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Abstract 

Emotion plays an important role in thinking. In this paper we study affective control of the amount of 

simulated anticipatory behavior in adaptive agents using a computational model. Our approach is 

based on model-based reinforcement learning (RL) and inspired by the Simulation Hypothesis 

(Cotterill, 2001; Hesslow, 2002). The simulation hypothesis states that thinking is internal simulation 

of behavior using the same sensory-motor systems as those used for overt behavior. Here, we study 

the adaptiveness of an artificial agent, when action-selection bias is induced by an affect-controlled 

amount of simulated anticipatory behavior. To this end, we introduce an affect-controlled simulation-

selection mechanism that uses the predictions of the agent’s RL model to select anticipatory behaviors 

for simulation. Based on experiments with adaptive agents in two nondeterministic partially 

observable gridworlds we conclude that (1) internal simulation has an adaptive benefit and (2) 

affective control can reduce the amount of simulation needed for this benefit. This is specifically the 

case if the following relation holds: positive affect decreases the amount of simulation towards 

simulating the best potential next action, while negative affect increases the amount of simulation 

towards simulating all potential next actions. In essence we use artificial affect to control mental 

exploration versus exploitations. Thus, agents “feeling positive” can think ahead in a narrow sense 

and free up working memory resources, while agents “feeling negative” must think ahead in a broad 

sense and maximize usage of working memory. Our results are consistent with several psychological 

findings on the relation between affect and learning, and contribute to answering the question of when 

positive versus negative affect is useful during adaptation. 

Keywords: affect, action selection, anticipatory simulation, simulation selection, working memory, 

simulated adaptive agents. 
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1 Introduction 

Emotion plays an important role in thinking. Evidence ranging from philosophy (Griffith, 1999) 

through cognitive psychology (Frijda, Manstead & Bem, 2000) to cognitive neuroscience (Damasio, 

1994; Davidson, 2000) and behavioral neuroscience (Berridge, 2003; Rolls, 2000) shows that emotion 

is both constructive and destructive for a wide variety of cognitive phenomena. Normal emotional 

functioning appears to be necessary for normal cognition. 

 Emotion influences thought and behavior in many ways. Emotion in general is related to the 

urge to act (e.g., Frijda & Mesquita, 2000), influences how we evaluate stimuli, and what potential 

next actions we consider (e.g., Damasio, 1996). Specific emotions trigger specific behaviors (e.g., 

fight or flight). Emotion influences information processing in humans; positive affect facilitates top 

down, “big-picture” heuristic processing while negative affect facilitates bottom up, “stimulus 

analysis” oriented processing (Ashby, Isen & Turken, 1999; Forgas, 2000; Phaf & Rotteveel, 2005). 

 In this paper we specifically focus on the influence of affect on learning. Affect and emotion 

are concepts that lack a single concise definition, instead there are many (Picard et al., 2004). In 

general, the term emotion refers to a set of in animals naturally occurring phenomena including 

motivation, emotional actions such as fight or flight behavior and a tendency to act. In most social 

animals facial expressions are also included in this set of phenomena, and so are—at least in 

humans—feelings and cognitive appraisal (see, e.g., Scherer, 2001).  A particular emotional state is 

the activation of a set of instances of these phenomena, e.g., angry involves a tendency to fight, a 

typical facial expression, a typical negative feeling, etc. Time is another important aspect in this 

context. A short-term (intense, object directed) emotional state is often called an emotion; while a 

longer term (less intense, non-object-directed) emotional state is referred to as mood. The direction of 

the emotional state, either positive or negative, is referred to as affect (e.g., Russell, 2003). Affect is 

often differentiated into two orthogonal (independent) variables: valence, a.k.a. pleasure, and arousal 

(Dreisback & Goschke, 2004; Russell, 2003). Valence refers to the positive versus negative aspect of 

an emotional state. Arousal refers to an organism’s level of activation during that state, i.e., physical 

readiness.  
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We use affect to denote the positiveness versus negativeness of a situation. In this study we 

ignore the arousal a certain situation might bring. As such, positive affect characterizes a situation as 

good, while negative affect characterizes that situation as bad (e.g., Russell, 2003). Further, we use 

affect to refer to the mid- to long-term timescale: i.e., to mood.  

Several psychological studies support that enhanced learning is related to positive affect 

(Dreisbach & Goschke, 2004). Others show that enhanced learning is related to negative affect (Rose, 

Futterweit & Jankowski, 1999). Although much research is currently being carried out, it is not yet 

clear how affect is related to learning in detail. Therefore we have set up a computational modeling 

study. Here we study affective control of the amount of information processing in artificial adaptive 

agents; we use affect as meta-learning parameter (Doya, 2002). We do not model categories of 

emotions nor use emotions as information in symbolic-like reasoning. 

In order to simulate affective control of information processing, we propose a measure for 

artificial affect that relates to an adaptive agent's relative performance on a learning task. As such, 

artificial affect measures how well the agent improves. Our adaptive agent learns by reinforcement; 

reward and punishment. Thus, in our case, “how well” is defined by the average reinforcement signal. 

Therefore, the agent’s performance is defined by the difference between the long-term average 

reinforcement signal (“what am I used to”) and the short-term average reinforcement signal (“how am 

I doing now”) (cf. Schweighofer & Doya, 2003). Our artificial affect thus relates to natural affect: it 

characterizes the situation of the agent on a scale from good to bad. Our measurement relates more to 

mood than emotion, as it is based on average reinforcement signals (see Section 4.3 and 7.1). 

We have developed a variation to the model-based Reinforcement Learning (RL) paradigm 

(Sutton & Barto, 1998). This variation enables the study of information processing in light of the 

simulation hypothesis (Cotterill, 2001; Hesslow, 2002). The simulation hypothesis states that thinking 

is internal simulation of behavior using the same sensory-motor systems as those used for overt 

behavior (Hesslow, 2002). The main reason for adopting the simulation hypothesis is that it argues for 

evolutionary continuity between agents that consciously think and agents that do not. We believe this 

is a critical aspect in studying behavior, emotions, consciousness and cognition. In this paper, we refer 

to simulation as described by the simulation hypothesis. 



Modeling affect, anticipation and adaptation 5

Currently, an important issue is how simulation of interaction is integrated with real 

interaction while using the same mechanisms (see, models by, e.g., Shanahan, 2006; van Dartel & 

Postma, 2005; Ziemke, Jirenhed & Hesslow, 2005). Our agents are able to internally simulate 

anticipatory behavior using their RL model. The agent thinks ahead by selecting one or more potential 

next action-state pairs for internal simulation. This action state and its associated value are fed into the 

RL model as if these were actually observed. This introduces a bias to predicted values. Our action-

selection mechanism uses these biased values to select the agent’s next action. Subsequently, the 

values are reset to the original values before simulation. Thus, internal simulation temporarily biases 

the predicted values in the RL model, thereby biasing action selection. 

We report on a study on the adaptiveness of an artificial agent, when action-selection bias is 

induced by an affect-controlled amount of simulated anticipatory behavior. The main contributions of 

this paper to the affect and learning and simulation hypothesis literature are: 

1.) The introduction of an affect-controlled mechanism for the selection of internally simulated 

behavior instead of actual behavior; we define this mechanisms as simulation selection. 

2.) An investigation of the influence on learning, if affect is used to control the amount of internally 

simulated interactions, where simulated interactions bias actual action selection. As we use 

internal simulation as a model for information processing, we investigate affect as a modulator for 

the distribution of internal versus external information processing effort (Aylett, 2006). 

 

 

2 Emotion and Affect 

In this section we present the rationale for the concept of emotion used, that is, positive and negative 

affect. We first review different views on the interplay between emotion and cognition, after which 

we present evidence that affect influences learning, the main phenomenon investigated 

computationally in this paper. 

 

2.1 Emotion, Thought and Behavior 
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Emotion influences thought and behavior. At the neurological level, malfunction of certain 

brain areas not only destroys or diminishes the capacity to have (or express) certain emotions, but also 

has a similar effect on the capacity to make sound decisions (Damasio, 1994) as well as on the 

capacity to learn new behavior (Berridge, 2003). These findings indicate that these brain areas are 

linked to emotions as well as to “classical” cognitive and instrumental learning phenomena. At the 

level of cognition, a person's belief about something is updated according to the emotion: the current 

emotion is used as information about the perceived object (Clore & Gasper, 2000; Forgas, 2000), and 

emotion is used to make the belief resistant to change (Frijda & Mesquita, 2000). Ergo, emotions are 

“at the heart of what beliefs are about” (Frijda et al., 2000). 

Emotion is related to the regulation of behavior. Emotions can be defined as states elicited by 

rewards and punishments (Rolls, 2000). Behavioral evidence suggests that the ability to have 

sensations of pleasure and pain is strongly connected to basic mechanisms of learning and decision 

making (Berridge, 2003; Cohen & Blum, 2002). These studies directly relate emotion to 

reinforcement learning. Behavioral neuroscience teaches us that positive emotions reinforce behavior 

while negative emotions extinguish behavior. At this level, emotion has a direct—mostly 

associative—effect, though other effects are reported (Dayan & Balleine, 2002). 

At the level of cognition, emotion plays a role in the regulation of the amount of information 

processing. For instance, Scherer (2001) argues that emotion is instrumental in allocating resources to 

process stimuli. Furthermore, in the work of Forgas (2000) the relation between emotion and 

information processing strategy is made explicit: the influence of mood on thinking depends on the 

strategy used.  

To summarize, emotion can be produced by low-level mechanisms of reward and 

punishment, and can influence further information processing. As affect is a useful abstraction of 

emotion, these aspects inspired us to study (1) how artificial affect can result from an artificial 

adaptive agent’s reinforcement signal (Section 4.3), and (2) subsequently influence information 

processing in a way compatible with the psychological literature on affect and learning. In the next 

subsection we present some of the psychological findings related to the latter. 
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2.2 Learning is Influenced by Positive and Negative Affect 

The influence of affect on learning is typically studied with psychological experiments. Take two 

groups, one control group and one experimental condition group. Induce affect (positive or negative) 

into the subjects belonging to the experimental condition group by showing them unanticipated 

pleasant images or giving them small unanticipated rewards, or violent, ugly images and punishment 

if negative affect is to be induced in the subject. Measure the subjects’ affect. Let the two groups do a 

cognitive task. Finally, compare the performance results between both groups. If the experimental 

condition group performs better, the induction is assumed to be responsible for this effect, ergo: affect 

influences the execution of the cognitive task.  

We focus on the influence of affect on learning. Some studies find that negative affect 

enhances learning. For instance, Rose, Futterweit and Jankowski (1999) found that when babies aged 

7 - 9 months were measured on an attention and learning task, negative affect correlated with faster 

learning. Attention mediated this influence. Negative affect related to more diverse attention, i.e., the 

babies’ attention was “exploratory”, and both negative affect and diverse attention related to faster 

learning. Positive affect resulted in the opposite. This relation suggests that positive affect relates to 

exploitation and negative affect relates to exploration, a notion also supported by von Hecker and 

Meiser (2005) who state that attention is more evenly spread when in a negative mood. 

Interestingly, other studies suggest an inverse relation. For instance, Dreisbach and Goschke 

(2004) found that mild increases in positive affect related to more flexible behavior but also to more 

distractible behavior. The authors used an attention task, in which human subjects had to switch 

between two different “button press” tasks. In such tasks a subject has to repeatedly choose to press 

one out of two different buttons, based on some criteria in a complex stimulus. After some trials, the 

task is switched, by changing several stimulus characteristics. The authors measured the average 

reaction time of the subjects’ button press just before and just after the task switch. They found that 

increased positive but not neutral or increased negative affect relates to decreased task switch cost, as 

measured by the difference between pre-switch reaction time and post-switch reaction time. So, it 

seems that in this study positive affect facilitated a form of exploration, as it helped to remove the bias 

towards solving the old task when the new task had to be solved instead. 
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Combined, these results suggest that different affective states can help learning but perhaps at 

different phases during the process (Craig, Graesser, Sullins and Gholson, 2004). Our paper addresses 

exactly this issue. We investigate the relation between affect, the amount of internal simulation, and 

learning performance. We define a measure for artificial affect and use this measure to control the 

amount of internally simulated anticipatory behavior of an adaptive agent. Artificial affect thus 

controls how many thoughts the adaptive agent is allowed to have at a certain moment. Internally 

simulated actions influence action selection by temporally adding values to potential next actions. 

Internal simulation thus temporally favors certain actions while disfavoring others. Action selection 

on its turn influences learning performance. We test three different hypotheses about what assists 

learning: (1) positive affect decreases the amount of internal simulation and negative affect increases 

this amount, (2) negative affect decreases the amount of internal simulation and positive affect 

increases this amount, and (3) high intensity of affect increases the amount of simulation and low 

intensity decreases this amount. 

 

3 Internal Simulation of Behavior as a Model for Thought 

Our approach towards anticipatory simulation is inspired by the simulation hypothesis stating that 

conscious thought consists of “simulated interaction with the environment” (Hesslow, 2002). 

Thoughts consist of internally simulated chains of interaction with the environment and evaluation of 

those simulated interactions. As such, thoughts are virtual versions of real interactions. For this to be 

possible, a brain must be able to simulate actions, perceptions and evaluations internally . That is, the 

brain has to simulate potential interaction with the environment while simultaneously controlling the 

body such that it is able to successfully interact with the environment. Hesslow (2002) and Cotterill 

(2001) provide extensive evidence for the biological and psychological plausibility of such a process 

of internal simulation. 

 

3.1 Thought and Internal Simulation of Interaction 

Internal simulation of behavior is also a convenient model for thought, especially in the 

context of adaptive behavior and evolutionary continuity. First, if an agent is able to internally 
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simulate a certain interaction, this simulation can reactivate the value of that interaction and thereby 

(1) influence decision making with predictions based previous experiences and, (2) enhance learning 

by propagating the value of that interaction to other related interactions. Second, the simulation 

hypothesis is said to provide a bridge between species that consciously think and those that do not 

(Hesslow, 2002): no fundamentally different additional mechanisms are needed for thought, apart 

from those that enable off-line simulation of interaction. 

Recently, strong evidence for a link between internal simulation, adaptive behavior and 

evolutionary continuity has been presented. Foster and Wilson (2006) showed that awake mice replay 

in reverse order behavioral sequences that led to a food location; a finding crucial for the above 

mentioned link. First, it suggests that mice are able to internally simulate interaction with the 

environment, showing that simulation mechanisms need not be restricted to humans. This supports the 

possibility of evolutionary continuity of the human thought process. Second, internally replaying a 

sequence of interactions can potentially increase learning in mice in the same way as eligibility traces 

can enhance learning in reinforcement learning (Foster & Wilson, 2006). An eligibility trace (see 

Sutton & Barto, 1996) can be seen as a sequence of recent interactions with the environment. Delayed 

reinforcement is distributed over all the interactions stored in the trace. This mechanism can 

dramatically increase learning performance of simulated adaptive agents, and therefore provides a 

plausible argument for an immediate benefit of internal simulation (different from benefits related to 

complex cognitive abilities such as planning). 

 

3.2 Working Memory, Simulation Selection and Internal Simulation of Behavior 

If a thought is an internally simulated interaction, and working memory (WM) contains the thoughts 

of which we are consciously aware, then WM contains a set of currently maintained internally 

simulated interactions—specifically the episodic buffer that is a multi-modal limited-capacity storage 

buffer (Baddeley, 2000). Further, for a specific thought to enter WM, it is often assumed that the 

thought has to be active above a certain threshold (see, e.g., Deheane, Sergent & Changeux, 2003).  

In the “internal simulation thought process”, an agent in a specific situation starts to pay 

attention to several situational aspects. These aspects start entering the central executive of working 
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memory (Baddeley, 2000) and are thereby above threshold. Now, the central executive pushes a 

multi-modal simulation of future (or related) interactions from long-term memory to the episodic 

buffer, where it is maintained. As the episodic buffer has limited capacity, the interaction can reside in 

the buffer until being replaced by new simulated interactions. Thus, filling the buffer depends, among 

other things, on how critical the filter (central executive) is in passing information to the buffer. The 

episodic buffer is filled with those internally simulated interactions that are attended to with sufficient 

intensity. Therefore, the higher the selection threshold, the smaller the amount of internally simulated 

behaviors maintained in the episodic buffer.  

Interestingly, if thought is internal simulation of behavior using the same sensory-motor 

mechanisms as real behavior, then the selection of those thoughts should resemble the selection of 

behaviors. Action selection has been defined as the problem of continuously deciding what action to 

select next in order to optimize survival (Tyrell, 1993). “Thought selection”, to which we refer as 

simulation selection, can therefore be defined in a similar way. Simulation selection is the problem of 

continuously selecting behaviors for internal simulation such that action selection is assisted, not 

hindered. The latter is critical as, according to the simulation hypothesis, action selection and 

simulation selection should be tightly coupled: both use the same mechanisms. Errors in simulation 

selection can directly influence action selection and thereby be responsible for actions that are 

erroneous too. In our computational model we introduce a simulation-selection component based on 

precisely these principles. The selection threshold in our model is dynamically controlled by artificial 

affect (Section 4.2, 4.3). 

 

4 Model 

In this section we explain the computational model used to study the main question. We use adaptive 

agent based modeling. Our agents “live” in gridworlds. Figure 1 shows the overall architecture of our 

computational approach.  

The affect mechanism calculates artificial affect based on how well the agent is doing 

compared to what it is used to. The simulation-selection mechanism selects next interactions for 

simulation, using a threshold controlled by artificial affect. The threshold filters which potential next 
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interactions are simulated and which not. Selected interactions are fed into the RL model as if they 

were real. This biases predicted values of states in the RL model. The action-selection mechanism 

selects an action based on these biased values using a greedy algorithm. The action is executed, and 

the agent perceives the next state. Our approach is related to Dyna (Sutton, 1990); see also Section 7. 

First we discuss the components of the model and how it learns using RL principles. Next we 

explain how we have implemented the simulation hypothesis on top of our model. Subsequently we 

explain how we model artificial affect and how this is used to control the amount of internal 

simulation the agent uses to bias the predicted values employed by its action-selection mechanism. 

Finally, we explain how the action-selection mechanism integrates everything. 

(Figure 1 about here) 

4.1 Hierarchical State Reinforcement Learning (HS-RL): A Variation of Model-Based RL 

Our model is a combined forward (predictor) and inverse (controller) model for learning agent 

behavior (Demiris & Johnson, 2003). The model learns to predict the next state given the current state 

and an action, enabling forward simulation of interaction. At the same time it learns to predict the 

values for potential next actions, enabling agent control. Basically, the agent's memory structure is a 

directed graph that is learned by interaction with the environment. Two types of nodes exist: (1) nodes 

that encode <a, s> tuples, where s is an observed state and a the action leading to that state, and (2) 

nodes that encode <hl, a’, s’ > tuples, to which we refer as interactrons. Here, hl is a history of 

observed action-state pair transitions <a
t-l, st-l><a

t-l+1, s t-l+1>…<a
t-1, st-1> with l the history length not 

greater than a maximum length k, and <a’, s’> = <at, st> the action-state pair predicted by history hl at 

time t. The existence of type 1 nodes depends on the states experienced by the agent. The existence of 

interactrons (type 2 nodes) and the connectivity between type 1 nodes and interactrons depend on 

observed transitions from <a, s> to <a’, s’>. Thus, the memory is initially empty and is constructed 

while the agent interacts with its environment; our agent learns online; we assume certainty 

equivalence. This is closer to real life than a forced separation between exploration and exploitation 

phases, even though the model might be highly suboptimal at the start (Kaelbling, Littman, & Moore, 

1996).  
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The model is constructed as follows. The agent selects an action, a∈ A, from its set of 

potential actions, A, using the action-selection mechanism (Section 4.4). It executes the action and 

perceives the result, s. A type 1 node <a, s> is created if and only if there does not exist such a node. 

Consider, for example, an agent that has chosen some action â and experiences some state ŝ . Because 

its model does not yet contain a node that represents < â, ŝ> it is created (e.g., s1 in Figure 2a). Note 

that we use si (indexed) to refer to <a, s> tuples (type 1 nodes) instead of s to refer to observed states. 

Now the agent selects and executes a new action, resulting in a new situation s2=< â’, ŝ’>, giving a 

new node that represents s2 (Figure 2b). To model that s2 follows s1 (s1 predicts s2), the previous 

situation, s1, is now connected to the current situation, s2, by creating an interactron that is connected 

to s1 and s2 with edges as shown in Figure 2c. This interactron I1 thus encodes <h1, s2> with h1 being 

the history of length 1 before the transition to action-state pair s2,, in our example h1=s1. This process 

continues while exploring and the process is applied hierarchically to all active nodes. A type 1 node 

is active if the current situation <at, st> equals the <a, s> tuple encoded by that node. An interactron 

<hl, a’, s’> is active if and only if hl equals the most recent observed history <a
t-l, st-l><a

t-l+1, s t-

l+1>…<a
t-1, st-1> and the prediction <a’, s’> equals <a

t, st>. For example, node I1 and s2 in Figure 2c 

are active. An additional example is presented in Figure 2d and 2e. If situation s2 is followed by a new 

situation s3, the resulting memory structure is shown in Figure 2d, with active nodes s3, I2 and I3. If, on 

the other hand s2 is followed by s1, the resulting structure is shown in Figure 2e, with active nodes s1, 

I2 and I3. Note that the maximum length of a history encoded by a node is bounded by k, therefore the 

maximum number of active interactrons is k (for computational reasons k = 10, Broekens & DeGroot, 

2004; see also below). 

(Figure 2 about here) 

 Every interactron <hl, a’, s’>, has three properties r, v, and υ, with r the reward and v the 

value (a.k.a. Q-value) of the tuple <hl, a’, s’>, and finally υ is a statistic for the transition probability 

between hl and <a’, s’>. Note that from here on we use the term reward and reinforcement to refer to 

any reinforcement: positive, negative or zero. If at a later time the sequence of situations hlsi is again 

observed by the agent, then the statistic υ of the interactron encoding the tuple <hl, si > is 
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incremented υ is a counter that is initially zero and represents the usage of an interactron. Thus, υ 

can be used to calculate the transition probability p(si | hl) using the following more generic formula: 

∑
=

=
y

i

X

i

xxyxp
1

)|( υυ ,  (1) 

where y is an interactron encoding <hl-1, a, s> with hl=hl-1sy and sy=<a, s>, and x∈ Xy. Here Xy 

={x1,…,xn} is the set of interactron nodes that encode <h, a’, s’ > tuples and are predicted by y, x is 

the interactron <hl, si> of which we want to know the transition probability p(si | hl), and υx and 
ixυ  

are the counters belonging to x and xi respectively. This function calculates the conditional probability 

of observing an action-state pair <a, s> (interactron x) after having observed a history of action-state 

pairs hl (interactron y). For clarity: y refers to an active interactron that represents the current state of 

affairs (and, as mentioned earlier, maximally k of such y’s can be active at one moment in time each 

representing the current state with a different history length), while x refers to a particular predicted 

next state at t+1, assuming y, and xi refers to all other predicted next states assuming that same y. 

We define a global threshold, θ, representing the minimal “survival probability” for an 

interactron. If p(x | y)<θ, the corresponding interactron x is forgotten and removed from memory, 

including all of its predictions. In this manner the stability of an agent’s long-term memory is 

modeled, and it corresponds to Bickhard’s (2000) notion of interaction (de)stability based on 

consistent confirmation of predicted interactions (Broekens & DeGroot, 2004). In our experiments we 

use θ  to vary the speed with which the agent forgets knowledge. 

To learn based on reinforcement, every interactron has a value v, with: 

nextvrv ⋅+= γ , with v bounded by ),max(),min( nextnext vrvvr ≤≤  (2) 

where r is the learned reward for a certain interactron, γ the discount rate (γ = 1.0, see comments 

below) and vnext is a back-propagated value from next predicted future states. As multiple nodes can be 

active at the same time, these nodes learn simultaneously. Several steps are involved. First, all k active 

interactrons are reinforced by a signal from the environment, rt, at time t. For every such interactron y, 

r(y) is adapted according to the formula: 

))(()()( 1 t

t

tt
yrryryr −+=+ α ,  (3a) 
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where α is the agent’s learning rate. Second, for every interactron y, vnext(y) is calculated as follows: 

∑
=

+ ×=
yX

i

t

i

t

i

t

next yxpyxvyv
1

1 )|()|()( ,  (3b) 

where v(xi | y)t is defined as the value of interactron xi, with xi predicted by y. This indirect part of an 

interactron’s value is thus the weighted average of the values belonging to the interactrons Xy that 

represent the situations that y predicts, where the weighting is according to the probabilities p(xi  | y)t  

at time t over all i. Note that only active nodes y are updated, i.e., we use lazy propagation whereby 

only the interactrons predicted for t+1 (the x’s) are used to update the active interactrons at time t (the 

y’s). 

In an agent control setting, the model can be summarized as follows. At every step, all active 

interactrons predict potential next situations, at most k of these interactrons can be active, and the 1st 

to kth interactron predicts potential next action-state pairs <a’, s’> using a history of length 1 to k 

respectively (e.g., I3 is a k=2 interactron with history s1s2). As such, this memory learns 1st
…k

th order 

Markov Decision Processes (MDPs) in parallel. This property enables it to cope with partially 

observable worlds in which the partial observability can be resolved using at most a history of length 

k. At most k MDPs are active at the same time, each predicting values for action-state pairs based on a 

different history length. Action selection integrates not over the predictions of one MDP but over the 

predictions of at most k MDPs (see Section 4.4). Note that our model underuses the Markov property, 

as it keeps track of, and constructs nodes for, all history up to k steps back all the time, not only when 

a certain history is actually needed to solve the partial observability of the world. For an interesting 

approach that relates to ours and that proposes some solutions for better using the Markov property 

see McCallum’s (1995) utile suffix memory. 

An important difference between our approach and many other model-based RL approaches 

is that our MDPs have a maximal length of k steps and nodes only propagate values to their own 

history. On the one hand this is a benefit in that reward/value propagation is never cyclic. Values are 

propagated back through multiple, partly overlapping k-finite MDPs. This makes our model 

particularly robust in cyclic learning tasks (even for cycles smaller than k steps): our world model 

forces values to propagate from a well defined end with a long history to a well defined beginning 



Modeling affect, anticipation and adaptation 15

with no history, the values are not recursive. As a result, in our model the discount factor can be equal 

to 1.0. On the other hand this characteristic also poses a problem, as values further than k steps away 

cannot be propagated back, resulting in the need for regular reward intervals. This could be resolved 

(at the expense of cyclic-task robustness) by allowing values to propagate not only to nodes encoding 

for a shorter history at the previous timestep but also to nodes encoding for a history of equal length at 

the previous timestep, effectively making values recursively defined. That is, a node s1hl-1st encoding 

for a situation st with a history s1hl-1 of length l not only propagates its value to a node s1hl-2st-1 with hl-

1=hl-2st-1, but also to a node s0s1hl-2st-1. 

To summarize; with every step of the agent, our model updates (1) the world model, (2) its 

statistics and rewards, and (3) the values. A maximum of k nodes is updated at every step. Every node 

encodes the current action-state, an action-state history equal to the most recent action-state history, a 

reward, a value and a usage statistic. 

 

4.2 Internal Simulation of Behavior: a Temporary Bias to Predicted Action-State Values 

We now explain how internal simulation of action-state pairs (a.k.a. interactions/situations) 

temporarily biases the predicted value of next actions, and thereby influences action selection. Instead 

of action selection, the following steps are involved: 

1.) Simulation selection: at time t select a subset of to-be-simulated interactions (action-state pairs) 

from the set of interactions predicted by all k active interactrons.  

2.) Simulate: use a selected interaction from that subset as if it was a real interaction. The agent’s 

memory advances to time t+1. As this is a simulation step, we lack the reinforcement signal rt that 

accompanies real interactions. Instead, rt is simulated using the value, v, of the simulated interaction. 

We simulate a predicted interaction and its associated value as if they were both real. 

3.) Reset state: to be able to select an appropriate action in step 4, reset the memory's state (the active 

nodes) to the previous timestep, i.e., time t. The net effect of step 2 and 3 is that, due to the value 

propagation mechanism, a temporary bias—based on future predictions at t+1—is introduced to the 

value of predicted next interactions. Step 2 and 3 are repeated for every to-be-simulated interaction. 

These biased values are reset in step 5 (after action selection in step 4). If we would keep this bias 
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after action selection, it would break our model (in RL the reward r must be used to make the value v 

converge, using vt+1 instead introduces a problem of cumulative prediction errors). 

4.) Action selection: select the next action using the mechanism explained in Section 4.4. Thus, the 

propagated values of the simulated predicted interactions directly bias action selection. Our 

anticipation mechanism is best understood as state anticipation (Butz, Sigaud & Gerard, 2003). 

5.) Reset values: reset the reinforcement related variables v, r and vnext of the interactions that were 

changed at step 2 (simulation) to the values of v, r and vnext of these interactions before step 2. 

In the studies reported in this article, simulation is bounded to a depth of 1, i.e., anticipation is 

just one step ahead. However, our simulation mechanism can easily support the simulation of multiple 

time steps ahead by processing step 1 to 3 backwards from t+d to t+1 in all possible branches of 

potential next interactions, with d the simulation depth. Now, action selection at time t is biased by 

accumulated simulated values of interactions up to d steps ahead. A potential problem is the build-up 

of small prediction errors. This invalidates the values of next actions, severely compromising action 

selection. To enable multi-step simulation, accumulation of prediction errors during multi-step 

simulation should be investigated (e.g., Hoffmann & Möller, 2004). 

Step 1 is the simulation-selection mechanism and selects predicted interactions to be 

simulated. This is a critical component in our simulation mechanisms as it defines the amount of 

internally simulated information per time step. In our experiments we use four static simulation-

selection mechanisms and several dynamic ones (also referred to as simulation strategies): 

1.) Static simulation selection: sort anticipated interactions according to their predicted value. Select a 

number of the best anticipated states for simulation. The selected interactions are sent to the model for 

simulation (step 2). 

2.) Dynamic simulation selection: again, anticipated interactions are sorted according to their 

predicted value. In contrast to static selection, here affect is used to control the amount of predicted 

interactions that are selected from the sorted list. We explain this in Section 4.3.  

In essence, simulation selection is controlled by a selection threshold, ts, of a ts-Winner-Take-

All (WTA) simulation selection. This threshold, ts, is used by the simulation-selection mechanism to 

filter the set of predicted interactions that are simulated, i.e., to select potential next behaviors for 
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processing in working memory. Our simulation-selection mechanism uses ts in the following way: ts 

defines the percentage of winning predicted best next interactions that should be internally simulated 

(so in a sense it is an inverse threshold). If ts < 0 no simulation is done: the threshold is overly 

selective, i.e., in WTA terms there is too much “inhibition” to have any winners at all. If ts ≈ 0 only 

the interaction with the highest predicted value is simulated: the threshold is very selective, i.e., in 

WTA terms there is a lot of “inhibition” and therefore only one winner. If ts ≈ 1.0 all interactions are 

simulated: the threshold is non-selective, i.e., in WTA terms there is no “inhibition” and therefore all 

predicted next interactions are winners and can be used for internal simulation. The final result of 

simulation can be summarized as follows: anticipatory simulation introduces a bias to the values of 

the set of predicted next possible action-state pairs, thereby influencing the result of action selection. 

In the next section we explain how artificial affect is used to dynamically set the threshold ts, instead 

of statically (Broekens, 2005).  

 

4.3 Affective Modulation of WM Content: Affect Controls the Amount of Internal Simulation 

Here we introduce our measure for artificial affect, and show how this measure for artificial affect can 

be used to control the amount of internal simulation of behavior. 

 

4.3.1 Artificial Affect: How Well am I Doing, Compared to What I am Used to? 

To model the influence of affect on learning, we first need to model affect in a psychologically 

plausible way. Our agent learns based on Reinforcement Learning, so at every step it receives some 

reinforcement rt. Here we explain how our agent’s artificial affect is linked to this reinforcement 

signal rt. 

Two issues regarding affect induction are particularly important. First, in studies that measure 

the influence of affect on cognition, affect relates more to long-term mood than to short-term emotion. 

Affect is usually induced before or during the experiment aiming at a continued, moderate effect 

instead of short-lived intense emotion-like effect (Dreisbach & Goschke, 2004; Forgas, 2000; Rose et 

al., 1998). Second, the method of affect induction (explained earlier) is compatible with the method 
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used for the administration of reward in reinforcement learning. Affect is usually induced by giving 

subjects small unanticipated rewards (Ashby et al., 1999; Custers & Aarts, 2005). The fact that these 

rewards are unanticipated is important, as the reinforcement signal in RL only exists if there is a 

difference between predicted and received reward. Predicted rewards thus have the same effect as no 

reward. It seems that learning and affect follow the same rule: if it’s predicted it isn’t important.  

We compute artificial affect by:  

ltarltarltarstarp ffrre σσ 2))(( −−=  (4) 

Here, ep is the measure for affect. If ep=0, we assume this means negative affect, if ep=1 we assume 

this means positive affect. The short-term running average reinforcement signal, starr , with star 

defining the window size in steps, is the quicker changing average based on the agent’s reward, r, as 

unit of measurement at every step. The long-term average reinforcement signal, ltarr , with ltar again 

defining the window size in steps, is the slower changing average taking rstar as unit of measurement 

every step. The standard deviation of rstar over that same long-term period ltar is denoted by σltar, and f 

is a multiplication factor defining the sensibility of the measure. 

Obviously, artificial affect behaves differently for different values of f, ltar and star. In 

general, for ltarr  to be a good estimate of what the agent is “used to”, ltar must be considerably larger 

than star. In the studies presented here we have varied ltar, star and f across a wide range of values. 

Our measure for artificial affect reflects the two issues mentioned above. First, starr  uses 

reinforcement signal averages, reflecting the continued effect of affect induction related to mood not 

emotion. Second, our measure compares the first average starr  with the second longer-term average 

ltarr . As the first, short-term average, reacts quicker to changes in the reward signal than the second, 

long-term average, a comparison between the two yields a measure for how well the agent is doing 

compared to what it is used to (cf. Schweighofer & Doya, 2003). If the environment and the agent’s 

behavior in that environment do not change, ep converges to a neutral value of 0.5. This reflects the 

fact that anticipated rewards do not influence affect. 
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4.3.2 Affective Control over the Amount of Internal Simulation: Three Hypotheses 

It has now become straightforward to model affective control of the amount of internal simulation. 

Control can be modeled in several ways. By equating the simulation-selection threshold, ts, to 1− ep, it 

varies between 0 and 1 depending on affect being positive or negative respectively. Following Rose et 

al. (1999), this reflects the hypothesis that positive affect decreases the amount of internal simulation 

favoring narrow, exploitative thoughts (i.e., only action-states with a high value are internally 

simulated), while negative affect increases the amount of simulation favoring broad thoughts, 

including explorative ones (i.e., action-states with low values are also simulated). In our model this 

means that content agents (i.e., performing better than expected) simulate positive thoughts, while a 

discontent agent simulates many thoughts including negative ones. So: 

ps et −= 1   (5) 

Second, we hypothesize the inverse relation, that is, negative affect decreases the amount of 

simulation while positive affect increases the amount of action-state pairs that can enter working 

memory for simulation: 

ps et =    (6) 

Now, positive affect increases the thought-action repertoire (Ashby et al., 1999). This relates to 

results found by Goschke and Dreisbach (2004). 

A third hypothesis is that the intensity of affect controls the amount of simulation, instead of 

the positiveness and negativeness of affect. Here, intense is either negative affect (ep=0) or positive 

affect (ep=1) while not intense is neutral (ep=0.5). If affect is intense, simulate a lot (reflecting the fact 

that significant changes occurred that might need extra processing (Scherer, 2001)). If affect is not 

intense, do not simulate a lot. Note that intensely positive or negative does not necessarily mean 

arousing, arousal is considered out of scope for this article. The simulation threshold is: 

)5.0(2 ps eabst −×=    (7) 

And, as a control condition, the inverse relation is: 

)5.0(21 ps eabst −×−=   (8) 



Modeling affect, anticipation and adaptation 20

Systematic studies on the influence of affect-modulated internal simulation on the adaptiveness of 

artificial agents are presented in Section 6.  

 

 4.4 Integrating Everything:  Greedy Action Selection over Biased Value Predictions 

In our approach, action selection integrates over the action-state values as predicted by all k active 

nodes, each node representing a possible “current state”. This is an important difference with standard 

model-based RL as such models typically use the values for next actions as predicted by one “current 

state” (e.g., Kaelbling, Littman & Moore, 1996). As a result, our action-selection mechanism is 

slightly different. It is inspired by parallel inhibition and excitation of actions in the agent’s set of 

actions, A. The inhibition/excitation originates from the k active interactrons and is calculated as 

follows: 
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where l(a)t is defined as the level of activation of an action a∈A at time t, and yi an active interactron 
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,  (note that we still use si (indexed) to refer to <a, s> tuples, 

and s to refer to observed states). This clause enforces that any of the action-state pairs that are 

predicted by any of the k active interactrons should inhibit (negative value) or excite (positive value) 

the corresponding action, but not other actions. Finally the action a to be executed is such that: 

l(a)t=max (l(a1)
t,…,l(a|A|)

t)  (10) 

If there are only bad actions (i.e., l(a)t<0 ) a weighted stochastic selection based on l(a1)
t,…,l(a|A|)

t is 

made instead; the action with the highest activation has proportionally the highest chance of being 

chosen resulting in a probabilistic WTA action selection. As such, action selection uses a super-

threshold greedy selection with sub-threshold linear weighted stochastic selection.  

 Depending on when the action-selection mechanism is invoked it either uses unbiased (before 

simulation) values to select the next action, or biased (after simulation) values to select actions. This 

allows us to address the main question of our study: what happens if action-selection bias is induced 
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by an amount of simulated anticipatory behavior, and if this amount is dynamically controlled by 

artificial affect? 

To summarize, the number of thoughts that occupy working memory is often interpreted as an 

indicator of the intensity of information processing. As (1) a thought equals an internally simulated 

behavior in our model, and (2) the number of thoughts that occupy working memory equals the 

amount of internally simulated behavior, it is now clear that we indeed study affective control over 

information processing. 

 

5 Method 

To investigate the influence of affect-controlled anticipatory simulation of future action-state pairs, 

we have set up a gridworld environment consisting of walls, roadblocks, cues, food and empty spaces. 

We use two nondeterministic, partially observable gridworlds. Common to our two gridworlds is that 

the agent can walk on walls, but is discouraged to do so, which is why we call our “wall” “lava” 

(reinforcement r=−1.0). The agent moves around by selecting an action a from the set of possible 

actions A={up, down, left, right}, and observing its immediate surroundings (not its position) using a 

four-neighbor-plus-center metric just after executing the action. This is an <a, s> tuple as used in the 

model (Section 4). 

The first gridworld is taken from (Broekens & Verbeek, 2005), and aims to test how well 

agents using different simulation strategies can cope with a sudden change in both reward and world 

structure (Figure 3). In this world, the agent (black square) learns to cope with two alternating goal 

and start locations (f=food, reinforcement r=1.0). Alternation is random and after every trial. A trial 

ends when the agent has found the goal: the agent is put back at a randomly chosen start location after 

having reached the randomly chosen goal location. The total number of trials to learn a task is 500. 

We define such sequence of 500 trials as a run. Additionally, at trial 250, the world is changed: two 

negatively reinforced roadblocks (b=block, r=−0.5) are placed in front of the goal locations, and the 

food reward is increased to 1.75 to compensate for the roadblocks. Consequently, both the world and 

the reward structure of that world change. The agent is unaware of this change, and, as our model 
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learns lazily, no value updates or world-model changes are made. The agent has to learn these new 

characteristics of the world. We call this gridworld the switch-to-invest gridworld, as it is constructed 

to measure how an agent copes with a change in the environment that introduces an investment to be 

made before an otherwise easily obtainable goal. 

(Figure 3 and 4 about here) 

 The second world is based on a typical psychological method in which subjects have to learn 

to cope with a cue-meaning inversion (see, e.g., Goschke & Dreisbach, 2004). This type of method is 

used to investigate the effect of an experimental variable, e.g., affect (Goschke & Dreisbach, 2004) on 

working memory flexibility by measuring reaction time just after the cue-meaning inversion. It is also 

used to measure adaptation speed to the new cue-meaning relation after having learned the old 

relation. In the case of our simulated gridworld, a cue is coupled to a specific food location, while the 

absence of that cue is coupled to a different food location. At trial 250 the locations are inversed. This 

means that whereas before trial 250 the cue indicated to the agent that food is at location 1, after trial 

250 the cue (‘c’ in Figure 4) indicates that food is at location 2. We call this world the cue-inversion 

world. In contrast to the switch-invest task, the agent is also reset to its (fixed) starting position when 

it arrives at the non-goal location. The non-goal location has a negative reinforcement of r=−0.5. 

To test our three hypotheses, we vary the simulation-selection mechanism of our agents. In 

total, we define four static simulation-selection mechanisms: 

1.) No simulation; simulation is off (called nosim in the experiments). 

2.) Simulation of the best predicted action-state pair; ts=0, (simbest). 

3.) Simulation of the best half of predicted action-state pairs, i.e., ts=0.5, (simbest50). 

4.) Simulation of all predicted action-state pairs, i.e., ts=1, (simall). 

 We also define four dynamic simulation mechanisms, introduced in Section 4.3.2. These are: 

1.) Positive affect = little simulation (select best predicted action-state pairs), and vice versa, (dyn). 

2.) Negative affect = little simulation, and vice versa, (dyn inv). 

3.) High intensity of affect = little simulation, and vice versa, (dyn intensity). 

4.) Low intensity of affect = little simulation, and vice versa, (dyn intensity inv). 
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 In the switch-to-invest experiments we have used all four static simulation strategies and only 

the first two dynamic ones. In the cue-inversion experiments we have used all eight simulation 

strategies. We varied the three parameters that define the behavior of our measure of affect, i.e., we 

varied f (sensitivity of affect), ltar (the window size of the long-term averaged reward that defines 

“how well is usual”), and star (the window size of the short-term average reward that defines “how 

am I doing”). 

In our switch-to-invest gridworld experiments we varied these according to Table 1, resulting 

in 30 different affect-parameter settings. In our cue-inversion gridworld experiments we varied these 

only according to the f=1 column in Table 1, resulting in 10 different affect-parameter settings.  

In our switch-to-invest experiments we varied the learning rate, α = [0.8, 0.9, 1.0], and the 

rate at which the model forgets information about the world as defined by the “survival potential 

threshold” of nodes, θ = [0, 0.01, 0.02, 0.03]. In the cue-inversion experiments α and θ  are not varied 

but fixed at 1 and 0 respectively. 

(Table 1 about here) 

6 Experimental Results 

We first describe the results obtained with the switch-to-invest gridworld, after which we describe the 

results obtained with the cue-inversion gridworld. Data was analyzed as follows. To investigate the 

effect of learning rate, α, rate of forgetting, θ, and simulation strategy we compare between results of 

different <α ,θ, simulation strategy> configurations. Static simulation strategies have been executed 

200 times per <α ,θ, simulation strategy > configuration, e.g., the simulate-best strategy has been 

executed 200 times for every <α ,θ> combination. These 200 runs are the basis for further analysis. 

Dynamic simulation strategies have been executed 15 times per <α ,θ, f, ltar, star, simulation 

strategy> configuration. For every <α ,θ, simulation strategy> configuration, the resulting runs for all 

of its <f, ltar, star> settings is aggregated. For example in the switch-to-invest experiments, for α = 1, 

θ = 0, and strategy=dyn we aggregated all 15 x 30 (nr of runs times nr of affect-parameter settings, 

respectively) runs into 450 runs. These runs are the basis for further analysis. In the cue-inversion 

experiments the same aggregation protocol was used, but, as mentioned above, here we use only one 
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<α ,θ> configuration and we vary only star and ltar (not f). Further, we used 50 runs per <α ,θ> 

configuration resulting in 50 x 10 runs =500 runs being aggregated for only one setting (α = 1 and θ = 

0). We aggregated the data as our goal is to investigate the effect of affective control of simulation 

selection in general, not to find specific values that “work” for the agent. We did not seek to optimize 

any parameter but to investigate different relations between affect and simulation selection. Between 

simulation strategies we compare the following: 

(1) A measure for the behavioral effort involved in completing a run (i.e., learning the 

complete task) for each specific simulation strategy. Effort is calculated by first averaging trial length 

in steps over all trials for each run, resulting in an effort for that run. This is our unit of measurement 

for statistical analysis (e.g., if there are 450 runs for one strategy, we have 450 measures of effort to 

use in our statistical analysis for that strategy). To display the average effort for a certain simulation 

strategy, we average over the measure of effort for all runs for that strategy. For example in a static 

selection mechanism (α = 1 and θ = 0), the displayed effort equals the mean number of steps needed 

for one trial over all 500 trials in all 200 runs resulting in, e.g., the number 20. For a dynamic 

simulation mechanism the average is constructed in the same way using aggregated runs for every <α 

,θ> configuration instead. The Wilcoxon ranked-sum test (non-parametric, we cannot assume 

normality) is used to compare effort between simulation strategies. Comparison is based on sets of 

effort measures (switch-to-invest: n=450; cue-inversion: n=500). For static strategies 450 samples 

(switch-to-invest) or 500 samples (cue-inversion) are pooled from the 200 runs that are available. 

 (2) A measure for the total simulation effort involved in completing a run, i.e., the same as 

above but using a trial length counted in terms of internally simulated action-state pairs. This 

represents “mental effort” during a task, and as such is linked to energy consumption used to maintain 

and focus on information in working memory. Again, the Wilcoxon test is used to compare between 

simulation strategies. 

To give an informal idea of the learning behavior of the agent, several learning curves of 

agents are plotted. Learning curves are plots of the average number of steps taken per trial and 

smoothed using a sliding mean (window size=10) to improve readability. 
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6.1 Results of Experiment 1: Switch-to-invest  

Results in this specific gridworld show that simulation in general has a stable positive effect on 

learning. This trend is shown by the learning curves in Figure 5, and more formally in Figure 6 

showing that nosim uses more effort to complete a run than any other simulation strategy (p<0.001). 

The larger the amount of internally simulated anticipations, the better the learning result (simall costs 

less effort than simbest, p<0.05 for all settings except α=1 & θ={0, 0.01}, Figure 6). When affect is 

used to control this amount, performance is better than the static simulation mechanism that simulates 

the best strategy (a significant difference between dynsim and simbest, p<0.05 for all settings except 

α=1 & θ={0, 0.01}, Figure 6). Interestingly, the size of the effect interacts with the learning rate and 

forgetting rate. As θ increases, the benefit of simulation also increases, and as α decreases the benefit 

of simulation increases (Figure 6). In terms of size, we did not find important differences between (1) 

the dynamic strategy that relates negative affect to more simulation and (2) the dynamic strategy that 

relates positive affect to more simulation. Even though the strategies are each other’s inverse, the 

difference in effort was at most about 5% (Figure 7, left). However, for all <α ,θ> settings, the 

average amount of simulation effort was considerably less for dyn than for dyn inv (p<0.001). Further, 

both strategies simulated considerably less than simall (p<0.001), while dyn used less simulation 

effort than simbest50 (p<0.001) (Figure 7, right, shown only for α=0.8). Finally, results for α=0.9 are 

not shown, as these appeared to be an interpolation between the results for α=0.8 and α=1.0. 

(Figure 5, 6 and 7 about here) 

6.2 Discussion of the Switch-invest Task Results 

The fact that more simulation results in better performance is not surprising. Internal simulation as an 

anticipatory heuristic can use more knowledge if it selects more potential next interactions. Thereby, 

it influences final action selection in a more balanced way. Interestingly, there is an interaction effect 

produced by learning rate, rate of forgetting and simulation. Regarding the learning rate this effect is 

easily explained. As internal simulation enables the agent to “look ahead” one step, predicted values 

can be temporarily propagated back. Even though the model does not learn based on simulation (i.e., 

nodes, their value, reward and statistic are not permanently updated due to simulation), simulation has 
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an immediate benefit for action selection, as more information is temporarily available. If the learning 

rate is high (α=1.0), this effect is minimized: at every step the agent takes, the lazy update rule 

propagates future values back in full, so simulation cannot add a lot of future value information. 

However, if the learning rate is small(er) (e.g., α=0.8), the future value is not propagated in full. Now, 

internal simulation can temporarily propagate values that were not yet propagated in full, and the 

action-selection mechanism can benefit from the extra information provided by simulation. This 

phenomenon causes a performance increase due to simulation in lower learning rate settings. 

 It is not yet clear from our experiments what causes the interaction between rate of forgetting 

and simulation, although it is clear that it can not be simulation per se, as simulation does not change 

the model’s statistics. A possible explanation is that simulation in general forces the agent to use 

known interaction patterns more often than new or less-tried patterns. As such, simulation actually 

reduces the probability of forgetting useful interactions. This could help solving the maze with a 

forgetful long-term memory. This requires further investigation in future research. 

 The fact that the two dynamic simulation strategies tested (a) do not differ in terms of 

learning performance, (b) perform at about the same level as the static simulation strategy that 

simulates all potential next interactions, and (c) use a considerably reduced amount of simulation 

compared to this static simall strategy, indicates two things: (1) dynamic adaptation is beneficial as it 

reduces simulation needs (an interesting result), and (2), it does not matter if positive affect implies 

more simulation or less, as the two dynamic simulation strategies result in less simulation and better 

learning performance. If the latter is indeed the case, this implies one of the two following 

possibilities: (I) affect has nothing to with the result. Instead, the average amount of simulation is 

responsible for the increase in learning performance. This possibility is supported by our results, as 

the dyn inverse strategy uses more simulation than dyn (Figure 7, right) and seems to perform slightly 

better than the latter (Figure 7, left). On the other hand, it could also imply that (II), affect does have 

to do with the result, but both relations—i.e., positive affect = more simulation, and positive affect = 

less simulation—are wrong. This is possible if the relation instead is: higher intensity affect=more 

simulation. We study this in the second experiment, and use the intensity-of-affect-based simulation 

strategies. In this experiment we use the second gridworld, i.e., the cue-inversion world (Section 5). 
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6.3 Results of Experiment 2: Cue-inversion 

Results in this gridworld show the following. The simbest static simulation strategy does not have a 

large positive effect (even though the effect is significant p<0.01), contrary to the results in 

experiment one where the effect was more pronounced. However, simall, simbest50 as well as all 

dynamic simulation strategies do have an important positive effect (p<0.001); effort is reduced with 

0.6 to 1 step per trial. Thus, a moderate positive influence of simulation on learning performance 

exists. Note that the smaller effects of simulation in general, as compared to the previous experiment, 

are due to the fact that in this experiment α=1 and θ=0. As such, smaller effects are expected and 

confirm our explanation in the discussion of the previous experiment. 

 Again, dynamic strategies are quite close to the simall strategy in terms of their learning 

performance (Figure 8, left), the only significant difference in effort is between simall and dyn 

intensity (p<0.01). However dynamic strategies use considerably less simulation effort to get to this 

increased level of performance (Figure 8, right, all strategies use less simulation than dynall, 

p<0.001). An important difference in effort exists between the two intensity-based dynamic 

simulation strategies. The dyn intensity inverse strategy (i.e., if affect is neutral, 0.5, simulate a lot, 

while if affect is extreme, 0 or 1, simulate little) has a better performance than dyn intensity (p<0.001, 

Figure 8, left), but also uses a lot more simulation (p<0.001). 

 Last, we plot the average behavior (over 50 runs) of our measure for artificial affect as it is 

influenced by ltar and star. A large long-term window to calculate the agent’s measure of comparison 

based on reward (i.e., “what I am used to”) results in less noisy affect (Figure 10). A small short-term 

average (i.e., “how am I doing”) results in a faster affective reaction to the cue inversion (inset). 

(Figure 8, 9, and 10 about here) 

6.3.1 Discussion of the Cue-inversion Results 

The fourth dynamic control strategy based on the inverse intensity of affect (dyn intensity inv) results 

in a better performance than the third, intensity based, control strategy. Again, this inversed version 

(i.e., neutral affect results in a lot of simulation and extreme affect in a little) uses more simulation on 

average. Thus, this result does not rule out the possibility that the average amount of simulation is 
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responsible for the learning performance increase as opposed to affective control. We need to correct 

for the average amount of simulation. To do so, we defined the gain ratio, a measure that calculates 

how much effort reduction a strategy gives relative to no simulation, weighted by the amount of 

simulation effort. As such,  

gaini = (effortnon − efforti) / (sim_efforti / efforti),  (11) 

where efforti equals the effort for a certain simulation strategy i, effortnon equals the effort of the nosim 

strategy and sim_efforti equals the simulation effort for a certain strategy i.  Such a gain factor is a 

plausible measure to evaluate and compare simulation strategies: one is interested in the efficiency of 

simulation, not just the absolute result. As simulation—i.e., information maintenance in working 

memory—costs resources, the question is which strategy uses these resources best. When we 

compared the gains for the different simulation strategies, a different picture emerged (Figure 9). 

Simulating all is not very efficient compared to dynamic strategies. Interestingly, our original 

coupling of affect and amount of simulation seems most promising (Broekens and Verbeek, 2005). 

This is the only strategy of which the gain confidence interval does not overlap with either simall or 

simbest50. This means that, although the relation “positive affect equals less simulation and negative 

affect equals more simulation” is not the best one in terms of effort reduction, it is the optimal one in 

terms of relative gain when considering the amount of simulation needed for that effect. 

 

7 General Discussion 

First we ground our approach more firmly, and relate our work to the work of others. Finally we 

present some directions for future research. 

 

7.1 Model Grounding 

Our findings are compatible with psychological findings that show that both positive and negative 

affect influence learning in a beneficial way (Dreisbach & Goschke, 2004; Rose et al., 1999). We 

found that learning benefits the most when positive affect relates to less simulation and negative to 

more simulation. As such, our findings indicate that positive affect is associated with less diverse 

thoughts when a task has successfully been learned, while negative affect is associated with diverse 
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thoughts when a task is confusing or changing. Our findings support the studies by Rose et al. (1999) 

who find that broad attention is associated with faster learning and negative affect, when a new task 

has to be learned. Our findings are also consistent with the relation that has been found between 

subclinical depression and defocused attention (von Hecker & Meiser, 2005). In agreement with these 

authors, we would like to stress that our results do not necessarily argue for a “positive affect equals 

reduction of capacity” view. More selective maintenance of information is not the same as a reduction 

of capacity. Selectivity of maintenance in WM that depends on affect can be an adaptive strategy to 

cope with the changing world around us, without enforcing any capacity constraints. 

By defining artificial affect purely in terms of reward one could argue that we interpret affect 

in a too narrow sense. We do not agree. Our meaning of artificial affect is still the same as the 

meaning of affect: it defines the goodness/badness of a situation for the agent. Further, it is quite 

compatible with certain theories of emotion (e.g., Rolls, 2000) that emphasize that emotion is 

fundamentally grounded in (the deprivation/expectancy of) reward. Finally, as rewards define what 

behavior an artificial RL agent should pursue and avoid, reinforcement is the definition of good and 

bad for such agents. We believe our measure for artificial affect as well as how we use it are firmly 

grounded as we have: (1) linked the time scale and the elicitation of artificial affect to the time scale 

and elicitation of natural affect, (2) tested three psychologically plausible hypotheses of affective 

control over internal simulation, and (3) based our cue-inversion task on psychological measurement 

methods that measure the influence of affect on cognition. 

In our approach, internal simulation influences action selection in a way that is compatible 

with the somatic marker hypothesis (SMH) (Damasio, 1994). In short, the SMH states that somatic 

(i.e., of the body) signals are coupled with representations of situations and thereby function as a 

value signal that enables the organism to filter potential behaviors. As a result, some of these potential 

behaviors are selected for conscious contemplation in working memory while others are not. Our 

threshold determines how discriminating our simulation-selection mechanism is, thereby selectively 

allowing some anticipated behaviors to enter working memory and influence future behavior. Of 

course we do not argue that we have an embodied approach; our agent is quite disembodied. 

However, our action-state value v can be interpreted as a simulated marker, as it accumulates future 
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values of potential situations. As such, it is an abstraction of the somatic signal that, in an embodied 

modeling approach and in nature, is grounded in the body. We argue that our mechanism of simulated 

interaction selection, and thus selection of WM content, is compatible with the mechanism by which 

somatic markers are used to prune large amounts of thoughts. Both mechanisms prioritize different 

anticipated behaviors based on a comparison of their markers. Only potential behaviors (thoughts) 

that have highly positive markers—or strong markers, if the intensity of artificial affect is used as 

selection threshold (cf. Section 4.3.2)—are able to influence future behavior by temporarily 

transferring a portion of their own marker value to the marker value of considered actions (see also 

Damasio, 1994). In our model, transfer of marker values is a natural consequence of simulating a 

particular future interaction (Section 4.2). 

Concerning the relation between our model and the simulation hypothesis, several similarities 

are particularly important. Hesslow (2002) states that fundamentally new mechanisms should not be 

needed for internal simulation of behavior. The only mechanism we introduce is an interaction 

feedback loop to the RL model. We do not introduce a conscious reasoning process or a central 

intelligence that enables planning. Compared to such measures, our addition is just a minor change to 

the overall agent architecture, and comparable with the addition of a feedback connection in neural 

network models that investigate internal simulation (van Dartel & Postma, 2004; van Dartel, Postma 

& van den Herik, 2005). Further, our mechanism for simulation selection is very similar to that of 

action selection: the RL model is used in the same way in both the simulation (cognitive) and non-

simulating (reactive) setting; simulation selection uses the action-selection component; and the 

representations used for simulation are the same as those used for action. 

Hesslow (2002) also states that internal simulation of behavior uses the same sensory-motor 

mechanisms as actual behavior, and as such uses similar sensory-motor encoding. Our interactions 

encode features of the world coupled with actions, and our model uses these same interactions for 

simulation. More importantly, in our model, simulation influences action indirectly: an influence that 

is caused only by making use of the same mechanisms needed for action. This is very compatible with 

the simulation hypothesis stating that simulation and action are tightly coupled. Our mechanism for 

influencing action selection is therefore a useful addition to the simulation hypothesis by postulating a 



Modeling affect, anticipation and adaptation 31

potential mechanism by which internal simulation could influence action: i.e., simulation temporarily 

biases next actions because the simulation mechanism and action mechanism overlap and therefore 

simulation activates potential next actions to some extent, resulting in the “markers” of the simulated 

consequences to be temporarily attached to these next actions. 

 

7.2 Related work 

To show that simulation in our model can indeed be seen as an instantiation of simulation as meant by 

the simulation hypothesis we compare it with the models by van Dartel & Postma (2005), van Dartel 

et al. (2005) and Ziemke, Jirenhed and Hesslow (2005). These models use a genetic algorithm to train 

a neural network to produce predictions of future states one time step ahead. These predictions are 

used to bias perception of the current state (van Dartel and coworkers), or explicitly used as input to 

the neural network controller to enable “’blindfolded’ corridor following behavior” based on these 

simulated next states (Ziemke and coworkers). Although our action-state encoding and learning 

mechanism are different, our overall architectural approach is similar, especially to the work of van 

Dartel and coworkers. Simulation in the latter work is modeled as follows. A copy of the output layer 

(encoding actions) of the neural network is projected to the input layer. This output copy consequently 

influences perception, and as such influences action selection. The feedback from this copy to the 

input represents a simulated next state as predicted by the model (Dartel & Postma, 2005). These 

authors explicitly suggest that in their model internal simulation “serves the function of building up 

sufficient activation in the neurocontroller to produce a certain move”. This is equivalent to what 

happens when in our model future interactions are simulated, as these simulated interactions bias the 

“markers” of current potential actions and as such can help certain actions to be executed. The work 

of Ziemke et al. (2005) is a bit different. They train an “input prediction layer” to predict the next 

observed state based on the current one. This prediction is used as input to an already trained sensory-

motor network responsible for collision-free corridor-following behavior. The predicted state is used 

as real input to the sensory-motor network such that the agent as a whole walks through the corridor 

based on mental simulations of interaction with the corridor, i.e., it is walking “blindfolded”. The 

characteristic difference between this model and our model is that Ziemke et al. use the predicted next 



Modeling affect, anticipation and adaptation 32

state as input for action selection, while in our model the simulated input is used as a bias, as in the 

model by van Dartel. However, from an architectural point of view, the three models are all 

instantiations of the simulation hypothesis: the models internally simulate predicted interaction with 

the environment in order to influence actual interaction, while using the same encoding and the same 

mechanisms for both real and simulated interaction. 

Simulation in our approach is to some extent similar to planning in Dyna (Sutton, 1990). 

However, several important differences exist. First, our model learns multiple MDPs in parallel and 

uses all of these MDPs in action selection. Second, anticipatory simulation in our model (cf. planning 

in Dyna) is always a one-step forward simulation from the current state, not a simulation of a random 

state. This reflects our choice of basing the model on anticipatory simulation of behavior, and not on 

planning or dynamic programming in general. As such, the potential of simulation in our model is 

more limited. Third, our model can only simulate actions it has tried already, effectively restricting 

the exploration potential of simulation: our agent cannot really explore mentally, it can only consider 

the many known future options, in contrast to Dyna in which untried actions can be simulated. 

However, in order to do so, Dyna requires a non-empty world to start learning (Sutton, 1990). We 

have chosen to start learning with a completely empty model. Therefore we could not simulate untried 

actions, at least not without making major changes to the representations of action-state pairs and 

transitions between them. Finally, simulation in our model has a temporary effect on values of next 

states, while in Dyna, planning can change these values. Notwithstanding these differences, our 

method of internal anticipatory simulation of states replicates some of the results obtained with Dyna 

(Sutton, 1990), of which the most relevant in the context of the presented results is that simulation 

(and more simulation rather than less) has a positive effect on learning speed. 

Our results show that internal anticipatory simulation is beneficial to artificial adaptive 

agents. Simulation introduces a temporary bias to the values used in action selection. This approach is 

similar to the one proposed by Gandanho (2003). In their RL based adaptive system, however, 

stochastic action selection is biased by a fixed value produced by a rule-based cognitive system. In 

contrast, in our system this value is dependent on the predicted states and the cognitive process is not 

separated from the adaptive system. We did not separate these systems as the simulation hypothesis is 
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underlying our approach. As internal simulation of behavior is based on existing sensory-motor 

mechanisms, it made sense to investigate the benefit of anticipatory simulation using as many 

functions as possible already provided by our RL model.  

Our work relates to emotion-, and motivation-based agent control. It explicitly defines a role 

for emotion in biasing behavior selection (Avila-Garcia & Cañamero, 2004; Cos-Aguilera et al., 

2005; Velasquez, 1998). The main difference is that in these studies emotion directly influences 

action selection (or motivation(al states)), while we have studied the indirect effect of emotion-

controlled information processing influencing action selection. 

In a recent variation of this type of research (Blanchard and Cañamero, 2006) artificial 

novelty and affect are coupled to exploration behavior of a robot that has to autonomously explore 

different possible distances to a box. Familiarity (inverse novelty) modulated by positive affect is 

coupled to exploration. However, their concept of exploration (in contrast to ours) is limited to the 

single behavioral choice of whether or not the robot should approach the box. This strongly narrows 

down the meaning of exploration, as acknowledged by the authors. Our approach thus contributes to 

this research by systematically investigating how affect can be used to modulate (mental) exploration 

in a broader sense. 

Strongly related to our approach to affect-modulated exploration is the research by McMahon 

et al. (2006). The authors show how the discrete choice between exploration and exploitation trials 

can be controlled by a probability value that is derived from measures inspired by affect. Several 

interesting differences between their approach and ours should be noted. First, our artificial affect 

dynamically modulates the amount of mental exploration that influences action selection, while their 

probability is used for a discrete choice between whether a trial is an exploration or an exploitation 

trial. Second, their reward-related measure of affect is based on a scaled value for the current reward, 

where scaling is based on the min and max rewards obtained in the environment. This means that this 

measure is unable to model “boredom” (McMahon et al., 2006). Our measure of affect—also related 

to (the history of) rewards—addresses this issue and, as such, is a useful extension to the work of 

McMahon and colleagues. When our agent has acted in the same environment for a long time, the 

long and short-term averages will converge to the same value and as such artificial affect will be 
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lower, even though the agent might receive huge rewards. In our first hypothesis, low artificial affect 

results in higher (mental) exploration. This is “boredom” in exactly the same nature as proposed in 

(McMahon et al., 2006). Third, we have extended the analysis of the psychological plausibility of 

reward-related measures for artificial affect, which is an issue of future work in (McMahon et al., 

2006).  

Two fairly different approaches towards studying the relation between affect and adaptive 

behavior are the work by Lahnstein (2005) and the work by Salichs and Malfaz (2006). Lahnstein 

shows how the short-term emotive episode can result from anticipation of reward in the first phase of 

approaching a reinforced object, while in the second phase the emotive episode is taken over by an 

evaluation of the actual reward received from that object. This research is important to understand the 

process of emotion elicitation in adaptive agents in the spirit of, e.g., Rolls (2000). The main 

difference between Lahnstein’s approach and ours is that we use affect in the “mood” (long term) 

sense as influence on the broadness of mental exploration, while Lahnstein focuses on the process of 

elicitation of the short-term emotive episode produced by mental anticipation and reward evaluation. 

It would be interesting to integrate Lahnstein’s result with ours, such that our measure of long-term 

affect is based upon averages over the positive/negative aspect of Lahntein’s short-term emotion.  

Salichs and Malfaz (2006) show how affect can be embedded into the value function Q of a 

standard reinforcement learning method. They enhance Q-learning such that the reward is based on 

the happiness/sadness of the agent, where happiness and sadness are derived from the agent’s well-

being. Well-being is a function over the extent to which the agent’s drives are met. This means that 

their agent is intrinsically motivated by affect, and strives to “maximize happiness”. Further, their 

agents use fear to dynamically modulate the amount of risk taking. Their approach differs from ours, 

but both approaches could be integrated such that well-being based on drives provides the reward 

signal and thus our measure for artificial affect is based upon well-being averages.  

  

 7.3 Future work 

It is worth investigating how other simulation-selection and action-selection mechanisms 

(e.g., non-greedy) behave in relation to affective control. In recent experiments we have investigated 
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how a Boltzmann-based action-selection mechanism (Broekens, Kosters & Verbeek, 2007) can be 

controlled by affect. These studies indicate that affect can successfully be used to control the 

exploration rate (the Boltzmann Beta in the action-selection process) of an adaptive agent during the 

learning process. 

The maximum total amount of simulation could be fixed, while affect controls when to 

simulate. Now, experiments can be conducted to completely control for the generic effect of the 

positive influence of more simulation on learning. Arousal could control simulation by, e.g., 

controlling the depth of anticipation (or the forgetting rate of the memory so that arousal influences 

the adaptation speed of the memory). 

Even though affective control of internal simulation of behavior seems promising for adaptive 

behavior and is compatible with psychological findings, our learning model is specific. This means 

that our claims are hard to generalize. A good way to further investigate the mechanisms of affective 

control introduced in this paper is to use different learning architectures, such as Soar, or ACT-R. 

Using the ACT-R architecture, Belavkin (2004) shows that affect and arousal can be used to control 

the search through the solution space, which resulted in better performance. The “Salt” model by 

Botelho and Coelho (1998) relates to this approach in the sense that the agent's effort to search for a 

solution in its memory depends also on the agent's mood valence.  

As Soar has recently been extended with RL mechanisms, called Soar-RL (Nason & Laird, 

2004), it is becoming a good candidate for adaptive behavior research. First, Soar is a well understood 

architecture. Second, Soar allows many forms of planning, enabling a better comparison between 

affective control of planning versus forward internal simulation. We are currently investigating affect-

based control techniques in Soar-RL (Hogewoning, Broekens, Eggermont & Bovenkamp, 2007). 

Affective control should be investigated in other (more realistic, more complex, larger) types 

of tasks and learning environments, as different environments have their own set of difficulties and 

particularities for action selection and learning, and imply different functions and benefits for emotion 

(Cañamero, 2000). 

On the biological level, there is considerable evidence of the link between positive affect, 

adaptive behavior and dopamine (Ashby et al., 1999), as well as dopamine, RL, and adaptive behavior 
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(Dayan & Balleine, 2002; Montague, Hyman & Cohen, 2004; Schultz, Dayan & Montague, 1997). 

Relating our model to this literature is a direction for future work. 

 

8 Conclusion  

Using a computational model based on reinforcement learning, we have investigated affective 

control of anticipatory thoughts, where thoughts are defined as internal simulation of potential next 

behavior (Cotterill, 2001; Hesslow, 2002). We have introduced a simulation-selection mechanism that 

is controlled by affect and selects anticipatory behaviors for simulation from the predictions of the RL 

model used by the agent. The selected anticipatory behaviors are used to bias the predicted values of 

next action-state pairs. Action selection is over these biased pairs, thereby influenced by the simulated 

anticipations. Based on experiments with adaptive agents that learn two nondeterministic partially 

observable gridworlds we conclude that (1) internal simulation has an adaptive benefit and (2) affect 

can be used to control the amount of simulation. The results show that affective control reduces the 

amount of simulation needed to get a performance increase due to simulation. 

The positive effect of internal simulation has been shown to exist for two nondeterministic 

partially-observable worlds, and already has been shown to exist in other worlds (Broekens, 2005). 

However, selecting all possible next action-state pairs for simulation provides quite some 

computational overhead, or, in more biological terms, consumes a considerable amount of energy to 

maintain stable representations in working memory (WM) that can be used to construct anticipatory 

associations. In this study we have shown that affect can regulate the amount of anticipatory 

simulation in such a way that learning is still improved considerably. Although it is difficult to 

generalize from computational experiments that contain many variables, in terms of WM-affect 

relation our results indicate that affective control of the amount of anticipatory thoughts in WM 

enables an adaptive agent to make more efficient use of WM. 

The most beneficial relation between affect and internal simulation is observed when positive 

affect decreases the amount of simulation towards simulating the best potential next action, while 

negative affect increases the amount of simulation towards simulating all potential next actions. Ergo, 

agents “feeling positive” can think ahead in a narrow sense and free up working memory resources, 
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while agents “feeling negative” must think ahead in a broad sense and maximize usage of working 

memory. Our results are consistent with several psychological findings on the relation between affect 

and learning, and contribute to answering the question of when positive versus negative affect is 

useful during adaptation. Furthermore, our results show that simulation selection is a useful extension 

to action selection, specifically in the context of the simulation hypothesis (Hesslow, 2002). 
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Figure 1. Overview of the different components in our model. Components are detailed below. 
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Figure 2a-e. Examples of the agent’s memory structure 
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before trial 250    after trial 250 

Figure 3. Switch-to-invest task. Potential start locations are alternated between the top-left and 

bottom-left arms, food locations (f) are alternated between the top-right and bottom-right arms, and 

roadblocks (b) are placed before the food after the task-switch.  
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 before    after  

Figure 4. Cue-inversion world. The first two and second two pictures show the possible worlds before 

and after the cue inversion at trial 250 respectively. f=food, c= cue, black square is the agent. 
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f: 1  1.5  2  

star: 50  100 50  100 50  100 

ltar: 200 400 200 400 200 400 
 250 500 250 500 250 500 
 375 750 375 750 375 750 
 500 1000 500 1000 500 1000 
 750 1500 750 1500 750 1500 

Table 1:  Possible ltar, star, and f configurations. 
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Figure 5. Smoothed learning curves (also see footnote 2) of non-, best-, and all-simulating agents in 

the switch-to-invest world for α=0.8, θ=0.03. Curves of other strategies are approximately in between 

best and all. Note that we do not use error bars in Figure 5. To validate our claims, we statistically 

compare between simulation strategies the effort involved in completing a run. This is appropriate; a 

small overall benefit can be considered important, regardless of the standard deviation over trails. 

Learning curves switch-to-invest, α=0.8, θθθθ=0.03 

M
ea

n
 #

step
s to

 fin
d

 fo
o

d
 in

 tria
l  

Trial number 



Modeling affect, anticipation and adaptation 51

 

 

Figure 6. Effort for different simulation strategies in the switch-to-invest task. 
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Figure 7. Left: small difference in effort between dynamic and inverse-dyn simulation strategies. 

Right: difference in simulation effort between simulation strategies. 
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Effort cue-inversion task, α=1.0, θ=0.0
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Figure 8. Left: difference (effort) between dynamic and static simulation strategies. Right: difference 

(simulation effort) between static and dynamic strategies. Error bars show 95% confidence interval. 
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Relative gain of simulation, α=1.0, θ=0.0
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Figure 9. Gain of simulation strategies (details in text).Error bars show 95% confidence interval. 



Modeling affect, anticipation and adaptation 55

 

 

Figure 10. Depicted are affect curves for different settings (not smoothed). Inset is a detail of 

artificial affect at the cue inversion. Note that star=50 has the “dip” earlier than star=100. 
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