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Abstract

In this paper we test the hypothesis that internal simulation of
behavior has a robust adaptive (learning) advantage. From an
evolutionary perspective, it is plausible to assume that agents
that simulate behavior have an additional survival value
compared to those that do not. We present experimental
results with a computational model of learning and decision-
making. Our experiments are based on biasing the agent’s
action-selection by a simulation of its future interactions.
Using our model, we show that this influence of simulation on
learning results in a significant learning advantage. Because
increased individual adaptation is an evolutionary
advantageous feature, this is a relevant result for the
evolutionary plausibility of the simulation hypothesis.

Keywords: action-selection; adaptive agent; reinforcement
learning; simulation hypothesis; computational model.

Introduction
It is important to understand the nature of reasoning in
adaptive agents, both natural and artificial. This
understanding is needed, for example, to efficiently solve
problems related to the frame problem and to understand
mechanisms of generalization versus specialization of
knowledge. Reasoning itself assumes there is something to
reason about, i.e., knowledge. Reasoning in the context of
adaptive agents thus implies there are (at least) two parallel
and complementary processes: first, knowledge acquisition,
i.e., learning, and second the actions resulting from
reasoning upon this acquired knowledge, i.e., behavior.
Reasoning essentially is about making an informed choice, a
choice informed by the acquired knowledge and made
possible by the constraints of the body of the agent.

The simulation hypothesis (Hesslow, 2002) states that
thinking consists of internal simulation of interaction with
the environment. This hypothesis is based upon three main
assumptions: simulation of actions£actions can be prepared
not necessarily resulting in execution£, simulation of
perception£perceptions can be generated by the brain itself
and not necessarily need external stimulation£, and
anticipation£the existence of associative mechanisms both
between real actions and perceptions and between simulated
actions and perceptions. Continuous activation of these
associative mechanisms constructs chains of simulated
prospective interactions, known as covert behavior. These
interactions bias actual behavior, known as overt behavior.

Hesslow (2002) equates thinking with conscious thought.
We use a broader definition of the simulation hypothesis,
namely: reasoning, as defined above, is facilitated by the
internal simulation of interaction with the environment. Our
definition of reasoning implies at least two relevant
processes, i.e., learning and behavior. We have studied the

influence of simulation on the learning of an adaptive agent.
Our experiments are based on biasing the agent’s action-
selection by a simulation of its future interactions. We use a
computational reinforcement learning (RL) model. Our
model allows a small amount of anticipatory simulation
concurrent with its reactive mode of operation. Our agent
lives in a gridworld in which it must autonomously learn to
forage. The agent has the computational model as "brain".
We compare to what extent different simulation strategies
result in a different learning performance.

This paper is structured as follows. We briefly discuss the
theoretical background, our computational model,
experimentation method, and agent system. We end with a
discussion of our results and a conclusion.

Theoretical Background
Interactivism (Bickhard 1998; 2001) is a crucial element to
our approach, besides reinforcement learning (Sutton and
Barto, 1998) and the simulation hypothesis. Interactivism
explains reasoning as resulting from the continuous
interaction between an agent and its environment.
Importantly, interactions can be active and prepared. Active
interactions prepare a set of next possible interactions,
referred to as interaction potentialities. These potentialities
become active when interaction with the environment
matches, and thus prepare further interactions. The concept
of active and prepared interactions is compatible with the
concept of simulated action and perception and the
associative chaining of interactions, and is used in our
computational model.

Interactivism and the simulation hypothesis have several
other important assumptions in common:

1). Thinking is not necessarily symbolic or ideally logical,
two of the important limitations of earlier models of
cognition. Animals do not necessarily think symbolically
(see, e.g., Anderson, 2003; Bickhard, 2001), and frequently
make mistakes (Cohen and Blum, 2002; Damasio, 1994).

2). Perception and action are two sides of the same coin,
and highly related through (at least) sensory-motor control
areas. This avoids the input-function-output paradigm of
cognition and is an important point£highly related to issues
surrounding the frame-problem£for future development of
a neuronal version of our model. However, in this paper we
do not focus on this point in detail.

3). These hypotheses closely relate to Damasio’s (1994)
concept of thinking as an "as if" loop, involving simulated
actions that are evaluated by their somatic markers,
emotional impact estimators. Somatic markers are attached
to outcomes of scenarios through learning. Three systems
are critically involved, the prefrontal cortex (PFC), the
somato-sensory cortex (SSC) and the body. The two
mechanisms behind these markers are the body-loop and the



"as if" loop. When the PFC signals the body to be in a
certain state, the SSC organizes itself according to the body,
i.e., the body-loop. The "as if" loop consists of the PFC
instructing the SSC to organize itself, bypassing the body.
The body-loop thus involves action, while the "as if" loop
involves simulated action. The "as if" loop produces
imagined£future£states, and the somatic markers that are
attached to these states equal the predicted emotional
outcome (reward/punishment). This signal is used to bias
decision-making (Damasio, 1994). Even though we do not
model the body of the agent, the somatic marker concept is
very useful to understand the relation between
reinforcement learning, emotion and decision-making.

Evolutionary Continuity and Adaptive Advantage
An important consequence of the simulation hypothesis is
that agents do not need a separate "decision module" that
evaluates the simulated interactions. Simulated interactions
are grounded in existing sensory-motor systems, elicit
previously learned emotional consequences and thereby bias
action-selection (Hesslow, 2002), much like Damasio’s
decision-making based on somatic markers and Bickhard's
(2000) action-selection based on preference towards one
interaction outcome rather than another. If the system
prepares to act in two different ways, but for some reason
one of these ways appears "more attractive", then the system
will eventually prepare the more attractive action and
thereby make a choice. Although this approach will result in
sub-optimal decisions at some points, it does circumvent the
necessity to logically search through large spaces of actions
in order to find the "best" action and it provides an efficient
heuristic for action selection.

Cruse (2002) argues along the same lines, stating that the
evolution of cognitive properties does not necessarily
requires the introduction of new additional modules. In
Cruse's case by module he primarily means "internal world
model", but the argument contains the same message:
evolutionary continuity.

So, two key issues of the simulation hypothesis are: (1) no
evolutionary leap between humans and other mammals, and
(2) no need for a special mechanism to evaluate the
imagined future state (Hesslow, 2002). These imply that:
� Notwithstanding evolutionary continuity, for simulation

to be evolutionary plausible, it seems fair to assume that
in a population of agents, those agents that simulate
behavior (having that feature) have additional survival
value compared to those that do not. In the case of an
adaptive agent, this survival value results in an
important way from the enhanced learning performance
of the agent. The better an agent is at adapting to a new
task, the more likely it is to survive. We will further
refer to this enhanced learning performance as adaptive
advantage, not to be confused with the long term
evolutionary advantage an agent is implied to have as a
result of the survival value resulting from the enhanced
learning performance.

� The simulation mechanism must be robust; small
changes in other parts of the agent's information
processing system may not seriously downgrade the
adaptive advantage.

� It must be possible to use existing (possibly slightly
changed) mechanisms to simulate and evaluate the near
future. This is compatible with Svensson and Ziemke
(2004) who stress that one of the keys to our
understanding of embodied cognition is to understand
how sensorymotor processes and higher-order cognition
share neural mechanisms, and this is compatible with
Cruse's (2002) line of argument mentioned earlier.

In this paper we test the hypothesis that internal
simulation of behavior has a robust adaptive advantage
without the need to make major changes to learning and
evaluation mechanisms.

Hierarchical-State Reinforcement Learning

 Figure 1a-d. Example instance of a model resulting from
the sequence of situations "1-2-1-3" presented to an initially

empty model. Dark-gray nodes are active at time t, light-
gray nodes were active at t-1.

To be explicit about the changes that enable our
computational model to use a small bit of anticipatory
simulation, we first explain the basic model (Broekens and
DeGroot, 2004) that does not implement the simulation
hypothesis. It is a predictive, connectionist, interactivist-
based computational model of learning and decision-
making, though it is not neural. It has the following
characteristics. (1) Information is stored as a directed graph
in which nodes encode interactions. (2) Interactions have a
stability property, learned through continuous interaction
with the environment, analogous to Bickhard’s (2000)
concept of stabilization and destabilization. (3) Interactions
have a value property, learned through reinforcement. (4)
Interactions can form between other interactions resulting in
a hierarchy of more and more complex interactions (Figure
1). By doing so the model builds hierarchical predictions of
future states. (5) Its initial state is empty, and it grows by
interaction with the environment: i.e., the model is only
used in an online learning setting. Every interaction takes
the same fixed amount of time. (6) When a new situation
presents itself at time t, the model automatically creates a
new node representing that situation. (7) Interactions that
were active at time t-1 are connected to this new node.
These connections are also represented as new nodes that
can subsequently function as more complex interactions
(e.g., creation of node "1-2" in Figure 1b). (8) Nodes are
created only if they do not yet exist (e.g., no second node
"1" in Figure 1c, but a new interaction node "(1-2)-1)" that



connects node "1-2" with node "1"). (9) Typically, at any
moment in time, many interactions are active, but at each
level of complexity only one interaction is active (e.g.,
Figure 1d, dark gray nodes). Active interactions include
those that have just taken place at time t, but also those
between the interactions at time t-1 and the interactions at
time t (e.g., node "1-3" and node "(2-1)-3" in figure 1d), etc.
(10) This process of interaction-chaining continues until a
maximum level, k, defining the maximum amount of
knowledge about situations in the past that is present in the
current state of the model, as well the maximum number of
interactions that can be active at one time (c.f. Figure 1). So
a node is a "gate" between a sequence of previous
interactions and a set of potential next interactions. We call
such a node an "interactron".

Figure 2a-c. Three different experiments. Agent is black,
lava is dark (red), food='F', roadblock='B', start location=’ S’

Tasks from left to right: find food, forage, invest.

Our experiments are performed in gridworlds. A
gridworld is a two dimensional grid containing positively
and negatively reinforced locations and objects, in our case,
lava (negative reinforcement of –1), roadblocks (–0.5), food
(+1.0) and empty£neutral£cells (Figure 2). The agent is
able to walk on any type of cell, but is discouraged to walk
on the lava (by the negative reinforcement). The agent
selects an action from its set of potential actions A={up,
down, left, right}, executes the action in the gridworld and
perceives the result of that action. One single interaction
with the environment (also referred to as situation) is
defined as an action-perception pair. The agent's perceptual
field has either a chessboard (Figure 2b) or a cityblock
(Figure 2ac) metric. For example, in Figure 2c, the agent
would perceive something like "plppp" representing the
(l)ava left of the agent and the (p)ath above, right, below,
and under the agent. If the agent came to this cell by moving
to (d)own, the interaction the model receives would be
"dplppp" (replacing, e.g., every node "1" in Figure 1).

Reinforcement Learning, Probabilities and Action
Selection
In our model we have implemented stabilization and
destabilization of interactions based on the insights of
Bickhard (2000). If a node x is activated, the usage x of that
node is increased by 1. The function pt

y(x) calculates the
conditional usage of node x under the assumption that y is
active at time t and is defined by:

Where x1,…,xn(y) the potential interactions predicted by node
y, n(y) the number of potential interactions predicted by y
and x³{x1,…,xn(y)}. For example, in Figure 1d, if we assume
that y="1" and active at time t, that x= "1-3", and that node

"1-2" has been active twice as often as node "1-3", then x1=
1-2 (i.e., the usage of node "1-2") and x2 = 1-3 ò 1-2 (i.e.,

the usage of node "1-3"). Therefore, in this case pt
y(x) equals

1/3, which is the naïve probability that x1 occurs under the
assumption y at time t. If pt

y(x) drops below the threshold
q£the destabilization rate£x is deleted including all its
dependencies. Consequently, consistent interaction with any
part of the environment results in a stable sub-graph of
nodes. Inconsistent interaction results in the destabilization
of the involved nodes and eventually in the deletion of these
nodes. We use q in our experiments to simulate different
rates of forgetting. Note that pt

y  is the local probability
function for y and that every node has its own function pt

y
(learned by interaction with the environment). Therefore, at
any time t at most (and during normal operation exactly) k
of these functions are active, for there are k active nodes.

Our reinforcement mechanism has two parts. First, when
the agent acts, all active nodes y receive a reinforcement
signal, rt, at time t that changes the direct reinforcement
value, ly, of these nodes with a learning rate r:

Second, every node has an indirect inherited
reinforcement n£the result of the back-propagated markers
of hierarchically higher nodes. l and n are summed into the
final value  l+n, reflecting Damasio's assumption that the
somatic marker of a predicted situation equals its own value
added to the sum of all the cumulative values of the
interactions it predicts. When a node y is active, the marker

t
y(x) of any hierarchically higher node x prepared by node

y, is used to update the indirect reinforcement, ny, of node y:

Markers are thus propagated back through the interaction
hierarchy only when the interactions to which they are
attached are prepared. This lazy propagation reflects the
probabilistic properties of the interactions with the
environment. This mechanism follows standard TD learning
mechanisms (Sutton and Barto, 1998) except, e.g., the
probabilistic value-function defined per node.

Action-selection is based on a winner-take-all (WTA)
mechanism and biased by the �of all prepared nodes. Note
that any interaction is composed of both an action and a
perception. All prepared interactions inhibit (negative ) or
exhibit (positive ) the level of activation lt

a_h at time t of
the agent's possible actions ah=a_h³A in the following way:

with active nodes yi,, and nodes xi
j where i denotes

dependency on yi and xi
j prepares ah (indicated by *).

Additionally, if there are any good actions (any lt
a_h>0)

the best action ah, i.e., lt
a_h=max(la_1,… ,la_m), is selected. If

there are only bad actions (all lt
a_h<0) a stochastic selection

is made based on la_1,… ,la_m; the action with the highest
activation therefore has the highest chance of being chosen
resulting in a probabilistic WTA action selection. So,
action-selection is simultaneously based on generic and
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specific knowledge, allowing it to learn and use generic
aspects of the environment as well as more specific ones.

Experimental results have shown that this model is able to
learn, unlearn and reuse information, and to solve a T-maze
like selection tasks where the agent learns to conditionally
use a crossing (Broekens and DeGroot, 2004).

Internal Simulation and Action-Selection Bias
Our basic predictive model does not include internal
simulation of behavior. To study the influence of simulation
on learning we add the following capability: after every real
interaction with the environment, the model simulates one
time-step ahead. Analogous to what Hesslow (2002)
describes, the model always is one step ahead of the actual
situation. To enable simulation we changed the model in the
following way. Instead of selecting an action based on past
interactions the following process is executed:
1. Select: at time t select a set of to-be-simulated

interactions from the interactions predicted by all k
active nodes.

2. Simulate: send the selected interactions to the model as
if they were real interactions. The model advances to
time t+1.

3. Reset-state: to be able to select an appropriate action,
reset the model’ s state (the active interactions) to the
previous timestep, i.e., time t.

4. Action-selection: select the next action using the
standard selection mechanism (explained later). The
propagated markers of the simulated interactions have
biased this action-selection.

5. Reset-markers: reset m, l and n of the interactions that
were changed at step 2 (simulation) to the values of m,
l and n of these interactions before step 2.

Step 1 selects predicted interactions to be simulated. In
our experiment we have used four different selection
mechanisms (also referred to as simulation strategy).
� First, no simulation (NON). The actions are selected as

described in the previous section and the 5-step
simulation procedure is not executed.

� Second, simulation of the predicted best interaction
(BEST). The winning interaction of the WTA selection
resulting from step 1 is sent to the model for simulation
(step 2). Every real interaction is accompanied by a
reinforcement signal. As this is a simulation we lack
such a signal. Instead, this signal is simulated using the
m of the winning interaction as reinforcement, so we
simulate the predicted interaction and its associated
marker, analogous to Damasio's (1994) "as if" loop.

� Third, a selection of not just the best, but the predicted
50% best interactions, a more balanced selection,
(BEST50). Again we simulate the reinforcement signal
using the m’ s of the simulated interactions.

� Fourth, all of the predicted interactions (ALL).
In essence, BEST, BEST50 and ALL simulate three

different values for the selection threshold of the WTA
interaction selection (ranging from high to low respectively)
that is used to select the interactions for the simulation step.

In the simulation step (2) the stabilization-destabilization
process is deactivated. Earlier experiments showed that,
when active, the agent’ s behavior is inconsistent with the
environment, probably because simulating certain
interactions alters the knowledge of the environment
because the conditional probabilities of the nodes change by
simulating an interaction, distorting the real probabilities.

After resetting the state to one that is appropriate to the
current situation (step 3), the simulation mechanism results
in: (1) a propagation of the markers m of the predicted
interactions at time t+1 to the n of the simulated interactions
at time t according to the reinforcement learning principle
used, and (2) an update of the direct reinforcement value l
of the simulated interactions at time t based on their own m.
This means that, without further changes, simulation by
itself not only propagates predicted reward and punishment
but also changes the direct reinforcement from the
environment. These learning effects are interesting to study,
however, here we want to study the effect of simulation on
learning by biasing action-selection. Therefore, after action-
selection, step 5 is needed.

The changes to the actual architecture of information
processing are minimal, an important fact in light of the
evolutionary continuity argument of the simulation
hypothesis. In a more dynamic model step 2, 3 and 5 would
have to be reconsidered.

Experimental Setup
Every simulation strategy is tested in three different tasks
that involve finding food, each task in its own unique
environment. The darker cells around the agent in Figure 2
show the agent’ s perceptual area for every task. Since we
also want to know how robust this advantage is, we vary the
learning rate r and the destabilization threshold q (see Table
1). For the first task the agent has to learn its way from a
randomly changing starting location (S in Figure 2a) to a
randomly changing food location. When successful, the
agent is replaced at a starting location and tries again.
Repeating this process enables the agent to learn how to get
from both starting locations to both food locations.

For the second task the agent has to learn how to optimize
foraging (Figure 2b). Now, the agent is initially placed in
the environment, after which it should just explore and find
food. The food locations are randomly selected, and the
challenge for the agent is to forage.

For the third task, the agent has to learn to overcome an
initial negative interaction (road-block, B in Figure 2c,
reinforcement of -0.5) in order to get to a larger positive
one (food, "F" in Figure 2c). We changed the reinforcement
of the food to +1.75 in order to compensate for the negative
reinforcement of the road-block. With this experiment we
wanted to test how the simulation strategies handle an
"investment". By setting the reinforcement of the food equal
to 1.75 the average reinforcement of the food remains 1.0.

Every experimental setup (c.f. Table 1) is run 15 times.
For every run the agent has 255 trials to find the food. It has
to learn the properties of the task within these 255 trials. For
every trial the agent has a maximum of 1000 steps to
actually get to the food. If the agent reaches this maximum,
the agent advances to the next trial.



Table 1: Venn diagrams of statistical difference between
simulation strategies. Every diagram (cell in table) is a

representation of these differences in one setting. Overlap
means there is no statistically significant difference (one
tailed t-test, a=0.05, n=15). Higher is worst (more steps),
lower is better (less steps). Light is NON and dark is ALL

and interpolated for BEST and BEST50.

Task
Find food

Forage

Invest

Results and Discussion
Because our goal is to compare the relative effect in terms
of overall performance between different simulation
strategies, not to optimize parameters, r and q have been
chosen based on workable values and we have not done an
exhaustive search for "the best" parameters. This also

explains our quantitative comparison approach (Table 1).
We compare the average of the total number of steps needed
to finish one run (one run equals 255 trials, we average over
15 runs). If every step is assumed to cost some effort, this
average is a measure for the performance of a specific
setting (a tuple of strategy, task, r and q). Comparison of
these averages gives an overall idea of the adaptive
advantage of the different simulation strategies. The lower
the average, the better the strategy is. Also, by comparing
these averages, we can identify the relation between
strategy, task, r and q. Individual learning curves (Figure 3)
are not needed to compare the overall performance of
strategies and will only be considered if needed to explain a
certain relation in more detail.

Figure 3. Prototypical simulation effect (ab), a=NON,
b=ALL, and specific simulation effect (cd), c=NON,

d=ALL. Trials on x, steps to complete a trial on y

In general, the following results have been observed. The
ALL simulation strategy has a robust adaptive advantage
compared to the other strategies, specifically at the forage
task. ALL is either among the best-performance strategies or
there is no difference between strategies at all. This suggests
that internal simulation of interactions, even if it is just one
step ahead, helps an agent to learn a task by providing an
extra action-selection bias, and thereby provides an adaptive
advantage for the agent. In general this is because ALL
either converges faster or better (or both). As a prototypical
example, observe the difference in learning curves between
(NON, forage, r=0.5 and q=0.01) and (ALL, forage, r=0.5
and q=0.01) in Figure 3ab. More specific, this is because
the forgetting rate and the difficulty of the task disrupt
learning almost entirely in the NON case (invest, r=0.5 and
q=0.01, Figure 3cd). Two notable exceptions (’E’, Table 1)
are at the find food task with r=0.8, q=0 and at the invest
task with r=0.8 and q=0.05. The first shows that BEST
performs significantly better than NON, the second shows
that BEST50 performs significantly better than the rest.

To explain these effects we consider the following three
reasons. First, to solve the forage task the agent requires an
explorative, broad view. There is no best path to learn, and
instead the agent has to learn where food can be found on

a b

c d

E
E

E



average. If the agent always tries the local "best" solution
(i.e., uses NON or BEST), it runs a larger risk of ending up
in a local minimum. ALL forces the agent to simulate all of
its prepared interactions, including those that appear bad but
have a good result at t+2. Simulation of an apparent bad
interaction can still bias action-selection in a way that favors
that interaction if the resulting interaction at t+1 is good.
This results in a broader view. In contrast, to solve the find
food task, the agent needs to quickly propagate back the
values, it has to find the best path. A broad view is not
necessary here, for find food is a simple and very goal
directed task. The simulation strategy that quickly
propagates the positive reinforcement back to the beginning
performs best. Both BEST and NON only try the best
prepared interaction. So the advantage of the broad view of
ALL compared to NON and BEST is less important in the
find food task. This is supported by the fact that at the find
food task ALL is significantly better than BEST for only 2
settings, while in the forage task ALL is significantly better
than BEST for all settings.

Second, compared to NON, ALL/BEST50 is robust to
different rates of forgetting q, but this effect is specifically
noticeable in the invest task, where even a small q (=0.01)
disrupts learning for NON but not for ALL. This task is
difficult, so the agent needs more time to learn. This means
that there is more time to forget parts of the already built
world model. Because ALL and BEST50 can simulate
interactions that appear bad but are good at t+2, they also
have a higher chance at influencing the action-selection
process such that a good backup action is chosen when a
part of the model has been forgotten. ALL and BEST50
provide a more balanced heuristic to select the next
interaction. This is supported by the more hockey stick
shaped learning curve of (ALL, invest, r=0.5 and q=0.01)
(Figure 3d) compared to NON (Figure 3c). It seems that
NON forgets knowledge at such a rate that performance can
actually get worse (around t=60), while the performance of
ALL first increases quickly after which it keeps increasing
slowly.

Third, learning rate seems to affect NON the most (not
shown in figures). This is due to the fact that learning
depends on how quickly the model propagates back the
positive reinforcement of the food. Since all simulation
strategies simulate 1 step ahead, the positive reinforcement
is visible earlier, thus affecting simulation strategies less
than NON. This is also the reason why simulation is
dramatically better than NON on the invest task (c.f., Figure
3cd). The roadblock investment is a problem for NON, but
simulation can overlook the investment to the food reward.

Last, at this point it is unclear why BEST50 performs
better than ALL at the invest task, r=0.8 and q=0.05.

Cognition, Planning, and Simulation of Behavior
We currently connect nodes£and encode and compare
information in these nodes£in a way that works in simple
gridworlds but introduces problems for real-world
navigation. Specifically, the number of nodes exponentially
increases if the complexity of the world (and actions of the
agent) increases. In light of the hypothesis that cognitive
systems are those that have the ability to plan (in contrast to

reactive systems, see e.g. Cruse, 2002), this is an important
shortcoming of our computational model. If the world is
complex, many interactions can be prepared (planned),
resulting in an explosion of simulation effort (specifically
for ALL). This is highly related to both (a) the fact that
nodes are distinct even if they share many of the features of
other nodes and (b) the fact that our model does not extract
relevant features from the environment, but instead features
are encoded in the nodes and assumed equally important.
We are working on a neuronal implementation of the nodes
in order to start to address this issue. However, in this paper
we have focussed on the overall mechanism of simulation.
We believe that the positive adaptive effect of this
mechanism exists even if our use of nodes changes.

Conclusion
Using our computational model, we have shown that the
influence of simulation on learning has a significant
learning advantage. This positive effect occurs in three
different learning tasks, and for a variety of learning rates as
well as rates of forgetting. Since increased individual
adaptation is an evolutionary advantageous feature, this is a
relevant result for the evolutionary plausibility of the
simulation hypothesis. We realize that such conclusions
based on computational models should be made carefully.
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