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Abstract
Classically, cognition assumes that the underlying
mechanisms of thinking are based on symbol
manipulation processes. This assumption has several
drawbacks, such as the issue of where symbols
(representations) actually come from. To overcome this
drawback, the interactivist approach proposes that
representations emerge from the continuous interaction
with the environment and subsequent anticipation of such
interaction. This approach provides understanding of the
nature of knowledge representation and reasoning in
adaptive agents. We have used the interactivist approach
as basis for an interaction-based computational model.
Our model is embedded in an adaptive agent whose task
it is to find food in a maze. Feedback about the agent’s
success is given through a reinforcement signal that
marks the current interactions. With this computational
model, we show the actual emergence of representation
as well as the emergence of what we call ’simple
reasoning’. Finally, we discuss the relation between our
approach and emergent artificial consciousness.

1. Introduction.

It is important to understand the nature of knowledge
representation and reasoning in adaptive agents. This
understanding is needed to efficiently solve problems
related to the ’frame problem’, to generalization versus
specialization of knowledge, and to information retrieval
from memory. In this paper we show how representations
and a simple form of reasoning emerge from a
computational model we have developed based on
interactivist assumptions. Our model is embedded into a
software agent that has to find its way through a maze in
order to find food. Although the task is simple - i.e. being
able to find food - we believe that the emergence of
representation and reasoning shows how our model, as
well as the interactivist approach, helps to understand the
nature of knowledge representation and reasoning in
adaptive agents. Additionally our computational model is
easy to understand and implement. The remainder of this
introduction explains the interactivist concepts that are
relevant to the experimental results presented in this paper

as obtained with our current computational model. The
next section describes our computational model related to
the interactivist approach, followed by a section on the
experimental results. We end this paper with an
interpretation of the results and a discussion relating our
approach to emergent artificial consciousness as well to
two recent theories of consciousness, the global
workspace theory [1] and the dynamic core model [6].
Finally, we discuss several directions for further research.

1.1. Interactivism and cognition.

Classical cognition assumes that the underlying
mechanisms of thinking are based on symbol manipulation
processes (see, e.g., [8]). One of the problems with this
account of cognition is the symbol-grounding problem,
where do symbols come from? This becomes specifically
important in light of the goals and plans of agents. Who
sets the goal, what is a plan, when is a goal detected as
being achieved and how is a goal represented? It has been
argued that answering these questions within the symbol
manipulative paradigm results in infinite regress and
cannot do away with the need for an external observer to
imbue meaning upon the symbols [3]. Interactivist
approaches to cognition (including some robotic
approaches [4]) attempt to solve this problem by moving
away from symbols as basis for representations. These
approaches adopt the more naturalist view that continuous
interaction between the agent and the environment is the
basis for representations [2,3]. More precisely, this
approach attempts to explain representations (and a large
amount of other adaptive and intelligent phenomena) in
terms of emergence of hierarchical levels of interaction
complexity [2]. At the lowest levels, representations
emerge based on potential interactions with the
environment, while at the highest levels complex
cognitive phenomena like consciousness emerge [2].

1.2. Interactivist concepts.

Several interactivist concepts are particularly important
for the interpretation of our experimental results. These
concepts are; interaction-potentiality (henceforth IP)
because this is the building block of representations;



representations, because we argue that at least one
emerges in our computational model; and reasoning,
because we argue that a simple form also emerges in our
computational model.

1.2.1. Interaction-potentialities. Any complex organism
must solve the problem of action selection [3]. Action - or
more precisely the potential to do something rather than
something else - is a basic characteristic of all living
organisms. Being able to make a selection presupposes the
existence of multiple possibilities. These are called
interaction-potentialities. This can be clarified with a
concrete example. When a bee encounters two different
flowers, it will choose to go to one of the flowers first.
Being able to choose assumes that the bee has (at least)
two potential actions that appear relevant in the current
environmental context (e.g., go to flower one, and, go to
flower two). These two actions are prepared by IPs,
reflecting the potential but not yet effectuated status of the
actions. Note that choice and selection are not meant as
deliberative processes, but more so as the potential to act
in one way rather than another as a result of interaction
with the environment.

1.2.2. Representations.  Although IPs can themselves
directly prepare actions, they can also prepare other IPs,
creating a hierarchy of growing complexity. This complex
hierarchy is learned based on the continuous interaction
with the environment, resulting in an interaction-based
model of the environment. Characteristic of such a model
is that it does not symbolically encode objects in the
environment, but it encodes a complex web of potential
(of potential of potential etc…) interactions with objects
in the environment.

Two important elements of representations can be
explained in terms of this web of IPs: content and truth-
value [3]. Content refers to the fact that a representation is
about something rather than something else, for example,
this is an apple and not a green balloon. The set of
prepared IPs is the current content of the representation.
An apple allows for eating and cannot be deflated, while a
balloon is inedible and can be deflated. Such differences
define the content for a specific representation.

Truth-value refers to the fact that an environment can
contain, for example, an apple or not. This is reflected by
the fact that some IPs might be prepared, but when the
actual action is performed, the environment reacts
differently. There is a discrepancy between the
potentialities and the actual outcome thus the
representation was not true in its entirety. For example, if
I bite in a balloon there is a bang, which would definitely
not happen when biting an apple. Ergo, there was no
apple.

When the outcome of a prepared IP differs from the
actual outcome, there is a system detectable error [2]. This

automatic detection of discrepancy between the real
environment and the predicted environment results in a
destabilization of the active IPs, while a lack of
discrepancy results in stabilization of the active IPs [3].
Thus an interactivist agent maintains a dynamic model of
the environment by acting in that environment, which is
computationally shown in [9].

1.2.3. Reasoning. Such a dynamic interactive model does
not possess a separate 'reasoning module' interpreting the
information present in the model. Reasoning in the context
of interactivism is an emergent property of the model
resulting from biases towards one interaction outcome
rather than another. If the system prepares to act in two
different ways, but for some reason one of these ways
appears 'more attractive', then the system will eventually
prepare the more attractive action and thereby make a
choice. The question is how to actually bias this
preparation. This can be achieved using reinforcement. A
positive reinforcement signal is attached to the active IPs
that prepared the beneficial action (beneficial, e.g.,
because the action favors survival of the agent). This
results in a higher probability of the action being prepared
again than before the reinforcement. In case of a negative
reinforcement this effect is reversed. This bias could then
be propagated through the web of related IPs resulting in
an overall bias towards the situation that prepared for the
beneficial action. In other words, decisions are made to
arrive at a beneficial situation.

1.3. Hypotheses.

To verify that reasoning can be an emergent property
of an interactivist representational system, we implement a
computational model based on interactivist concepts and
embed this model into a software agent. We first replicate
the emergence of representation as shown in [9] (although
we use a different computational model), and then
evaluate whether the agent shows any emergent behavior
that could be characterized as 'reasoning'. We define
reasoning minimally, as "any observable behavior that
reflects a beneficial decision between at least two
possibilities that is neither explicable due to chance nor
without representation".

2. Computational paradigm.

In this section we describe our overall approach and
some of the important design decisions for the
computational model we have used in our experiment. The
underlying assumption is that the computational model
considers both the agent as well as the environment of the
agent as its external environment. This means that, for the
model, there is no conceptual difference between action of



the agent and stimulus from the agent’s environment.
These are both called stimuli. This reflects the underlying
idea that action and stimulus are two sides of the same
coin.

2.1. Nodes and connections represent interaction.

The computational model consists of mainly a directed
graph (Figure 1). A node encodes either a stimulus or an
interaction. An interaction is a sequence of either two
stimuli (e.g., node ’D-1’ encoding for the sequence of
stimuli ’D’ and ’1’) or one interaction and one stimulus
(e.g., node ’(D-1)-D’ encoding for ’(D-1)’ and ’D’).  A node
is called primary if it encodes for a stimulus and
secondary if it encodes for an interaction. A secondary
node has two incoming edges. The first, s1, connects from
a primary or secondary node, and the second, s2, connects
from a primary node. In Figure 1 the left incoming edges
represent s1 and the right incoming edges represent s2.
Observe, for example in Figure 1c, the difference between
node ’D-1’ with a primary s1 and ’(D-1)-D’ with a
secondary s1. Every node has zero or more outgoing edges
that are always connected to secondary nodes.

The model’s behavior is explained next. A node in the
graph either is active at time t (dark-gray nodes), was
active at time t-1 (light-gray nodes) or is not active (white
nodes). The graph is empty at initialization. Whenever a
stimulus is perceived at time t, the node encoding for that
stimulus is activated. If no node exists, the model
automatically adds a new primary node to the graph (e.g.
node 'D' in Figure 1a). Primary nodes and stimuli have a
one-to-one relationship. Every primary node contains a
copy of one unique stimulus, allowing the node to be
activated based on a simple comparison function.

Every node that was active at t-1 is an s1 (e.g., node 'D'
in Figure 1b). The node that is active at time t is an s2

(e.g., node '1' in Figure 1b). All secondary nodes
connected to s1 and s2 are activated (e.g., nodes '1-D' and
'(D-1)-D' in Figure 1c). If a secondary node should encode
for the interaction between s1 and s2 but does not exist, the
model adds this node to the graph and then activates it
(e.g., node ‘D-1’ in Figure 1b). If an appropriate primary
or secondary node exists, no new node is created (e.g., the
dotted node 'D' in Figure 1c). Secondary nodes are logical
nodes and do not contain copies of stimuli. In our model a
secondary node is an IP. Such a node can be prepared by
an s1 without actually being active. When prepared, it
predicts a potential next stimulus. This prediction can be
confirmed by an s2, which is a node activated by a
stimulus. Once active, the secondary node prepares other
secondary nodes, enabling a growing hierarchy of
interaction complexity. Due to the continuous flow of
stimuli into the model, secondary nodes are created at
increasing hierarchical levels (Figure 1c and d). To limit

the computational complexity of our experiment we have
limited the maximum level.

Figure 1a-d. Interaction hierarchy resulting from the
sequence of stimuli ’D1D2’ presented to an initially

empty model at time t=0 to 3. ’D’ is the action ’down’,
’1’ and ’2’ are different cells in the maze. For further

explanation, see text.

2.2. Model-learning and task-learning: exposure
and reinforcement.

If a stabilization and destabilization mechanism is
added to the computational model, it is capable of
learning an adaptive model of the environment. This
mechanism is implemented using a usage-measure, I� �. If
a node is activated, the  of that node is increased by 1.
The function I� � calculates the usage of the node based
on that node’s  relative to the summed s over all nodes.
If �drops below a certain threshold the node is deleted
(including all its dependencies). Consequently, consistent
interaction with any part of the environment results in a
stable sub-graph of secondary nodes. Inconsistent
interaction results in the destabilization of the involved
nodes and eventually in the deletion of these nodes. Apart
from some difficulties related to 'forgetting' (like throwing
away a useful, but seldom used node), this approach
works well and is an intuitive and automatic mechanism
for learning and forgetting.

A second way of learning - important for decision-
making - is task-learning. Task-learning is not possible by
pure exposure to stimuli, since a priori preferences do not
exist in our model. We implement a form of reinforcement
to bias IPs. This should be enough for emergent
reasoning, as previously hypothesized. The reinforcement
mechanism is as follows. First, when the agent acts in a
way that favors survival, all currently active nodes are
marked with a 'computational somatic marker' (see [5] for
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a detailed account of somatic markers). This is the initial
reinforcement. Second, upon activation of a node x, the
markers 1… n that are attached to the n hierarchically
higher IPs that are prepared by node x, are used to update
the marker � of node x. The effect 1… n have on , is
relative to the usage 1… n of the n prepared
hierarchically higher IPs. For example in Figure 1d, if
node 'D' is active, it prepares 'D-1' and 'D-2'. If these
prepared nodes have usage 1 and 3 respectively, and both
received a marker at some previous time step, the marker
of node 'D' will be influenced 3 times more by the marker
of node 'D-2' than by the marker of node 'D-1'.  Markers
are thus propagated back through the IP hierarchy only
when the nodes to which they are attached are prepared.
This propagation reflects the probabilistic properties of
the environment since 1… n actually is the learned
distribution of the conditional occurrence of the n
hierarchically higher IPs under the assumption that x is
active. Third, the markers of all prepared IPs are
categorized by s2, and then summed (in Figure 1d, if 'D'
would be active, '1' and '2' are s2s resulting in two
categories). Now, only one s2 is randomly selected using
these category-markers as distribution. The category with
the highest marker therefore has the highest chance of
being chosen. The result is a probabilistic winner-take-all
selection of s2, which is the actual biasing mechanism.
This learning approach enables credit-assignment that is
local, not global, reflecting natural reinforcement
principles of current activity.

3. Maze learning experiment.

In order to test our model, and the interactivist hypothesis
of emergent decision making, we have developed a simple
interactive environment in the form of a 'lava' maze, in
which an adaptive agent is able to move up, down, left and
right. Three different mazes are used. The first maze
(Figure 2a-e) contains a starting location and two
(variable) food locations, which the agent should learn to
find. When arriving at a food location, the agent receives
a positive reinforcement and is replaced at a starting
location. Lava is a location with a negative reinforcement.
The agent is thus able to walk through the lava but it is
encouraged not to do so. The maze is constructed such
that it allows the detection of decision-making; it contains
a branch, leading to both the food locations. The second
maze (Figure 2f) additionally contains a second (variable)
starting location. The third maze (Figure 2g) is explained
later.

3.1. Stimulus-action pairs: IPs.

In our experiment two types of stimuli exist: agent
stimuli and environmental stimuli. Agent stimuli are up,

down, left and right and are called actions, while
environmental stimuli are arbitrary names of the locations
the agent visits, called e-stimuli. However, please note
that our computational model considers actions and e-
stimuli to be the same. The model proposes actions and
the agent reacts by executing them. Every action at time t
results in one e-stimulus at time t+1. Thus, the most
primitive IPs consist of action-e-stimulus and e-stimulus-
action pairs, while more complex IPs are built
hierarchically upon these. The proposal of actions is
biased based on the markers attached to the IPs, as
described above. In the discussion we describe a more
complex computational model that differs from this one
and that may result in more complex, adaptive and
intelligent behavior.

Figure 2a-g. Maze layout showing the two possible
food and starting locations. Lava is red (dark gray),
food is yellow (light gray) and the agent is black and

at its starting location. See text for explanation.

3.2. Experiment setup.

In this paper we report on the results of six
experiments. Every experiment is run 30 times. Every run
consists of 100 trials. On every trial the agent attempts to
find the food. To find a food location, the agent is allowed
to use a maximum of 1000 moves per trial after which the
agent is replaced at its starting location. The number of
moves (interactions) needed to arrive at the food location
is recorded per trial and averaged over the 30 runs,
creating a learning curve (Figure 3a-f).

In the first experiment the agent learns the optimal
route to the first food location (Figure 2c, 3a). In the
second experiment - using the trained model from the first
experiment - the food is moved to the second location.
The agent first unlearns the first food location and learns
the second food location (Figure 2d, 3b). In the third
experiment, the agent starts with an empty model, and the
food location is switched every trial (Figure 2c-e, 3c).
This allows us to evaluate if the agent is able to learn both
food locations. In the fourth experiment, the agent again
starts with an empty model and the starting position of the
agent is switched every trial but the food location is kept
constant (Figure 2f, 3d). This is done to verify the ability
of the model to cope with a varied starting position. In the
fifth experiment the model is first trained to recognize the
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route to the food location, just like in the first step.
Second, after learning the route to the food position, the
starting position of the agent is changed to a newly created
part of the maze (Figure 2g, 3e). This test allows us to
investigate the ability of the model to reuse existing
knowledge while adapting to a new situation. The sixth
experiment is an integrated test using both a varying food
location and a varying starting location (using the maze in
Figure 2f). Both the starting location and the food location
is randomly changed, effectively creating a situation in
which the 4 combinations of starting and food location
can occur. Please note that to conclude convergence this
experiment needs 200 trials per run (Figure 3f).

3.3. Results.

Figure 3a-f. Average learning curves (over 30 runs).
Trials are on the horizontal axe; steps needed to get

to the food are on the vertical axe.

Four main results have been observed. First, the agent
learns to use the white squares only (and not walk on
lava). When sidetracked, it learns to get back on these
white squares as quickly as possible. Second, the agent
learns the food location (Figure 3a), and is able to unlearn
this location when the food is moved to the second
location (Figure 3b). Third, after replacing the food to the
second location, the agent first appears to be exploring its
environment. Exploration in our case results from random
movements when there is no strong bias towards a certain
action. After an exploration period, the agent finds the
new food location, and by repetition learns the optimal
route to this new location. Interestingly, the optimal route
to the new food location is learned significantly faster than
to the old food location, even though the agent has more

difficulty finding the new location the first couple of times
as a result of unlearning the old location. This
phenomenon is shown by the high-starting but steep
learning curve in Figure 3b (new food location) compared
to the lower-starting but gradual curve in Figure 3a (old
food location). This suggests the use of available
knowledge about the lava and the first part of the route
that is common to both food locations. This suggestion is
supported by the result from experiment 5. Learning the
optimal route to a known food location after being
replaced to a newly created part of the maze is very easy.
The flat learning curve shows direct reuse of the
previously learned route and convergence to the optimal
solution is quicker (Figure 3e). The fourth result is that the
agent finds both food locations and is able to optimize the
route to both locations (Figure 3c). In other words, the
first time it passes the crossing it tries, for example, ‘up’ ,
and when food is not found at the end of the route, it
moves back and tries ‘down’ . Even randomly changing
both food and starting location proved to be converging to
the optimal solution (Figure 3f).

4. Discussion.

In this section we show, based on the results, why we
believe that our model develops emergent representation
and a simple form of emergent reasoning. Furthermore,
we discuss the relation between our computational
approach and emergent artificial consciousness by relating
our approach to two theories of consciousness, the global
workspace theory [1] and the dynamic core model [6].

4.1. Using symbols but being non-symbolic.

Our use of 'stimulus encoding' might be associated with
a symbolic approach. We use symbols as a basic
abstraction level for the stimuli. However, we argue that
using a symbol for a stimulus is not the same as using a
symbolic approach to representation. Representations that
are important for the agent are, e.g., ‘crossing’ , ‘food’  and
‘no-food-here’ . The symbols that are used for the stimuli
do not encode this kind of information. These symbols are
better viewed as environmental discriminators, used to
encode that up does not equal down. Although the agent
reacts in a specific way to up or down, up and down do
not have any special status for the computational model.
For the model these are exactly the same as, for example,
location_1 or location_2 in the maze. The agent learns
what it can do with a ‘crossing’ , without explicitly
representing a ‘crossing’ . The meaning of a stimulus is
mostly defined by the context (consisting of already active
IPs), not by the symbol used to encode the stimulus. This
context emerges in the model under the influence of
stabilization, destabilization and reinforcement.
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4.2. Emergent representations.

From a behavioral point of view the agent appears to
learn a representation of the route to get to a food
location. This is shown by the agent taking the optimal
route to the food. The agent also learns a representation of
’path’. It knows how to stay on it and how to get back on it
when sidetracked. These results suggest that
representations of the environment emerge in our model.
However, in our specific case, we could argue that this is
a cognitive interpretation of behavior that can also be
explained by pure reactive behavior initiated by the
location the agent is at. Any location is unique, so the
agent can easily learn what the single next action is to
avoid getting a negative reinforcement. Following a route
or using a path is just the concatenation of these reactive
behaviors. Therefore, we do not consider the optimal
route or ’path’ per se an emergent representation.

A more potent candidate for the emergence of
representation in our model is shown by the ability to try
one food location and when nothing is found, choose the
second food location when arriving at the crossing for the
second time. To do this, the agent must have knowledge
of a potential food location, a representation of food. The
agent also has a fairly stable representation of ’food is not
here’, since it is able to walk back the same path it took
and then choose a different action. This ability is shown
even when both starting location and food location are
randomly varied. Regardless of the complexity of the
emerged representation (arguably it is not that complex),
it does have two important elements of representations:
content (food-up or food-down), and truth-value (food not
up, but down). A second candidate for an emergent
representation is shown by the ability of the agent to
quickly find the food location when positioned in a newly
created part of the maze. The model develops a
representation of the old maze, usable in a new situation.
Although our computational model and analysis is
different, we interpret these results as a replication of the
emergence of representation in interactivist models [9].

4.3. Emergent reasoning.

Although reasoning is often understood as a process
that is much more intelligent than the one presented in the
definition earlier in this paper, our definition is a
necessary condition for reasoning. Reasoning essentially
is about making an informed choice. This ability is not
programmed into the model, which is empty at start-up.
The ability to make an informed choice is shown by the
selection of a different interaction the second time the
agent passes the crossing. This selection depends on the
representation of the non-location of the food.

Importantly, there is no reasoning algorithm that interprets
this representation. Instead, the ability to make this
informed choice is an intrinsic property of the biased IPs
in the model. The selection mechanism responsible for
this choice is based - as mentioned earlier - on the
probabilistic winner-take-all competition over all currently
prepared interactions.

4.4. Varied starting location.

The effect of a varying starting location on the
difficulty of the learning task is minimal, assumed that
parts of the optimal route to the food are common to both
starting locations. Continuous switching of the starting
location during one run results in a slightly slower
convergence to the optimal route than no switching
(compare Figure 3d and Figure 3a). Learning the optimal
route to the food location from a second starting location -
using a model that has been trained on the route from the
first starting location - converges faster (compare Figure
3e and Figure 3a). Additionally it is constantly close to the
optimal route during convergence (Figure 3e). This can be
explained as follows. Continuously varying the starting
location allows the agent to build up the common parts of
the route without loss. Just the starting-location-specific
parts of the route require more effort, which explains the
slightly slower convergence. The second scenario -
learning the optimal route to the food location from a
second starting location - results in explorative behavior at
first, until a known location is encountered. Subsequently,
the agent uses its knowledge of the environment to find
the food. This allows the model to learn multiple routes to
the food quite efficiently, even when positioned in a
completely unknown part of the environment. One
potential problem might be that reuse of an older route
hampers learning of a completely new but shorter route.
This might happen when, for example, the new starting
location is closer to the old starting location but the total
route using the old starting location as waypoint is longer
than a direct route to the food. In general, however,
learning to cope with a varied starting location is a less
difficult task to learn then a varied food location. Our
experiments confirm this, as shown by the much steeper
learning curve for the continuously varied starting location
(Figure 3d) than the continuously varied food location
(Figure 3c).

4.5. Artificial Consciousness: a huge step.

Conscious machines are thought to have advanced
adaptive and intelligent capabilities. This might allow
them to function in complex and uncertain environments.
Additionally these machines could give important insights
into the workings of natural consciousness. In the rest of



this discussion we argue that several characteristics of an
enhanced (hypothesized) version of our computational
model can be related to characteristics of two important
models of natural consciousness. This might indicate that
a computational model based on interactivist assumptions
is an interesting direction for research related to artificial
consciousness.

4.5.1. Configuration of the mental state. dynamic
emergent structure. Our computational model is quite
powerful. It develops based on zero knowledge and does
not need a separate learning phase. Additionally, because
only a subset of the model - consisting of activated and
prepared IPs - is used at one moment, the model’ s
computational complexity depends on the maximum level
of the IP hierarchy, not on the total size of the model.

However, to discuss artificial consciousness we have to
make several assumptions. First, we assume that an
instance of the computational model with a rich
developmental history exists (i.e., it is filled with a large
hierarchy of IPs). Second, the model is able to process
multiple stimuli at the same time. Third, the activity of IPs
does not decay in a binary fashion (i.e., active or not), but
gradually. Forth, the model does not run in lock-step with
the environment. See the future work section for a short
discussion regarding these assumptions.

Imagine an agent who has just been activated. Due to
the continuous flow of stimuli into the model, secondary
nodes (IPs) are prepared and activated at increasing
hierarchical levels (compare Figure 1). At any moment in
time interactions are selected, resulting in some behavior,
creating new stimuli, which on their turn prepare and
activate IPs. This results in a model that is 'configured' to
be in a state that consists of a hierarchy of prepared and
active IPs. This state is dynamic, depending on
interactions with the environment; it is a dynamic
emergent structure in the model. Such a dynamic emergent
structure sheds light on one of the functions of
consciousness: an active interpretive filter of stimuli. The
interpretation is the context created by the active
(prepared, decaying) IPs. This structure can be viewed as
the 'mental state' of the agent or the content of
consciousness. This emergent structure is also a
computational analogy for the subjective nature of
conscious experience and the common-sense notion that
qualia are grounded in the flow of interactions with the
environment. This model also predicts that phenomenal-
and access-consciousness are more common than
monitoring- and self-consciousness. The former two
would depend on the existence of an information
processing architecture that is able to host an emergent
hierarchical state while the latter two would depend,
additionally, on higher-level cognitive abilities. This
model of artificial consciousness shows several

similarities with two important theories of natural
consciousness.

4.5.2. Global Workspace Theory. Bernard Baars [1] has
proposed the global workspace theory. The main
characteristic of this theory is that brain processes (e.g.
thoughts, images, associations, etc… ) compete with each
other to emerge onto the 'stage of consciousness',
metaphorically described as a theatre stage. Unconscious
processes try to get on the stage, through the recruitment
of enough support from the audience (which is a
collection of specialized unconscious processes). The
audience listens to all processes on the stage, and to those
trying to get on the stage. On stage, a process can
influence the agent more directly because of the large
impact of the information it broadcasts to the audience.
Processes on the stage also have access to the information
from the audience. Consciousness is thus the result of
bottom-up and top-down competition between
respectively unconscious and conscious processes.

Our hypothesized model works much the same way.
First, stimuli (including internally generated stimuli, since
the model does not run in lock-step with the environment)
enter the model at low abstraction. When fitting the
current context this flow of stimuli prepares and activates
hierarchically higher IPs. Because these IPs are
hierarchically high, they have a large amount of support
from past interaction with the environment. This support
consists of a whole hierarchy of IPs and has a large impact
on the interpretation of future stimuli. This can be
interpreted as a top-down force. Therefore, the context
created by the active (prepared, decaying) IPs is an
analogue for the theatre stage, in particular the
hierarchically higher IPs that are part of the context.
Second, IPs compete with others at all levels, because
interaction with the environment restricts activation of
certain IPs but not of others. This interaction-based
competition is a strong bottom-up force.

4.5.3. Thalamo-Cortical loop. Edelman and Tononi [6]
have proposed the dynamic core (DC) model. In this
model stimuli are perceived and sent to the thalamus (the
sensory relay station of the brain). The thalamus sends
these stimuli to the cortex.

An important characteristic of the DC model is that
reentry of perceived stimuli is achieved by a feedback
loop from the cortex to the thalamus. This continuous
process of reinterpretation of stimuli through a thalamo-
cortical loop generates a dynamic core of brain activity
that continuously interprets newly perceived stimuli.
Architecturally the enhanced hypothesized model
described in this discussion reflects these assumptions.

First, stimuli are perceived (thalamus) and prepare IPs
(the cortex). Active IPs are stimuli for hierarchically
higher IPs (reflecting the reentry of cortically processed



stimuli into the thalamus). Second, our dynamic state
configuration is compatible with the concept of a dynamic
core. Continuous stimulus interpretation shapes the
dynamic core, which as a result is a continuously changing
but relatively stable pattern, much like our hypothesized
dynamic emergent structure. Last, both our model and the
DC model view memory as a system property - not as a
module or localizable function - in a way that is strongly
analogous. Our model ’remembers’ by gradually rebuilding
the interaction hierarchy that characterizes a situation.
This process of rebuilding is based on continuous
interaction with the environment (or imagined interaction
with the environment). This interaction activates
hierarchically higher IPs, configuring the mental state. In
the DC model, memory results from a process of continual
recategorization. Recategorization is a result of reentry of
cortically processed stimuli that blend with new stimuli,
shaping the DC. Thalamo-cortical loop systems (or
operationally similar ones) have been put forward as basis
for artificial consciousness [7].

5. Conclusion

The interactivist approach to cognition is useful for the
understanding of learning and problem solving in adaptive
agents. Two predictions of the approach - the emergence
of representation and the emergence of reasoning - have
been verified experimentally using a computational model
that is based strictly on interactivist principles. Lastly, by
relating our computational approach to two theories of
consciousness, we have shown why a computational
model based on interactivist assumptions is an interesting
direction for research aimed at artificial consciousness.

6. Future Work

Although promising, the computational model
currently has important shortcomings if it is to be even a
remote candidate approach to artificial consciousness. The
overall problem with these shortcomings is that the
solutions seem to dramatically increase computational
complexity, since all involve more parallelism. We do not
detail this problem here, but just point out several
shortcomings of the current model.

Lock step: As mentioned in the discussion about
consciousness, we have to assume the model is able to
’run’ out of lock-step with its environment. This is
necessary, because cognition is an autonomous process of
the brain, influenced but not prescribed by stimuli. If the
model is in lock step, an agent that uses it will for example
have a tendency to wait for incoming events, which is
clearly undesirable behavior.

One event per time-unit: Currently, only one event at
the time can be fed into the model. This is a serious

drawback since, among other things, this results in the
inability to form IPs that are constructed of a combination
of events occurring at the same time. Thus, our model is
very good at sequence learning, but not at all at learning
Hebbian associations of events occurring together.

No decay: To be able to think about something that has
not been encountered (e.g. for creative thinking and
deductive reasoning), our model needs the ability to keep
old IPs active for some time (even if these IPs proved to
be not applicable to the environment). Currently, if the
situation is such that a completely new event enters the
model, the entire mental state (active hierarchy of IPs) is
lost, since there are no nodes at all for this new event.
This is a serious problem for the adaptive power of our
model, and is biologically and psychologically
implausible. Gradual decay of activity might solve this
problem, as well as simplify reinforcement. The
reinforcement signal (marker) does not need to be
propagated back, but can simply be attached to IPs that
are still active.
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