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Abstract. Computer models can be used to investigate the role of emotion in 
learning. Here we present EARL, our framework for the systematic study of the 
relation between emotion, adaptation and reinforcement learning (RL). EARL 
enables the study of, among other things, communicated affect as reinforcement 
to the robot; the focus of this chapter. In humans, emotions are crucial to 
learning. For example, a parent—observing a child—uses emotional expression 
to encourage or discourage specific behaviors. Emotional expression can 
therefore be a reinforcement signal to a child. We hypothesize that affective 
facial expressions facilitate robot learning, and compare a social setting with a 
non-social one to test this. The non-social setting consists of a simulated robot 
that learns to solve a typical RL task in a continuous grid-world environment. 
The social setting additionally consists of a human (parent) observing the 
simulated robot (child). The human’s emotional expressions are analyzed in real 
time and converted to an additional reinforcement signal used by the robot; 
positive expressions result in reward, negative expressions in punishment. We 
quantitatively show that the “social robot” indeed learns to solve its task 
significantly faster than its “non-social sibling”. We conclude that this presents 
strong evidence for the potential benefit of affective communication with 
humans in the reinforcement learning loop. 
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1   Introduction 

In humans, emotion influences thought and behavior in many ways [16][17][19][38]. 
For example, emotion influences how humans process information by controlling the 
broadness versus the narrowness of attention. Also, emotion functions as a social 
signal that communicates reinforcement of behavior in, e.g., parent-child relations. 
Computational modeling (including robot modeling) has proven to be a viable method 
of investigating the relation between emotion and learning [11][24], emotion and 
problem solving [3][6], emotion and social robots [7] (for review see [20]), and 
emotion, motivation and behavior selection [2][5][15][46]. Although many 
approaches exist and much work has been done on computational modeling of 
emotional influences on thought and behavior, none explicitly targets the study of the 
relation between emotion and learning using a complete end-to-end framework in a 
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reinforcement learning context1. By this we mean a framework that enables 
systematic quantitative study of the relation between affect and RL in a large variety 
of ways, including (a) affect as reinforcement to the robot (both internally generated 
as well as socially communicated), (b) affect as perceptual feature to the robot (again 
internally generated and social), (c) affect resulting from reinforced robot behavior, 
and (d) affect as meta-parameters for the robot’s learning mechanism. In this chapter 
we present such a framework. We call our framework EARL, short for the systematic 
study of the relation between emotion, adaptation and reinforcement learning. 

1.1   Affect as Reinforcement 

In this chapter we specifically focus on the influence of socially communicated 
emotion on learning in a reinforcement learning context. This work is strongly related 
to research into interactive robot learning based on human advice or guidance 
[35][43]. We briefly review this area of research in Section 2. In the experimental part 
of this chapter we show, using our framework EARL, that human emotional 
expressions can be effectively used as additional reinforcement signal used by a 
simulated robot. Our experimental setting is as follows. 

The robot’s task is to optimize food-finding behavior while navigating through a 
continuous grid world environment. The grid world is not discrete, nor is an attempt 
made to define discrete states based on the continuous input. The gridworld contains 
walls, path and food patches. The robot perceives its direct surroundings as they are, 
and acts by turning and driving. We have developed an action-based learning 
mechanism that learns to predict values of actions based on the current perception of 
the agent (note that in this chapter we use the terms agent and robot interchangeably). 
Every action has its own Multi-Layer Perceptron (MLP) network (see also [28]) that 
learns to predict a modified version of the Q-value for that action [41]. The simulated 
robot does not use a separate training phase; we adopt the so-called certainty 
equivalence hypothesis [27].  

We have used this setup to ensure that our simulation is as close as possible to a 
real world setting: continuous input directly fed into MLP networks. By doing so, we 
hope that observed robot behavior can be extrapolated to the real world: in theory, 
building the actual robot with appropriate sensors and actuators would suffice to 
replicate the results. We explain our modeling method in more detail in Section 4-6. 

As mentioned above, we study the effect of a human’s emotional expression on the 
learning behavior of the robot. As such the simulated robot uses the recognized 
emotion as a motivator for action, while the human uses its expression to signal the 
relevance of certain events (see also, [12]). In humans, emotions are crucial to 
learning. For example, a parent—observing a child—uses emotional expression to 
encourage or discourage specific behaviors. In this case, the emotional expression is 
used to setup an affective communication channel [36] and is used to communicate a 
reinforcement signal to a child. In this chapter we take affect to mean the positiveness 
versus the negativeness (valence) of a situation, object, etc. (see [11][38] and [39] for 
a more detailed argumentation of this point of view, and [47] for a detailed discussion 
                                                           
1 Although the work by Gandanho [24] is a partial exception as it explicitly addresses emotion 

in the context of RL. However, this work does not address social human input and social 
robot output. 
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on the relation between valence and reinforcement learning). In our experiments, a 
human observes a simulated robot while the robot learns to find food. Affect in the 
human’s facial expression is recognized by the robot in real time. As such, a smile is 
interpreted as communicating positive affect and therefore converted to a small 
additional reward (additional to the reinforcement the robot receives from its 
simulated environment). The expression of fear is interpreted as communicating 
negative affect and therefore converted to a small additional punishment. We call this 
the social setting. We vary between three types of social settings: one in which affect 
is a strong reinforcement but only for several learning trials; one in which affect is a 
moderate reinforcement for a longer period of time; and finally one in which affect is 
a moderate reinforcement while (in contrast to the first two types) the robot learns a 
social reward function that maps its perceived state to the social reinforcement. In the 
latter type, the robot can use its learned social reward function when the human stops 
giving social reinforcement. Finally, there is a non-social control setting to which the 
results of the social settings are compared. The non-social setting is a standard 
experimental reinforcement learning setup using the same elements as the social 
setups but without the social reinforcement.  

We hypothesized that robot learning (in a RL context as described above) is 
facilitated by additional social reinforcement. Our experimental results support this 
hypothesis. We compared the learning performance of our simulated robot in the 
social and non-social settings, by analyzing averages of learning curves. The main 
contribution of this research is that it presents quantitative evidence of the fact that a 
human-in-the-loop can boost learning performance in real-time by communicating 
reinforcement using facial expressions, in a non-trivial learning environment. We 
belief this is an important result. It provides a solid base for further study of human 
mediated robot-learning in the context of real-world applicable reinforcement 
learning, using the communication protocol nature has provide for that purpose, i.e., 
emotional expression and recognition. As such, our results add weight to the view that 
robots can be trained and their behaviors optimized using natural social cues. This 
facilitates human-robot interaction and is relevant to human computing [32], to which 
we devote more attention in the discussion. 

1.2   Chapter Layout 

The rest of this chapter is structured as follows. In Section 2 we review related work. 
In Section 3 we discuss, in some detail, affect, emotion and how affect influences 
learning in humans. In Section 4 we briefly introduce EARL, our complete 
framework. In Section 5 we describe how communicated affect is linked to a social 
reinforcement signal. In Section 6, we explain our method of study (e.g., the grid-
world, the learning mechanism). Section 7 discusses the results and Section 8 
discusses these in a broader context and presents concluding remarks and future work. 

2   Interactive Robot Learning 

One of the main reasons for investigating natural ways of giving feedback to robots in 
order for them to be able to adapt themselves is non-expert interaction; the ability of 
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persons not familiar with machine learning to change the behavior of robots in a 
natural way [30][31][43]. Robots can learn from humans in a variety of ways, and 
humans want to teach robots in many different ways [43]. In general there are three 
types of robot teaching: by example, by feedback and by guidance. Our paper focuses 
on a method of interactive robot learning by feedback, but we briefly discuss all three 
approaches in this section. 

2.1   Learning by Example 

In the case of learning by example, robots learn behavior by imitating human 
behavior when that behavior is provided as an example (for review see [9]). The robot 
either imitates the behavior, or imitates getting towards the goal using the behavior as 
example. In the first case the behavior is leading, in the second the intention of the 
behavior is leading. Sometimes, robots can even learn to imitate. This is the case 
when the robot not only learns to imitate behavior, but also learns to imitate in the 
first place. The study presented in this chapter is not related to imitative behavior, as 
the human tutor in our study does not communicate to the robot examples of possible 
behaviors as to how to find the food (solve the task). 

2.2   Learning by Feedback 

Our study falls into the category learning by feedback. In this case the robot learns by 
receiving performance feedback from the human in the form of an additional 
reinforcement signal [10][26][30][31][34[45]. Such signals can come in many forms. 
For example in the study by Isbell et al. [26], their social chatter bot Cobot learns the 
information preferences of its chat partners, by analyzing the chat messages for 
explicit and implicit reward signals (e.g., positive or negative words). These signals 
are then used to adapt its model of providing information to that chat partner. So, 
Cobot effectively uses social feedback as reward, as does our simulated robot. 
However, there are several important differences. Cobot does not address the issue of 
a human observer parenting the robot using affective communication. Instead, it 
learns based on reinforcement extracted from words used by the user during the chat 
sessions in which Cobot is participating. Also, Cobot is not a real-time behaving 
robot, but a chat robot. As a consequence, time constraints related to the exact 
moment of administering reward or punishment are less important. Finally, Cobot is 
restricted regarding its action-taking initiative, while our robot is continuously acting, 
with the observer reacting in real-time. 

Thrun et al. [31] describe how their museum tour-guide robot MINERVA learns 
how to attract attention from humans as well as how to optimize tours (in terms of the 
time available and the exhibits visited). An important task this robot has to learn is 
how to attract people to its tours. The reward signal for learning this task is based on 
the amount of people being close to the robot; too close, however, represents a 
negative reinforcement, so the robot should adapt its attention-attracting behavior to 
maximize having a reasonably sized group waiting around it. In this study, a non-
intrusive measure has been used as basis for the reinforcement signal. This is 
comparable with the approach used by Mitsunaga et al. [30]. They also use non-
intrusive signals (robot-human distance, gaze aversion, and body repositioning) as 



 Emotion and Reinforcement: Affective Facial Expressions Facilitate Robot Learning 117 

reinforcement signal to adapt the robot-human distance to a comfortable one. 
Obviously, two key differences between these studies and ours exist: we explicitly use 
the affective channel (facial expression) to communicate reinforcement, and we 
analyzed whether this reinforcement signal helps the simulated robot to solve a task 
that is not related to human-robot interaction per se. 

Studies that are particularly related to ours are the ones by Papudesi and Huber 
[34][35]. They investigate if a composite reward function (composed of the normal 
reinforcement given by the environment and reinforcement based on human advice) 
enhances robot learning of a navigation problem in a grid-based maze. The human-
based part of the reward function is done in quite a clever way. The robot is given a 
set of advice instructions on where to go first or what choice to make at junctions. 
This advice is in terms of state-action pairs, so, a certain action in a certain state 
(representing a location in the maze) is given a slight selection bias. All biases 
together form a bias function (over the state-action space) that can be translated to a 
user-based reinforcement function. This user-based reinforcement is the first part of 
the reward function, and is added to the environment-based reinforcement. Together 
this forms the composite reward function. This composite function is used for 
training. The interesting part is that by using this two-step approach of administering 
user reward, formal analysis of the maximum permissible user-reward values is 
possible. The authors have shown boundaries for the human advice such that several 
problems related to additional user rewards can be overcome, problems such as 
“looping” (due to intermediate user reinforcement, the robot keeps looping through 
the same state-action pairs). The key difference between their approach and ours is 
that we use the facial expression to communicate the reward function, that we have a 
continuous state representation (see Section 6) and that we administer the user’s 
reinforcement directly, without a bias function.  It would be interesting to merge both 
approaches and use facial expression to feed the bias function as defined in [34]. 

2.3   Learning by Guidance 

Learning by guidance is a relatively new approach to interactive human-robot 
learning [42][43][45]. Guidance can be differentiated from feedback and imitation 
(example) in the following way. While feedback gives intentional information after 
the fact, guidance gives intentional information before the fact (anticipatory 
reinforcement; [44]). For example, smiling at a robot after it has taken the right turn 
towards the food (our study), is quite different from proposing a certain turn to the 
robot before it has chosen itself [44]. 

While imitation assumes a sequence of behaviors that lead towards a goal state, 
guidance is about future-directed learning cues and as such is much broader defined. 
For example, showing how to tie shoelaces is very different from drawing a child’s 
attention to the two edges when stuck in the beginning. In general, robot guidance is 
about directing attention, communicating motivational intentions, and proposing 
actions [43]. 

For example in the work by Thomaz and Breazeal [43], the authors show an 
interesting way in which guidance can be added to a standard reinforcement learning 
mechanism. A human can advice the agent to pay more attention to a specific object 
in the problem environment (in this case a learning-to-cook environment, called 
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Sophie’s kitchen, with a simulated robot). The guidance is transformed into an action-
selection bias, such that the simulated robot selects actions that have to do with the 
advised object with higher probability. As such, this approach resembles the one by 
Papudesi and Huber [34]: the behavioral bias is given at the level of state-action pairs, 
not directly at the level of reward and punishment. The main reason why biasing 
action-selection as done by [43] can best be seen as guidance and biasing action-states 
as done by [34] can best be seen as feedback, is the way both studies use the human 
advice. In the former (T&B), the advice is immediately integrated into the action-
selection, and guides the robot’s next actions, while in the latter (P&H) the advice is 
first translated to an additional reward for certain state-action pairs and the resulting 
composite reward function is used for training the robot.  

In a real sense, guidance by biasing action-selection can be seen as narrowing-
down attention towards certain objects or features. By biasing action-selection, certain 
actions have a higher change of being selected than others. This kind of human-robot 
interaction can help solve exploration-exploitation issues in very large state spaces, as 
the human can guide de robot into a useful direction, while the robot still has the 
opportunity to explore [44]. 

3   Affect Influences Learning 

In this chapter we specifically focus on the influence of socially communicated affect 
on learning, i.e., on affectively communicated feedback. Affect and emotion are 
concepts that lack a single concise definition, instead there are many [37]. Therefore 
we first explain our meaning to these concepts. 

3.1   Emotion and Affect 

In general, the term emotion refers to a set of—in social animals—naturally occurring 
phenomena including facial expression, motivation, emotional actions such as fight or 
flight behavior, a tendency to act, and—at least in humans—feelings and cognitive 
appraisal (see, e.g., [40]).  An emotional state is the combined activation of instances 
of a subset of these phenomena, e.g., angry involves a tendency to fight, a typical 
facial expression, a typical negative feeling, etc. Time is another important aspect in 
this context. A short term (intense, object directed) emotional state is often called an 
emotion; while a longer term (less intense, non-object directed) emotional state is 
referred to as mood. The direction of the emotional state, either positive or negative, is 
referred to as affect (e.g., [39]). Affect is often differentiated into two orthogonal 
(independent) variables: valence, a.k.a. pleasure, and arousal [19][39]. Valence refers 
to the positive versus negative aspect of an emotional state. Arousal refers to the 
activity of the organism during that state, i.e., physical readiness. For example, a car 
that passes you in a dangerous manner on the freeway, immediately (time) elicits a 
strongly negative and highly arousing (affect) emotional state that includes the 
expression of anger and fear, feelings of anger and fear, and intense cognitive 
appraisal about what could have gone wrong. On the contrary, learning that one has 
missed the opportunity to meet an old friend involves cognitive appraisal that can 
negatively influence (affect) a person’s mood for a whole day (time), even though the 
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associated emotion is not necessarily arousing (affect). Eating a piece of pie is a more 
positive and biochemical example. This is a bodily, emotion-eliciting event resulting 
in mid-term moderately-positive affect. Eating pie can make a person happy by, e.g., 
triggering fatty-substance and sugar-receptor cells in the mouth. The resulting positive 
feeling typically is not of particularly strong intensity and certainly does not involve 
particularly high or low arousal, but might last for several hours. 

3.2   Emotional Influences 

Emotion influences thought and behavior in many ways. For example, at the 
neurological level, malfunction of certain brain areas not only destroys or diminishes 
the capacity to have (or express) certain emotions, but also has a similar effect on the 
capacity to make sound decisions [17] as well as on the capacity to learn new 
behavior [4]. Behavioral evidence suggests that the ability to have sensations of 
pleasure and pain is strongly connected to basic mechanisms of learning and decision-
making [4]. These findings indicate that brain areas important for emotions are also 
important for “classical” cognition and instrumental learning. 

At the level of cognition, a person's belief about something is updated according to 
the associated emotion: the current emotion is used as information about the 
perceived object [14][21], and emotion is used to make the belief resistant to change 
[22]. Ergo, emotions are “at the heart of what beliefs are about” [23]. 

Emotion plays a role in the regulation of the amount of information processing. For 
instance, Scherer [40] argues that emotion is related to the continuous checking of the 
environment for important stimuli. More resources are allocated to further evaluate 
the implications of an event, only if the stimulus appears important enough. 
Furthermore, in the work of Forgas [21] the relation between emotion and information 
processing strategy is made explicit: the influence of mood on thinking depends on 
the strategy used. In addition to this, it has been found that positive moods favor 
creative thoughts as well as integrative information processing, while negative moods 
favor systematic analysis of incoming stimuli (e.g. [1][25]). 

Emotion also regulates behavior of others. Obvious in human development, 
expression (and subsequent recognition) of emotion is important to communicate 
(dis)approval of the actions of others. This is typically important in parent-child 
relations. Parents use emotional expression to guide behavior of infants. Emotional 
interaction is essential for learning. Striking examples are children with an autistic 
spectrum disorder, typically characterized by a restricted repertoire of behaviors and 
interests, as well as social and communicative impairments such as difficulty in joint 
attention, difficulty recognizing and expressing emotion, and lacking of a social smile 
(for review see [13]). Apparently, children suffering from this disorder have both a 
difficulty in building up a large set of complex behaviors and a difficulty 
understanding emotional expressions and giving the correct social responses to these. 
This disorder provides a clear example of the interplay between learning behaviors 
and being able to process emotional cues. 

As argued by Breazeal and Brooks [8], human emotion is crucial to understanding 
others, as well as ourselves, and this could very well be two equally crucial functions 
for robot emotions. 
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3.3   Socially Communicated Affect 

To summarize, emotion and mood influence thought and behavior in a variety of 
ways, e.g., a person’s mood influences processing style and attention, emotions 
influence how one thinks about objects, situations and persons, and emotion is related 
to learning new behaviors.  

In this study we focus on the role of affect in guiding learning in a social human-
robot setting.  We use affect to denote the positiveness versus negativeness of a 
situation. We ignore the arousal a certain situation might bring. As such, positive 
affect characterizes a situation as good, while negative affect characterizes that 
situation as bad (e.g., [39]). Further, we use affect to refer to the short term timescale: 
i.e., to emotion. We hypothesize that affect communicated by a human observer can 
enhance robot learning. In our study we assume that the recognition of affect 
translates into a reinforcement signal. As such, the robot uses a social reinforcement 
in addition to the reinforcement it receives from its environment while it is building a 
model of the environment using reinforcement learning mechanisms. In the following 
sections we first explain our framework after which we detail our method and discuss 
results and further work. 

4   EARL: A Computational Framework to Study the Relation 
Between Emotion, Adaptation and Reinforcement Learning 

To study the relation between emotion, adaptation and reinforcement learning, we 
have developed an end-to-end framework. The framework consists of four parts: 

• An emotion recognition module, recognizing emotional facial expression in real 
time. 

• A reinforcement learning agent to which the recognized emotion can be fed as 
input. 

• An artificial emotion module slot; this slot can be used to plug into the learning 
agent different models of emotion that produce the artificial emotion of the agent 
as output. The modules can use all of the information that is available to the agent 
(such as action repertoire, reward history, etc.). This emotion can be used by the 
agent as intrinsic reward, as metalearning parameter, or as input for the 
expression module. 

• An expression module, consisting of a robot head with the following degrees of 
freedom: eyes moving up and down, ears moving up and down on the outside, 
lips moving up and down, eyelids moving up and down on the outside, and RGB 
eye colors. 

Emotion recognition is based on quite a crude mechanism based upon the face 
tracking abilities of OpenCV [48]. Our mechanism uses 9 points on the face, each 
defined by a blue sticker: 1 on the tip of the nose, 2 above each eyebrow, 1 at each 
mouth corner and 1 on the upper and lower lip. The recognition module is configured 
to store multiple prototype point constellations. The user is prompted to express a 
certain emotion and press space while doing so. For every emotional expression (in 
the case of our experiment neutral, happy and afraid), the module records the 
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positions of the 9 points relative to the nose. This is a prototype point vector. After 
configuration, to determine the current emotional expression in real time the module 
calculates a weighted distance from the current point vector (read in real-time from a 
web-cam mounted on the computer screen) to the prototype vectors. Different points 
get different weights. This results in an error measure for every prototype expression. 
This error measure is the basis for a normalized vector of recognized emotion 
intensities. The recognition module sends this vector to the agent (e.g., neutral 0.3, 
happy 0.6, fear 0.1). Our choice of weights and features has been inspired by work of 
others (for review see [33]). Of course the state of the art in emotion recognition is 
more advanced than our current approach. However, as our focus is affective learning 
and not the recognition process per se, we contented ourselves with a low fidelity 
solution (working almost perfectly for neutral, happy and afraid, when the user keeps 
the head in about the same position). 

Note that we do not aim at generically recognizing detailed emotional expressions. 
Instead, we tune the recognition module to the individual observer to accommodate 
his/her personal and natural facial expressions. The detail with which this is done 
reflects our experimental needs: extract positive and negative reward signals from the 
observer’s face. In a real-world scenario with observers and robots autonomously 
acting next to each other, a more sophisticated mechanism is needed to correctly read 
reward signals from the observers. Such a mechanism needs to be multi-modal.  

The reinforcement learning agent receives this recognized emotion and can use this 
in multiple ways: as reinforcement, as information (additional state input), as 
metaparameter (e.g., to control learning rate), and as social input directly into its 
emotion model. In this chapter we focus on social reinforcement, and as such focus on 
the recognized emotion being used as additional reward or punishment. The agent, its 
learning mechanism and how it uses the recognized emotion as reinforcement are 
detailed in Sections 5 and 6. 

The artificial emotion model slot enables us to plug in different emotion models 
based on different theories to study their behavior in the context of reinforcement 
learning. For example, we have developed a model based on the theory by Rolls [38], 
who argues that many emotions can be related to reward and punishment and the lack 
thereof. This model enables us to see if the agent’s situation results in a plausible 
(e.g., scored by a set of human observers) emotion emerging from the model. By 
scoring the plausibility of the resulting emotion, we can learn about the compatibility 
of, e.g., Rolls’ emotion theory with reinforcement learning. However, in the current 
study we have not used this module, as we focus on affective input as social 
reinforcement. 

The emotion expression part is a physical robot head. The head can express an 
arbitrary emotion by mapping it to its facial features, again according to a certain 
theory. Currently our head expresses emotions according to the Pleasure Arousal 
Dominance (PAD) model by Mehrabian [29]. We have a continuous mapping from 
the 3-dimensional PAD space to the features of the robot face. As such we do not 
need to explicitly work with emotional categories or intensities of the categories. The 
mapping appears to work quite well, but is in need of validation (again using human 
observers). We have not used the robot head for the studies reported upon in this 
chapter. 
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We now describe in detail how we coupled the recognized human emotion to the 
social reinforcement signal for the robot. Then we explain in detail our adapted 
reinforcement learning mechanism (such that it enabled learning in continuous 
environments), and our method of study as well as our results. 

5   Emotional Expressions as Reinforcement Signal 

As mentioned earlier, emotional expressions and facial expressions in particular can 
be used as social cues for the desirability of a certain action. In other words, an 
emotional expression can express reward and punishment if directed at an individual. 
We focus on communicated affect, i.e., the positiveness versus negativeness of the 
expression. If the human expresses a smile (happy face) this is interpreted as positive 
affect. If the human expresses fear, this is interpreted as negative affect. We interpret 
a neutral face as affectless. 

We have studied the mechanism of communicated affective feedback in a human-
robot interaction setup. The human’s face is analyzed (as explained above) and a 
vector of emotional expression intensities is fed to the learning agent. The agent takes 
the expression with the highest intensity as dominant, and equates this with a social 
reinforcement of, e.g., 2 (happy), −2 (fear) and 0 (neutral). It is important to realize 
that this is a simplified setup, as the human face communicates much more subtle 
affective messages and at the very least is able to communicate the degree of reward 
and punishment. For example, fear and anger are two distinct negative emotions that 
have different meaning and different action-tendencies. Fear involves a tendency to 
avoid and is not directed at an individual (although it can be caused by an individual), 
while anger involves a tendency to approach and is outwardly directed at someone 
else. A little bit of anger might be interpreted as a little bit of punishment, while a lot 
of anger better be interpreted as “don’t ever do this again”. However, to investigate 
our hypothesis (affective human feedback increases robot learning performance) the 
just described mechanism is sufficient. For the sake of simplicity, in this experiment 
we take fear as a “prototype for negative affective facial expression” and happiness as 
a “prototype for positive affective facial expression”. 

The social reinforcement, called rsocial, is simply added to the “normal” 
reinforcement the agent receives from its environment (together forming a composite 
reinforcement). So, if the agent walks on a path somewhere in the gridworld, it 
receives a reinforcement (say 0), but when the user smiles, the resulting actual 
reinforcement becomes 2, while if the user looks afraid, the resulting reinforcement 
becomes −2. 

6   Method 

To study the impact of social reinforcement on robot learning, we have used our 
framework in a simulated continuous gridworld. In this section we explain our 
experimental setup. 
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Fig. 1. The experimental gridworld. The agent is the “circle with nose” in the top right of the 
maze, where the nose denotes its direction. The 8 white dots denote the points perceived by the 
agent. These points are connected to the elements of state s (neural input to the MLPs used by 
the agent) as depicted. This is repeated for all possible features, in our case: path (gray), wall 
(black), and food (light gray), in that order. The e denotes the cell in which social reinforcement 
can be administered through smiling or expression of fear, the 1 and 2 denote key locations at 
which the agent has to learn to differentiate its behavior, i.e., either turn left (1) or right (2). The 
agent starts at b. The task enforces a non-reactive best solution (by which we mean that there is 
no direct mapping from reinforcement to action that enables the agent to find the shortest path 
to the food). If the agent would learn that turning right is good, it would keep walking in 
circles. If the agent learns that turning left is good, it would not get to the food.  

6.1   Continuous Gridworld as Test Environment 

A simulated robot (agent) “lives” in a continuous gridworld environment consisting of 
wall, food and path patches (Figure 1). These are the features of the world observable 
by the agent. The agent cannot walk on walls, but can walk on path and food. Walls 
and path are neutral (have a reinforcement of 0.0), while food has a reinforcement of 
10. One cell in the grid is assumed to be a 20 by 20 object. Even though wall, path 
and food are placed on a grid, the world is continuous in the following sense: the 
agent has real-valued coordinates, moves by turning or walking in a certain direction 
using an arbitrary speed (in our experiments set at 3), and perceives its direct 
surroundings (within a radius of 20) according to its looking direction (one out of 16 
possible directions). The agent uses a “relative eight neighbor metric” meaning that it 
perceives features of the world at 8 points around it, with each point at a distance of 
20 from the center point of the agent and each point at an interval of 1/4 PI radians, 
with the first point always being exactly in front of it (Figure 1). The state perceived 
by the agent (its percept) is a real-valued vector of inputs between 0 and 1; each input 
is defined by the relative contribution of a certain feature in the agent-relative 
direction corresponding to the input. For example, if the agent sees a wall just in front 
of it (i.e., the center point of a wall object is exactly at a distance of 20 as measured 
from the current agent location in its looking direction) the first value in its perceived 
state would be equal to 1. This value can be anywhere between 0 and 1 depending on 
the distance of that point to the feature. For the three types of features, the agent thus 
has 3x8=24 real-valued inputs between 0 and 1 as its perceived world state s  
(Figure 1). As such the agent can approach objects (e.g., a wall) from a large number 
of possible angles and positions, with every intermediate position being possible. For 

path wall      food 1/e 

2 

b 
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all practical purposes, the learning environment can be considered continuous. We did 
not define discrete states based on the continuous input to facilitate learning. Instead 
we chose to use the perceived state as is, to maximize potential transferability of our 
experimental results to real-world robot learning.  

6.2   Reinforcement Learning in Continuous Environments 

Reinforcement learning in continuous environments introduces several important 
problems for standard RL techniques, such as Q learning, mainly because a large 
number of potentially similar states exist as well as a very long path length between 
start and goal states making value propagation difficult. We now briefly explain our 
adapted RL mechanism. As RL in continuous environments is not specifically the 
topic of the chapter we have left out some of the rational for our choices. 

The agent learns to find the path to the food, and optimizes this path. At every step 
the agent takes, the agent updates its model of the expected benefit of a certain action 
as follows. It learns to predict the value of actions in a certain perceived state s, using 
an adapted form of Q learning. The value function, Qa(s), is approximated using a 
Multi-Layer Perceptron (MLP), with 3x8=24 input, 24 hidden, and one output 
neuron(s), with s being the real-valued input to the MLP, a the action to which the 
network belongs, and the output neuron converging to Qa(s). As such, every action of 
the agent (5 in total: forward, left, right, left and forward, right and forward) has its 
own network. The output of the action networks are used as action values in a 
standard Boltzmann action-selection function [41]. An action network is trained on 
the Q value—i.e., Qa(s)←Qa(s)+α(r+γQ(s’)−Qa(s)) —where r is the reward resulting 
from action a in state s, s’ is the resulting next state, Q(s’) the value of state s’, α is 
the learning rate and γ the discount factor [41]. The learning rate equals 1 in our 
experiments (because the learning rate of the MLP is used to control speed of 
learning, not α), and the discount factor equals 0.99. To cope with a continuous 
gridworld, we adapted standard Q learning in the following way: 

First, the value Qa(s) used to train the MLP network for action a is topped such that 
min(r, Qa(s’))<=Qa(s)<=max(r, Q(s’)). As a result, individual Qa(s) values can never 
be larger or smaller than any of the rewards encountered in the world. This enables a 
discount factor close to or equal to 1, needed to efficiently propagate back the food’s 
reward through a long sequence of steps. In continuous, cyclic, worlds, training the 
MLP on normal Q values using a discount factor close to 1 can result in several 
problems not further discussed here. 

Second, per step of the agent, we train the action-state networks not only on 
Qa(s)←Qa(s)+α(r+γQ(s’)−Qa(s)) but also on Qa(s’)←Qa(s’). The latter seems 
unnecessary but is quite important. RL assumes that values are propagated back, but 
MLPs generalize while trained. As a result, training an MLP on Qa(s) also influences 
its value prediction for s’ in the same direction, just because the inputs are very close. 
In effect, part of the value is actually propagated forward; credit is partly assigned to 
what comes next. This violates the RL assumption just mentioned. Note that the value 
Q(s’) is predicted using another MLP, called the value network, that is trained in the 
same way as the action networks using the topped-off value and forward propagation 
compensation. 
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Third, for the agent to better discriminate between situations that are perceptually 
similar, such as position “1” and “2” in Figure 1, for each action-network the agent 
also uses a second network trained on the value of not taking the action. This network 
is trained when other actions are taken but not when the action to which the 
“negation” network belongs is taken. In effect, the agent has two MLPs per action. 
This enables the agent to better learn that, e.g., “right” is good in situation “2” but not 
in situation “1”. Without this “negation” network, the agent learns much less efficient 
(results not shown). To summarize, our agent has 5 actions, it has 11 MLPs in total: 
one to train Q(s), 5 to train Qa(s) and 5 to train −Qa(s). All networks use forward 
propagation compensation and a topped-off value to train upon. The MLP predictions 
for Qa(s) and −Qa(s) are simply added, and the result is used for action-selection. 

6.3   Social vs. Non-social Learning 

To study the effect of communicated affect as social reinforcement, we created the 
following setup. First an agent is trained without social reinforcement. The agent 
repeatedly tries to find the food for 200 trials, i.e., one run. The agent continuously 
learns and acts during these trials. To facilitate learning, we use a common method to 
vary the MLP learning rate and the Boltzmann action selection β derived from 
simulated annealing. The Boltzmann β equals to 3+(trial/200)*(6−3), effectively 
varying from 3 in the first trial to 6 in the last. The MLP learning rate equals to 
0.1−(trial/200)*(0.1−0.001) effectively varying from 0.1 in the first trial to 0.001 in 
the last. We repeated the experiment 200 times, resulting in 200 runs. Average 
learning curves are plotted for these 200 runs using a linear smoothing factor equal to 
6 (Figure 2). 

Second, a new agent is trained with social reinforcement, i.e., a human observer 
looking at the agent with his/her face analyzed by the agent, translating a smile to a 
social reward and a fearful expression to a social punishment. Again, average learning 
curves are plotted using a linear smoothing factor equal to 6, but now based on the 
average per trial over 15 runs (Figure 2). We experimented with three different social 
settings: (a) a moderate social reinforcement, rhuman, from trial 20 to 30, where the 
social reinforcement is either −0.5 or 0.5 (happy vs. fearful, respectively); (b) a strong 
social reinforcement, rhuman, from trial 20 to 25 where social reinforcement is either −2 
or 2, i.e., more extreme social reinforcement but for a shorter period; (c) a social 
reinforcement, rhuman, from trial 29 to 45 where social reinforcement is either −2 or 2 
while (in addition to settings a and b) the agent trains an additional MLP to predict 
the direct social reinforcement, rhuman, based on the current state s. The MLP is trained 
to learn Rsocial(s) as given by the human reinforcement rhuman. After trial 45, the direct 
social reinforcement from the observer, rhuman, is replaced by the learned social 
reinforcement Rsocial(s). So, during the critical period (the trial intervals mentioned) of 
social setting a, b and c, the total reinforcement is a composite reward equal to 
R(s)+rhuman. Only in setting c, and only after the critical period until the end of the run, 
the composite reward equals R(s)+Rsocial(s). In all other periods, the reinforcement is 
as usual, i.e., R(s). As a result, in setting c the agent can continue using an additional 
social reinforcement signal that has been learned based on what its human tutor thinks 
about certain situations. 
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The process of giving affective feedback to a reinforcement learning agent 
appeared to be quite a long, intensive and attention absorbing experience. As a result, 
it was physically impossible to observe the agent during all trials in the entire 
gridworld (after 2 hours of smiling to a computer screen one is exhausted and has 
burning eyes and painful facial muscles). To be able to test our hypothesis, we 
restricted direct social input to (I) a critical learning period defined in terms of a start 
and end trail (as discussed above), and (II) the cell indicated by e (Figure 1). Only 
when the agent moves around in this cell and is in a social input trial, the simulation 
speed of the experiment is set to one action per second enabling affective feedback. 

7   Results 

The results clearly show that learning is facilitated by social reinforcement. In all 
three social settings (Figure 2a, b and c) the agent needs fewer steps to find the food 
during the trials in which the observer provides assistance to the agent by expressing 
positive or negative affect. Interestingly, at the moment the observer stops 
reinforcing, the agent gradually looses the learning benefit it had accumulated. This is 
independent of the size of the social reinforcement (both social learning curves in 
Figure 2a and b show dips that eventually return to the non-social learning curve). 

 

 

Fig. 2. Results of the learning experiments. From top to bottom showing the difference between 
the non-social setting and social setting a, b, and c respectively. 
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Loss of learning benefit as observed in social settings a and b (learning curve 
moving up, starting at trial 30 and 25 respectively) can be easily explained. The social 
reinforcement was not given long enough for the agent to internalize the path to the 
food (i.e., propagate back the food’s reward to the beginning of the path). As soon as 
the observer stops reinforcing, the agent starts to forget these rewards, i.e., the MLPs 
are again trained to predict values as they are without social reinforcement. So, either 
the observer should continue to reinforce until the agent has internalized the solution, 
or the agent needs to be able to build a representation of the social reward function 
and use it when direct social reinforcement is not available. We have experimented 
with the second (social setting c): we enabled the agent to learn the social reward 
function. Now the agent uses direct social reinforcement at the emotional input spot 
(e, Figure 1) during the critical period, and uses its social reward prediction, Rsocial(s), 
when direct social reinforcement stops. Results clearly show that the agent is now 
able to keep the benefit it had accumulated from using social reinforcement (Figure 
2c). These results show that a combination of using social reinforcement and learning 
a social reward function facilitates robot learning, by enabling the robot to quicker 
learn the optimal solution to the food due to the direct social reinforcement as well as 
keep that solution by using its learned social reward function when social 
reinforcement stops. 

8   Conclusion, Discussion and Future Work 

Our results show that affective interaction in human-in-the-loop learning can provide 
a significant benefit to the efficiency of a reinforcement learning robot in a continuous 
grid world. We believe our results are particularly important to human-robot 
interaction for the following reasons. First, advanced robots such as robot 
companions, robot workers, etc., will need to be able to adapt their behavior 
according to human feedback. For humans it is important to be able to give such 
feedback in a natural way, e.g., using emotional expression. Second, humans will not 
want to give feedback all the time, it is therefore important to be able to define critical 
learning periods as well as have an efficient social reward system. We have shown the 
feasibility of both. Social input during the critical learning periods was enough to 
show a learning benefit, and the relatively easy step of adding an MLP to learn the 
social reward function enabled the robot to use the social reward when the observer is 
away.  

We have specifically used an experimental setup that is compatible with a real-
world robot: we have used continuous inputs and MLP-based training of which it is 
known that it can cope with noise and generalize over training examples. As such we 
believe our results can be generalized to real-world robotics. However, this most 
certainly needs to be experimented with. 

A related issue is that the training time needed to learn our (arguably) simple task 
is quite long. This is also due to the representational format of the environment 
resulting in long state-action sequences to the goal state with states that resemble each 
other quite a lot. A discrete world with less, more discriminative, states can use a 
standard form of reinforcement learning and will show a more marked effect of 
intermediate social reinforcement.  
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Future work includes a broader evaluation of the EARL framework including its 
ability to express emotions generated by an emotional model plugged into the RL 
agent. Further, we envision to experiment with controlling metaparameters (such as 
exploration/exploitation and learning rate) based on the agent’s internal emotional 
state or social rewards [3][11][18]. Currently we use simulated annealing-like 
mechanisms to control these parameters. Further, the agent could try to learn what an 
emotional expression predicts. In this case, the agent would use the emotional 
expression of the human in a more pure form (e.g., as a real-valued vector of facial 
feature intensities as part of its perceived state s). This might enable the agent to learn 
what the emotional expression means for itself instead of simply using it as reward. 

As mentioned earlier, no distinction is made between different facial expressions 
that portray positive emotions or negative emotions. For example, no difference is 
made between the meaning of sadness versus anger. Thus, the current setup is highly 
simplified regarding the type of information that can be communicated through the 
affective channel. Future work includes a coupling between other reinforcement 
learning parameters and other aspects of facial expressions. For example, fear 
portrays a future danger and as such could be used by the agent to reconsider its 
current actions used for action-selection. Anger communicates a form of blame: the 
agent should have known better. This could be used to reevaluate (and perhaps 
internally simulate) a stored sequence of recent interactions in order to come up with 
an alterative, more positive, outcome than the current one.  

Another way to extend this work is proposed by Thomaz, Hoffman and Breazeal 
[45]. Currently, the simulated robot is influenced by the human observer only at a 
certain spot in the maze. This is quite limited. However, it has been proposed [7][45] 
that human tutors could very well use a robot’s behavioral cues as a signal to 
intervene with the learning process. For example, agent-to-teacher signals such as 
gaze, gesture and hesitation could be used by the tutor to, for example, propose 
actions to the agent, give motivational feedback etc. [45]. In our setup, we have often 
observed behavior that can be characterized as hesitation (e.g., the simulated robot 
switching between turning left and right but not deciding on really making the 
complete turn to take a branch in the maze). It would be interesting to allow the 
human tutor to influence the robot more freely, and to investigate if (1) humans tend 
to recognize hesitation behavior in our setup and (2) if affective feedback can still be 
used in these circumstances or whether a more guidance-based approach is need at 
these hesitation moments.  

With regards to human computing [32], our work shows two things: real-time 
natural feedback (in our case, facial expressions) is feasible and desirable for robot 
learning, and, a personalized reward function can be learned based on this real-time 
interaction. This is relevant to two issues in human computing: dynamics and 
learning/education. Our work quantitatively shows that dynamic interaction with a 
simulated learning robot, using natural means of input (face) instead of traditional 
means (keyboard, mouse) enhances learning of robot behavior. Our interpretation of 
dynamics in this paper is somewhat different from the dynamics as meant in [32], i.e., 
the dynamics of the behavioral cue itself and the problem of deciphering these 
dynamics. Nevertheless, dynamic interaction is an important issue to human 
computing: one would not want to have to stop the robot before feedback can be 
communicated. Regarding the second issue, i.e., how to learn the user specific 
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meaning to an interactive pattern, we have shown that it is feasible to learn in real-
time a personalized social reward function that the robot can use to train itself. A 
straightforward addition to this work would be to learn multiple social reward 
functions depending on, e.g., user and task context, such that the robot can select 
which reward function to use in what context. This would help the robot adapt to new 
contexts in a lazy and unsupervised way [32]. As we have already mentioned earlier, 
one could use a strategy in which the robot does not directly couple reward to facial 
expressions, but instead learns to couple facial features to reward. Now, a robot could 
first learn what different expressions mean to different users, and subsequently use the 
appropriate reward function to adapt its behavior. 

Finally, a somewhat futuristic possibility is actually quite close: affective Robot-
Robot interaction. Using our setup, it is quite easy to train one robot in a certain 
environment (parent), make it observe an untrained robot in that same environment 
(child), and enable it to express its emotion as generated by its emotion model using 
its robot head, an expression recognized and translated into social rewards by the 
child robot. Apart from the fact that it is somewhat dubious if such a setup is actually 
useful (why not send the social reward as a value through a wireless connection to the 
child), it would enable robots to use the same communication protocol as humans. 

Regarding the “usefulness” argument just put forward, it seems to apply to our 
experiment as well. Why didn’t we just simulate affective feedback by pushing a 
button for positive reward and pushing another for negative reward (or even worse, by 
simulating a button press)? From the point of view of the robot this is entirely true, 
however, from the point of view of the human—and therefore the point of view of the 
human-robot interaction—not at all. Humans naturally communicate social signals 
using there face, not by pushing buttons. The process of expressing an emotion is 
quite different from the process of pushing a button, even if it was only for the fact 
that it takes more time and effort to initiate the expression and that the perception of 
an expression is the perception of a process not a discrete event (like a button press). 
In a real-world scenario with a mobile robot in front of you it would be quite 
awkward to have to push buttons instead of just smile when you are happy about its 
behavior. Further it would be quite useful if the robot could recognize you being 
happy or sad and gradually learn to adapt its behavior even when you did not 
intentionally give it a reward or punishment. Abstracting away from the actual 
affective interaction patterns between the human and the robot in our experiment 
would have rendered the experiment almost completely trivial. Nobody would be 
surprised to see that the robot learns better if an intermediate reward is given halfway 
its route towards food. Our aim was to investigate if affective communication can 
enhance learning in a reinforcement learning setting. Taking out the affective part 
would have been quite strange indeed. 
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