiday had  at  least  one similar  value.  One 
participant even had two similar values as his most pref-
erred  holiday  was  active,  Alps  and  camping,  and  his 
least preferred holiday was city trip, Alps, and camping. 
This means two things. First, a property independent ap-
proach is  not  suitable for  all  people to  describe their 
preferences.  Second,  the navigation through outcomes 
task  might  be  an  effective  approach  to  determine 
whether for a specific individual preferences over prop-
erties are dependent.
Based on the values of participants’ least and most pref-
erred  holidays  it  was  possible  to  order  the  values  of 
each  property.  Spearman  correlations  between  the 
ordering of the value derived from the A2 task and the 
B2 task ranged from 0.62 to  0.91 with a  0.73 mean. 
Therefore it seems that A2 can obtain similar data as B2 
when it comes to ordering value of a property. The B2 
task  also  provides  information  about  the  ordering 
between  the  properties.  The  hypothesis  was  that  this 
information could also be obtained by looking at what 
property participants changed first and what last in the 
A2 task. However, Spearman correlations between the 
data sets from A2 and B2 on this issue did not reach a 
significant level, thus this hypothesis should be rejected. 
Comparing  the least  and most  preferred holiday  with 
holidays at the top and bottom of the user-specified list 
of all holidays (B1) shows a match of 81% (26 out of 
32) for the most preferred holiday, and a match of 44% 
(14 out of 36) for the least preferred holiday. This can 
mean  several  things.  First,  the  participants  were  not 
very  consistent  when  it  came  to  their  least  preferred 
holiday.  Second,  there  might  be  a  bias  in  task  A2 
causing  that  participants  end  up  with  different  least 
preferred holiday; however there was no indication to 
support this idea. Third, 81% seems as upper limit for 
an algorithm’s prediction accuracy to match a person’s 
preference list  (algorithms and input methods such as 
those presented in Figure 2). Fourth, people are far more 
consistent  in  identifying  their  most  preferred  holiday 
than their least preferred holiday. 
Affective Feedback
Statistical analysis of the data using a MANOVA with 
repeated measures showed that there is a main effect of 
affect versus Likert scale rating (F(2,30) = 24.00; p. < 
0.001)and property versus whole holiday rating (F(2,30) 
= 6.73; p. = 0.004) with no significant interaction effect. 
These main effects were found again in the univariate 
analysis on effort  for affect  versus Likert  scale rating 
(F(1,31) = 46.32; p. < 0.001) as well as for property ver-
sus holiday rating (F(1,31) = 13.90; p. = 0.001). This 
means  that  both  affective-,  as  well  as  holiday-based 
feedback are associated with a higher perceived effort in 
preference elicitation (Table 4). 

With regards to the perceived quality of the resulting 
nine-item lists as generated by the simple algorithms we 
found a significant main effect for affect versus Likert 
scale rating (F(1,31) = 6.12; p. = 0.019) and no main ef-
fect for holiday versus property rating or interaction ef-
fect. With regards to the ordering of the resulting gene-
rated lists based on their perceived quality we found si-
milar  results.  No significant  effects  were  found apart 
from an effect  of affect  versus Likert  scale  rating for 
property values (Wilcoxon Sign Rank Test, z = 2.28; p. 
= 0.023) Together these findings indicate that the algo-
rithmically-generated  sorted  lists  based  on  affective 
feedback matched the user’s preferences less well than 
the lists that were generated based on normal feedback. 
This could be due to two reasons; (a) users did not un-
derstand the AffectButton as input device, and (b) the 
algorithm to generate the lists was too simplistic. The 
first explanation is unlikely, as pleasure and dominance 
strongly correlated with the Likert-scale feedback (r=0.7 
and r = 0.6 respectively, p < 0.001). Also, previous re-
search suggests that the AffectButton is a valid and reli-
able  affective  feedback  device  (Broekens,  submitted). 
To  test  the  second  explanation  we  used  the  Lexico-
graphic ordering method to generate lists based on af-
fectively scored property values. Property values were 
ordered according to their affective Euclidian distance 
to “happy” (Pleasure = 1, Arousal = 1, Dominance = 1) 
as well as according to their affective sum (as described 
earlier). These property orderings were then used in the 
lexicographic ordering algorithm to generate 2 different 
lists and these lists were compared to the baseline pref-
erences as given by the user in the 27-holiday card or-
dering task. On average over all 32 participants, the re-
sulting orderings were worse than the orderings based 
on Likert scale rated property values as compared to the 
orderings given by the participants in the 27-card order-
ing task. This suggests that affective input might not be 
very useful  as input for the lexicographic ordering as 
well, or at least that mapping affective dimensions to al-
gorithms that are intended for one dimensional prefer-
ence values is not trivial.
Finally,  we conducted a regression analysis given the 
holiday Likert rating and pleasure, arousal, dominance 
ratings (backward stepwise) over all items to predict the 
item ranking using the user’s baseline preferences given 
by the 27-holiday card ordering task. The same analysis 
was repeated for the property values (now predicting the 
property baseline ranking given by the 9-property card 
ordering  task).  The  regression  analysis  with  holiday-
ranking as dependent variable resulted in a significant 
model (F(2,285) = 110; p. < 0.001) with a correlation 
between actual ranking and predicted ranking of r=0.66. 
The model included as significant parameters the item 
Likert rating (Beta = -0.55; t = -9; p. < 0.001) and the 
item pleasure rating (Beta = -0.15; t = -2.5; p. = 0.012). 
The regression analysis with property-ranking as depen-
dent  variable  also  resulted  in  a  significant  model 



(F(2,285) = 110.6;  p.  < 0.001) with a  correlation be-
tween actual ranking and predicted ranking of r = 0.66. 
The model included as significant parameters the prop-
erty Likert rating (Beta = -0.60; t = -11.1; p. < 0.001) 
and the property dominance rating (Beta = -0.11;  t  = 
-2.00; p. < 0.045). This means that, even in a simple lin-
ear  model,  affective  feedback  does  add  something 
unique  in  order  to  predict  user  preferences  and  can 
therefore  be  used  to  better  understand  human 
preferences.

Condition Liking
Mean 
and Std

Effort
Mean 
and Std

Rated 
quality of 
generated 
lists

Order of 
generated 
list (bigger 
is better)

Likert  & 
Holiday

3.938

1.318

2.750

1.191

6.188

1.786

2.656

1.260

Affect  & 
Holiday

4.188

1.575

3.906

1.594

5.500

2.064

2.438

1.105

Likert  & 
Property

4.188

1.731

1.938

1.014

6.031

2.177

2.781

0.870

Affect  & 
Property

4.313

1.655

3.250

1.481

5.156

2.329

2.125

1.157

Table 4. Summary of average liking and effort scores for 
the tasks A3-D3.

Multi-angle view
After each of the eight ordering tasks participants were 
asked to rate the task on how much they liked it  and 
how much effort it  took them. A MANOVA with re-
peated measures was conducted to examine an effect for 
the  ordering/rating  style  (independent  within-subject 
variable) on the perceived effort and liking (dependent 
variables). The multivariate analysis found a significant 
main effect for ordering/rating style (F(14,18) = 10.71; 
p.  < 0.001),  which was found again in  the univariate 
analysis  of  the  effort  rating (F(7,  217)  =  27.91;  p.  < 
0.001),  and  the  liking  rating  (F(7,  217)  =  3.17;  p.  = 
0.003). As could be expected,  Figure  3 shows that the 
ordering/rating task B1 (ordering all  27 cards) clearly 
stands out as least preferred and required the most effort 
to  complete.  This  simply confirms the motivation be-
hind  preference  elicitation  research  as  people  are  not 
much in favour of evaluating all individual items in the 
outcome space. Figure 3 also shows the other side of the 
spectrum. The more traditional individual property or-
dering (B2) or rating (C3) tasks were rated low on effort 
and relatively high on liking. This suggests that people 
appreciate the relative cognitive simplicity of this task; 
dealing  only  with  a  small  part  of  the  outcome space 
complexity. From the tasks that involved evaluating the 
complete holidays (B1, A2, A3, and B3) it seems that 
the navigation through the outcome space (A2) is  the 

most preferred one. However, the question remains why 
participants liked it. Was it because they liked the inter-
action style of browsing through the outcome space or 
was it because this task often involved the evaluation of 
relative fewer holidays compared to the other three holi-
day ordering/rating tasks? 
Taking the results of accuracy in ordering the outcome 
space (Figure 2) and Figure 3 together, the first observa-
tion is that the more traditional property rating approach 
seems a relative good solution, as participants like it, it 
does not  involve much effort  and the ordering output 
was among the best matches to the participants own or-
dering output.
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A1 B1 A2 B2 A3 B3 C3 D3

Ordering/rating task
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w
 -
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h

Effort
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Figure 3: The mean liking and effort rating of 
ordering/rating tasks, including a 95% confidence interval

CONCLUSION AND FUTURE WORK
This study into preference elicitation provides a number 
of observations:
• Traditional  property  rating  approach  seems  most 

preferred by the participants and resulted in one of 
the best orderings of the outcomes space to match 
their  preferences,  at  least  when using the  lexico-
graphic algorithm.

• Properties of holidays were not independent for a 
considerable group of the participant.

• Considering the affective attitude toward a holiday 
or  holiday property in addition to overall  attitude 
can  improve  understanding  of  preference  elicita-
tion.

• As illustrated by the previous point and by the navi-
gation task that identified the dependencies in the 
preferences  a  multi-angle approach gives  a  richer 
understanding of the process of preference elicita-
tion. 

Like any study, this study also had a number of limita-
tions. For example, for practical reason the set-up of the 
experiment only considers a limited number of proper-
ties and alternative values within each property to allow 
participants to order the whole outcome space. The real 
potential of some of the preference elicitation methods 
might therefore not have come to light in this study. Fu-
ture  research  might  look  at  these  elicitation  methods 



when considering a much larger outcome space with far 
more properties and values. The multi-angle approach 
also  shows  that  even  the  most  preferred  elicitation 
method  has  serious  limitations  for  example  when  it 
comes to dependencies of properties. A more effective 
approach  therefore  would  be  to  combine  methods  to 
overcome  pitfalls  and  use  the  strength  of  specific 
methods. For example navigation through the outcome 
space can be used initially to see if dependence exists, if 
so another method can focus on these dependencies. In 
addition,  combination  of  methods that  addresses  both 
affective and overall attitude would help to increase un-
derstanding about preferences. 
Another interesting observation is that applying a multi-
angle approach enriches understanding of people’s pref-
erence orderings. Future research might like to extend 
this approach by combining formal research, laboratory 
studies, case studies etc. including both qualitative and 
quantitative methodologies as was already suggested by 
Beulens et al (2008). This will help research to get un-
derstanding of underlying factors and how these operate 
in the field.
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