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Abstract. Reinforcement learning (RL) agents can benefit from adap-
tive exploration/exploitation behavior, especially in dynamic environ-
ments. We focus on regulating this exploration/exploitation behavior by
controlling the action-selection mechanism of RL. Inspired by psycho-
logical studies which show that affect influences human decision making,
we use artificial affect to influence an agent’s action-selection. Two exist-
ing affective strategies are implemented and, in addition, a new hybrid
method that combines both. These strategies are tested on ‘maze tasks’
in which a RL agent has to find food (rewarded location) in a maze. We
use Soar-RL, the new RL-enabled version of Soar, as a model environ-
ment. One task tests the ability to quickly adapt to an environmental
change, while the other tests the ability to escape a local optimum in or-
der to find the global optimum. We show that artificial affect-controlled
action-selection in some cases helps agents to faster adapt to changes in
the environment.

1 Introduction

At the core of emotion and mood are states that have certain levels of valence
and arousal, i.e, affective states. Valence represents the goodness versus badness
of that state, while arousal represents the activity of the organism associated
with that state. Affect plays an important role in thinking. Normal affective
functioning seems to be necessary for normal cognition [1]. In fact, many cogni-
tive processes (attention, memory) are to some level influenced by affective states
[2,3]. Acknowledging the need for affect in human decision making, we investi-
gate how artificial affect can be used to control an artificial agent’s equivalent
for decision making, i.e., its action-selection mechanism.

Different learning tasks and often even different phases in a single task re-
quire different learning-parameters. Tuning these parameters manually is la-
borious and the algorithms currently available for automatic tuning are often
task-specific or need several meta-parameters themselves. Better methods for
regulating meta-parameters are needed. In this paper we focus on regulating
exploration/exploitation behavior, an important outstanding problem.
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More specifc, we compare diferent methods that use artificial affect to control
the greedyness versus randomness of action-selection, thereby influencing ex-
ploitation versus exploration respectively. Two existing affect-controlled action-
selection strategies are implemented and their performance is compared with
that of static action-selection strategies and a new affect-controlled strategy.
These strategies are tested on two tasks in which an artificial agent has to find
the optimal path to food in a maze. One task tests the agent’s capacity to adapt
to a change in its environment. The second task tests the agent’s ability to escape
a local optimum in order to find the global optimum. Affect is operationalized
as a measure that keeps track of ”how well the agent is doing compared to what
it is used to”. As such, in this paper we only model the valence part of affect.
For a psychological grounding of artifical affect as used in this paper the reader
is referred to [4].

In the next sections we first introduce the core components of our approach,
after which we discuss our experimental results.

2 Learning, Action-Selection and Soar-RL

The agents in this project are Soar-RL agents. Soar (States, Operators and
Results) is a production-rule based architecture [5] that enables the design of
cognitive agents, and is used extensively in Cognitive Modelling. Soar agents
solve problems based on a cyle of state-perception, proposal of actions, action-
selection, and action execution.

Soar has recently been augmented with reinforcement learning. This new ver-
sion, Soar-RL [6], uses Q-learning [7], which works by estimating the values of
state-action pairs. The value Q(s, a) is defined to be the expected discounted
sum of future rewards obtained by taking action a from state s and following
an optimal policy thereafter. Values learned for actions are called Q-values, and
are learned by experience. From the current state s, an action a is selected. This
yields an immediate reward r, and arrival at a next state s′. Q(s, a) is updated
by a value propagation function [7].

Important to our research is that in each cycle, Soar-RL uses a Boltzmann
equation (see Eq. 1) to select an action from a set of possible actions.

P (a) =
eQt(s,a)·β

∑n
b=1 eQt(s,b)·β (1)

P (a) is the probability of action a being chosen. Qt(s, a) is the estimated value for
performing action a in state s at time t. This equation returns the probability of
action a being chosen out of the set of possible actions, based upon an agent’s Q-
values of those actions and upon the variable β, called inverse temperature. The
β parameter controls the greediness of the Boltzmann probability distribution.
If β ⇒ ∞, the system becomes deterministic and will select the action with the
highest estimated value. If β ⇒ 0, each action has the same probability ( 1

n ) of
being selected. In other words, a low β corresponds to random behavior and a
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high β to greedy behavior. This β can be adjusted during simulations and is
used by our adaptive strategies for regulating the agent’s behavior.

Soar-RL creates new actions and updates the estimated values of existing
actions as they are explored. Therefore, exploration is needed to construct a
good model of the environment. When the agent’s model of the environment
(its state ⇒ action mapping) is accurate enough, the agent should exploit its
knowledge by performing greedy behavior in order to maximize the received
rewards. Thus, a strategy balancing exploration/exploitation is needed in order
to perform tasks efficiently. However, it is hard to decide when an agent should
stop exploring and start exploiting, especially in dynamic environments.

3 Affect-Controlled Action-Selection

To address the aforementioned exploration/exploitation tradeoff problem, we
investigate whether artificial affect can be used to control the β parameter. For
more detail on the relation between artificial affect and natural affect see [4][8].

3.1 Schweighofer and Doya’s Method

Schweighofer and Doya [9] proposed that emotion should not just be considered
‘emergency behavioral routines’, but a highly important component of learning:
emotion can be considered a metalearning system. Doya argued that a mapping
exists between RL parameters and neuromodulators [10]. The β parameter is
regulated by a search strategy. A random amount of noise is added to the β and
the newly obtained β is tested. If the resulting behavior proves to perform better,
then the β is adjusted in the direction of the noise. If, for example, positive noise
yields higher rewards, then the β is increased.

In Schweighofer and Doya’s model (referred to as SD), β is governed by the
following set of equations:

β(t) = eκ + σ(t) (2)

β is used in the Boltzmann distribution to determine the amount of exploration,
σ is a Guassian noise source term with mean 0 and variance ν. A new noise value
is drawn every N steps, with N � 1.

Δκ = μ · (r̄(t)− =
r (t)) · σ(t − 1) (3)

r̄(t) is the short-term average reward and
=
r (t) is the long-term average reward.

μ is a learning rate.

Δr̄(t) =
1
τ1

· (r(t) − r̄(t − 1)) (4)

Δ
=
r (t) =

1
τ2

· (r̄(t)− =
r (t − 1)) (5)

τ1 and τ2 are time constants for respectively the short-term and the long-term.
The term (r̄(t)− =

r (t)) in equation 4 represents valence: positive when doing
better than expected, negative when doing worse than expected.
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3.2 Broekens and Verbeek’s Method

Where Schweighofer and Doya use a search-based method, Broekens and Verbeek
[8] use a direct relation between affect and exploration. High valence results in
exploitation, while low valence leads to exploration. As a measure for valence,
the difference between short and long term average rewards is used. This method
(referred to as BV) is not a search algorithm and does not attempt to find an
optimal value for β, but tries to balance exploration/exploitation by responding
to changes in the environment.

The following equations are used to govern the agent’s exploration behavior:

ep = (r̄(t) − (
=
r (t) − f · σltar))/2 · f · σltar (6)

ep is a measure for valence and σltar is the long-term variance of r̄(t). r̄(t) and
=
r (t) are again short-term and long-term running averages and are computed in
the same way as in SD.

β = ep · (βmax − βmin) + βmin (7)

Thus, the agent’s valence (on a scale from 0 to 1) directly translates to the
amount of exploration/exploitation (on a scale from βmin to βmax).

3.3 Hybrid-χ2 Method

Both methods described above have their own strengths and drawbacks. BV has
the ability to respond quickly to sudden changes in the environment. However,
it is bound to a fixed range of values, and β will always converge to the center
of that range when the environment stabilizes. SD, on the other hand, is able to
cope with a broader value range, and β converges to the optimal1 value in this
range. The downside of this method is that it has trouble responding to sudden
changes (see results section). To overcome these drawbacks, we propose a new
method, The Hybrid-χ2 method. This method combines both methods and uses
the environmental stability to balance the contribution of SD and BV to the
actual β used. The more substantial the changes in the environment, the more
influence BV has. In stable environments, SD gets most influence. A heuristic
for detecting environmental change is the reward distribution. If we assume two
equally long, consecutive reward histories, the difference in reward distribution
between these histories is a measure for the stability of the environment. A large
difference indicates substantial changes2, and vice versa.

This difference is computed with the aid of the statistical χ2 test. It measures
whether two sets of numbers are significantly different, and returns a value be-
tween 0 (different) and 1 (equal). In our case, we compare the long term rewards

1 Possibly a local optimum.
2 Or a situation in which the agent is heavily exploring, in which case BV should also

have the most influence.
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with the short term rewards and compute the significance of the differences.
Using χ2, β is computed as follows:

β(t) = χ2 · βSD + (1 − χ2) · βBV (8)

The value for β is restricted to the interval [βmin . . . βmax] because BV directly
couples valence to the amount of exploration. Some flexibility was added to this
interval by using the, β found by SD to influence βmax. If SD’s proposed β is
different from the current value, the maximum value of the range will be adjusted
according to:

βmax = βmax + χ2 · (βSD − β(t − 1)) (9)

4 Experiments

We tested the methods described in the previous section on two different maze
tasks. We focused on the resulting exploration/exploitation behavior of these
methods, not exclusively on their learning performance. In addition to the affec-
tive methods, we tested Soar-RL’s own performance for several fixed β’s without
the addition of affect-controlled action-selection. We refer to ‘unaffected’ Soar-
RL as the static method.

In both tasks a Soar-RL agent needs to find food in a maze. The vision of the
agent is limited to one tile in all directions. For both mazes, this vision is large
enough to satisfy the Markov property3. The agent has to learn this behavior
purely from the rewards it receives.

4.1 Cue-Inversion and Candy Task

In the maze of Figure 1a, the agent has to learn to go to A if the light is on and
to B if the the light is off, using the shortest path. A reward of +1 is given if the
agent reaches the correct goal state. -1 is the reward for going to the wrong goal
state or for walking into a wall. The agent is set back to the starting position
when an end-state has been reached.

After 3000 steps, after the agent has learned this maze quite well, we switch
the rewards of the two goal states; so now the agent has to go to A when the
light is off to get the +1 reward and to B when the light is on. The agent has to
unlearn its previous behavior and learn a new behavior. This task is constructed
to be similar to psychological cue inversion tasks (e.g., [11]) and tests the agent’s
capacity to adapt to a sudden change in the environment. One run equals 8000
steps in this maze.

Figure 1b shows the maze used for the Candy task (see also [4]). Close to the
starting position of the agent is some candy (end state B). The agent receives
a reward of 0.5 for grabbing this candy. A few steps further is some real food
(A), rewarded with +5. The reward per step is higher for going after this food

3 No knowledge of the history of states is required to determine the future behavior
of the environment.
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Fig. 1. a: Maze used in Cue-inversion task. b: Maze used in Candy task.

and it is the agent’s goal to find this real food, instead of the candy. Whenever
the agent finds the candy or the real food, it is set back to the starting position.
This task tests the agent’s ability to escape a local optimum. Contrary to the
other task, this task does not have any switches, but it does however require
flexible behavior: the agent needs to switch from initial exploration to exploiting
the local optimum (the candy) and then revert to exploration to find the global
optimum (the real food) and exploit that afterwards. In this task a run is aborted
at t=25000. At this point it was clear how different methods perform.

4.2 Simulation Settings

Simulations are performed using a short term moving average of 50 rewards and
a long term moving average of 400 short term averages. In initial experiments,
these values proved to be useful for determining whether ‘we are doing better
than we used to do’. The two other parameters used by Q-learning (the learning
rate (α) and a discount factor (γ)), are set at the default values of Soar-RL:
α = 0.4 and γ = 0.9. Results are aggregated over 50 runs. This proved to be
enough to reproduce the same results when repeating the experiments. Every
30 steps, the average values of β and the received rewards are computed and
printed.

5 Results

BV performs best on the cue inversion task (Figure 2). It is faster than the three
other methods both for initial learning and for relearning after the cue inversion.
The impact of the cue-inversion on β is visible in Figure 2B. The agent appears
to benefit from the exploration phase after the inversion. SD performs poorly,
even worse than the control method. SD does not seem to respond to the switch,
but slowly increases β over time instead. This is an average β and the actual
situation is somewhat more complex. We measured a high diversity in results:
the standard deviation near the switch is 8.1, but even at step=6000 it is still 5.6.
Data of individual runs seem to suggest that there are runs that increase rapidly
to the maximum value of β=30 and there are some that cannot escape low β
values. These high β runs do not compensate for the lower rewards obtained by
low β runs.

The characteristics of the β curves of the Hybrid-χ2 method are quite similar
to those of BV: β quickly decreases after the inversion and it slowly converges
to a center value. SD’s influence in determining the βmax is not noticeable. All
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Fig. 2. Graphs A and C display the average reward per time step on the Cue-inversion
task (A) and the Candy task (C). Graphs B and D show the corresponding value for
β. The inversion occurs at t=3000 in the cue-inversion task.

runs seem to stay well within their initial ranges and no trend can be detected
besides the one that pulls the β to the center value.

It is clear from Figure 2C and 2D that SD performs poorly on the Candy
task. The β increases when the agent encounters the candy and, as a result, the
agent exploits the candy afterwards.

BV again clearly shows that it cannot search for an optimal β, it merely
responds to the rewards received: after an initial exploitation burst, β converges
to the center of the β range. Although the optimal center value for BV is close to
the optimal value (β=10) for the static method, BV’s ’noisy’ β value performs
slightly better than the static β value.

Again, BV’s component in the hybrid method has the upper hand. The β’s
are drawn to the center value (β=15). It is not fair to compare the rewards of
the Hybrid-χ2 method directly with those of BV, as the center values for the
hybrid runs were set higher than those of BV’s simulations. As mentioned above,
SD cannot compensate by decreasing β, as SD mainly attempts to exploit the
candy by increasing the β even further.

6 Discussion and Future Work

For an elaborate discussion of related work (e.g., the work on Soar and emotion
by Marinier [12], and the work on affect and problem solving by Belavkin [13]) we
would like to refer the reader to [14]. In this paper, we concentrate on comparing
the three methods discussed above. For more detail on BV, we refer to [4,8].

SD performed poorly on the given tasks. In the Candy task this is probably
due to the agent’s quick exploitation. To exploit the local optimum, a very high β
is beneficial. The random noise used as seed for the search process is not enough
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to trigger exploration. A similar problem can occur with a very low β: an agent
can get trapped in explorative behavior when changes to an already low β do
not change the agent’s behavior enough to lead to significantly different rewards.
Further increasing the noise, to counter these problems, would change SD into
a random search method, which is not the intention of SD.

On the switch task, SD performed worse than expected, given that successful
use was reported on another task [10]. In that task, an agent repeatedly reacts to
a stimulus by pressing one of two buttons, one leading to a small or large positive
reward, the other to a small or large loss. The problem is such that the optimal
behavior is to take a number of small losses but receive a large reward later. In
contrast taking a number of small rewards in the beginning results in a large loss
in the end. After a number of trials, the rewards are changed and the agent has
to switch from a 2-step planning situation to one where it must loose 7 times to
get the large reward at step 8. On this task, they found a strong response to the
switch and noticed the agent relearning the new scenario quickly, whereas our
results do not show a clear response to a change in the enviroment. A possible
explanation for this is that in Schweighofer and Doya’s scenario, there are no
walls or other none-goal states that give big negative rewards. The behavior
the agent showed before the switch is the worst possible thing to do after the
switch and thus exploration will be beneficial to the agent in terms of reward,
i.e., exploration is encouraged. In contrast, in our task higher exploration also
results in more bumping into a wall and can therefore be discouraged by SD.

SD seems to be more suitable for fine-tuning parameters in a stable environ-
ment, but its use as an adaptive control method is limited.

In the switch task, the β guided by BV improves learning performance, and
reacts to the switch. It qualifies for a useful affect-based method for steering the
β parameter. The opposite is true for the β in the Candy task. The method
guides β only when the agent is learning to find the candy. After that, the β gets
very noisy. The β fluctuates around its center value, only limited by the value
range imposed on β. Granted, learning performance is better than the best static
method, but not due to meaningfully balancing exploration and exploitation, as
is the method’s goal. As such, it does not qualify for a good adaptive method in
Candy-like tasks. The main cause for the instability is the standard deviation of
the long term average reward (σltar), which is meant to normalize valence, but
when the environment stabilizes, this term approaches 0. As a result, all minor
differences between

=
r and r̄ are magnified to extreme values. A possible solution

to this problem is the introduction of some noise in the reward history, such that
σltar never approaches 0.

It is clear that the hybrid method does not provide the desired behavior. The
influence of BV on SD’s measurements is probably one of the main reasons for
this. SD measures the influence of the added noise over a long period and then
checks whether the added noise was beneficial to the agent’s performance. With
BV influencing the β and thus the performance within this period, SD’s method
cannot accurately measure the influence of the noise. The result is that the two
methods are in each others’ way instead of cooperating. Updating BV’s β only
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when SD’s β is updated (i.e., not influence β during SD’s evaluation of its effect
on reward) is not an option; it dramatically reduces BV’s capacity to quickly
react to changes in the environment.

Another important reason for the failing of the hybrid method is the incorrect
assumption that BV stabilizes in a static environment. Because of large fluctua-
tions of BV, the two reward histories keep having different reward distributions,
and thus SD will never have much influence. It would be interesting to test the
performance of the hybrid method with the addition of noise as describe above.

As Soar-RL agents attempt to maximize reward over time, our performance
measure is the average reward the agent received per step: the agent’s Quality
of Life (QoL). Nonetheless, it would be interesting to also measure the ‘time to
goal’ to obtain more information on the agent’s actual behavior.

We only focussed on regulating exploration/exploitation through the β pa-
rameter. The methods in this paper might also be used to control other RL
parameters ([10] used their method to control α and γ as well). The χ2 test in
the hybrid method could be used to control, e.g., α.

Better hybrid methods might be constructed by merging a search strategy
and a directional approach by another balancing algorithm (instead of χ2). An
alternative would be to let one strategy search the window in which parameters
can vary, while the second determines the exact position within this window.

7 Conclusions

We conclude that Soar-RL agents can use artificial affect to directly control the
amount of exploration [4] by coupling valence to the β in the Boltzmann distribu-
tion used in action-selection. Experiments show that such agents adapt better to
a sudden change in the environment, as compared to agents that use an amount
of exploration that is either static or determined by an affect-based search strat-
egy (e.g., as used in [10]). These results are compatible with those presented in
[4], indicating that this specific benefit of affective control of exploration is not
tied to a particular learning architecture.

On the other hand, affect-based search enables convergence of this β to a
(local) optimal value, while the directed affect-based control method converges
to a ”middle” β value in a range of values. This requires careful setting of the
value range. The downside of the affect-based search method is that it cannot
guarantee to escape a local optimum (as in the Candy task), and that it cannot
react to sudden changes in the environment.

We conclude that the affect-based search method examined in this paper
is suitable for fine-tuning parameters in static environments, but that its use
as an adaptive control method is limited. We further conclude that directed
exploration-control is suitable for fast reaction to changes in the environment,
but has little use in static environments. Currently, our hybrid method that
attempts to merge positive elements of both does not behave as intended.
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Artificial affect can make a useful contribution to controlling an agent’s ex-
ploration/exploitation, but there is much work to be done and a better under-
standing of the interplay between human learning and affect is needed.
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