
Abstract 

Computer models can be used to investigate the 
role of emotion in learning. Here we present EARL, 
our framework for the systematic study of the rela-
tion between emotion, adaptation and reinforce-
ment learning (RL). EARL enables the study of, 
among other things, communicated affect as rein-
forcement to the robot; the focus of this paper. In 
humans, emotions are crucial to learning. For ex-
ample, a parent—observing a child—uses emo-
tional expression to encourage or discourage spe-
cific behaviors. Emotional expression can therefore 
be a reinforcement signal to a child. We hypothe-
size that affective facial expressions facilitate robot 
learning, and compare a social setting with a non-
social one to test this. The non-social setting con-
sists of a simulated robot that learns to solve a 
typical RL task in a continuous grid-world envi-
ronment. The social setting additionally consists of 
a human (parent) observing the simulated robot 
(child). The human’s emotional expressions are 
analyzed in real time and converted to an addi-
tional reinforcement signal used by the robot; posi-
tive expressions result in reward, negative expres-
sions in punishment. We quantitatively show that 
the “social robot” indeed learns to solve its task 
significantly faster than its “non-social sibling”. 
We conclude that this presents strong evidence for 
the potential benefit of affective communication 
with humans in the reinforcement learning loop. 

1 Introduction 

In humans, emotion influences thought and behavior in 
many ways (Damasio, 1994; Rolls, 1999; Custers & Aarts, 
2005; Dreisbach & Goschke, 2004). For example, emotion 
influences how humans process information by controlling 
the broadness versus the narrowness of attention. Also, 
emotion functions as a social signal that communicates rein-
forcement of behavior in, e.g., parent-child relations. Com-
putational modeling (including robot modeling) has proven 
to be a viable method of investigating the relation between 
emotion and learning (Broekens, Kosters & Verbeek, 2007) 
Gandanho, 2003), emotion and problem solving (Belavkin, 

2004; Bothello & Coehlo, 1998), emotion and social robots 
(Breazeal, 2001; for review see Fong, Nourbakhsh & Dau-
tenhahn, 2003), and emotion, motivation and behavior se-
lection (Avila-Garcia & Cañamero, 2004; Blanchard and 
Cañamero, 2006; Cos-Aguilera et al., 2005; Velasquez, 
1998). Although many approaches exist and much work has 
been done on computational modeling of emotional influ-
ences on thought and behavior, none explicitly targets the 
study of the relation between emotion and learning using a 
complete end-to-end framework in a reinforcement learning 
context

1
. By this we mean a framework that enables system-

atic quantitative study of the relation between affect and RL 
in a large variety of ways, including (a) affect as reinforce-
ment to the robot (both internally generated as well as so-
cially communicated), (b) affect as perceptual feature to the 
robot (again internally generated and social), (c) affect re-
sulting from reinforced robot behavior, and (d) affect as 
meta-parameters for the robot’s learning mechanism. In this 
paper we present such a framework. We call our framework 
EARL, short for the systematic study of the relation between 
emotion, adaptation and reinforcement learning. 
 In this paper we specifically focus on the influence of 
socially communicated emotion on learning in a reinforce-
ment learning context. We show, using our framework 
EARL, that human emotional expressions can be used as 
additional reinforcement signal used by a simulated robot. 

The robot’s task is to optimize food-finding behavior 
while navigating through a continuous grid world environ-
ment. The grid world is not discrete, nor is an attempt made 
to define discrete states based on the continuous input. The 
gridworld contains walls, path and food patches. The robot 
perceives its direct surroundings as they are. We have de-
veloped an action-based learning mechanisms that learns to 
predict values of actions based on the current perception of 
the agent (note that in this paper we use the terms agent and 
robot interchangeably). Every action has its own Multi-
Layer Percepton network (see also, Lin, 1993) that learns to 
predict a modified version of the Q-value (Sutton & Barto, 
1998). We have used this setup such that observed robot 

                                                 
1 Although the work by Gandanho (2003) is a partial exception 

as it explicitly addresses emotion in the context of RL. However, 

this work does not address social human input and social robot 

output.  
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behavior can be extrapolated to the real world; building the 
actual robot with appropriate sensors and actuators would, 
in theory, suffice to replicate the results. We explain our 
modeling method in more detail in Section 5. 

As mentioned above, we study the effect of a human’s 
emotional expression on the learning behavior of the robot. 
In humans, emotions are crucial to learning. For example, a 
parent—observing a child—uses emotional expression to 
encourage or discourage specific behaviors. In this case, the 
emotional expression is used to setup an affective communi-
cation channel (Picard, 1997) and is used to communicate a 
reinforcement signal to a child. In this paper we take affect 
to mean the positiveness versus the negativeness of a situa-
tion, object, etc. (see Rolls, 1999; Russell, 2003; and 
Broekens, Kosters & Verbeek, 2007 for a more detailed 
argumentation of this point of view). The human observes 
the simulated robot while it learns to find food, and affect in 
the human’s facial expression is recognized by the robot in 
real time. As such a smile is interpreted as communicating 
positive affect and therefore converted to a small additional 
reward (additional to the reinforcement the robot receives 
from its simulated environment). The expression of fear is 
interpreted as communicating negative affect and therefore 
converted to a small additional punishment. We call this the 
social setting. The non-social setting is the same, emotional 
expression generating additional reinforcement apart. That 
is, the non-social setting is a standard experimental rein-
forcement learning setup.  

We hypothesized that robot learning (in a RL context as 
described above) is facilitated by additional social rein-
forcement. Our experimental results support this hypothesis. 
We compared the learning performance of our simulated 
robot in the social and non-social settings, by analyzing av-
erages of learning curves. The main contribution of this re-
search is that it presents quantitative evidence of the fact 
that a human-in-the-loop can boost learning performance in 
real-time, in a non-trivial learning environment. We belief 
this is an important result. It provides a solid base for further 
study of human mediated robot-learning in the context of 
real-world applicable reinforcement learning, using the 
communication protocol nature has provide for that purpose, 
i.e., emotional expression and recognition. As such, our 
results suggest that robots can be trained and their behaviors 
optimized using natural social cues. This facilitates human-
robot interaction. 

The rest of this paper is structured as follows. In Section 
2 we explain in some more detail our view of affect, emo-
tion and how affect influences learning in humans. In Sec-
tion 3 we briefly introduce EARL, our complete framework. 
In Section 4 we describe how communicated affect is linked 
to a social reinforcement signal. In Section 5, we explain 
our method of study (e.g., the grid-world, the learning 
mechanism). Section 6 discusses the results and Section 7 
discusses these in a broader context and presents concluding 
remarks and future work. 

2 Affect Influences Learning 

In this paper we specifically focus on the influence of so-
cially communicated affect on learning. Affect and emotion 
are concepts that lack a single concise definition, instead 
there are many (Picard et al., 2004). Therefore we first ex-
plain our meaning to these concepts. In general, the term 
emotion refers to a set of—in social animals—naturally oc-
curring phenomena including facial expression, motivation, 
emotional actions such as fight or flight behavior, a ten-
dency to act, and—at least in humans—feelings and cogni-
tive appraisal (see, e.g., Scherer, 2001).  An emotional state 
is the combined activation of instances of a subset of these 
phenomena, e.g., angry involves a tendency to fight, a typi-
cal facial expression, a typical negative feeling, etc. Time is 
another important aspect in this context. A short term (in-
tense, object directed) emotional state is often called an 
emotion; while a longer term (less intense, non-object di-
rected) emotional state is referred to as mood. The direction 
of the emotional state, either positive or negative, is referred 
to as affect (e.g., Russell, 2003). Affect is often differenti-
ated into two orthogonal (independent) variables: valence, 
a.k.a. pleasure, and arousal (Dreisback & Goschke, 2004; 
Russell, 2003). Valence refers to the positive versus nega-
tive aspect of an emotional state. Arousal refers to the activ-
ity of the organism during that state, i.e., physical readiness. 
For example, a car that passes you in a dangerous manner 
on the freeway, immediately (time) elicits a strongly nega-
tive and highly arousing (affect) emotional state that in-
cludes the expression of anger and fear, feelings of anger 
and fear, and intense cognitive appraisal about what could 
have gone wrong. On the contrary, learning that one has 
missed the opportunity to meet an old friend involves cogni-
tive appraisal that can negatively influence (affect) a per-
son’s mood for a whole day (time), even though the associ-
ated emotion is not necessarily arousing (affect). Eating a 
piece of pie is a more positive and biochemical example. 
This is a bodily, emotion-eliciting event resulting in mid-
term moderately-positive affect. Eating pie can make a per-
son happy by, e.g., triggering fatty-substance and sugar-
receptor cells in the mouth. The resulting positive feeling 
typically is not of particularly strong intensity and certainly 
does not involve particularly high or low arousal, but might 
last for several hours. 
 Emotion influences thought and behavior in many ways. 
For example, at the neurological level, malfunction of cer-
tain brain areas not only destroys or diminishes the capacity 
to have (or express) certain emotions, but also has a similar 
effect on the capacity to make sound decisions (Damasio, 
1994) as well as on the capacity to learn new behavior (Ber-
ridge, 2003). Behavioral evidence suggests that the ability to 
have sensations of pleasure and pain is strongly connected 
to basic mechanisms of learning and decision-making (Ber-
ridge, 2003; Cohen & Blum, 2002). These findings indicate 
that brain areas important for emotions are also important 
for “classical” cognition and instrumental learning. 

At the level of cognition, a person's belief about some-
thing is updated according to the emotion: the current emo-
tion is used as information about the perceived object (Clore 



& Gasper, 2000; Forgas, 2000), and emotion is used to 
make the belief resistant to change (Frijda & Mesquita, 
2000). Ergo, emotions are “at the heart of what beliefs are 
about” (Frijda et al., 2000). 

Emotions play a role in the regulation of the amount of 
information processing. For instance, Scherer (2001) argues 
that emotion is related to the continuous checking of the 
environment for important stimuli. More resources are allo-
cated to further evaluate the implications of an event, only if 
the stimulus appears important enough. Furthermore, in the 
work of Forgas (2000) the relation between emotion and 
information processing strategy is made explicit: the influ-
ence of mood on thinking depends on the strategy used. In 
addition to this, it has been found that positive moods favor 
creative thoughts as well as integrative information process-
ing, while negative moods favor systematic analysis of in-
coming stimuli (e.g. Ashby, Isen & Turken, 1999; Gasper & 
Clore, 2002). 

Emotion also regulates behavior of others. Obvious in 
human development, expression (and subsequent recogni-
tion) of emotion is important to communicate (dis)approval 
of the actions of others. This is typically important in par-
ent-child relations. Parents use emotional expression to 
guide behavior of infants. Emotional interaction is essential 
for learning. Striking examples are children with an autistic 
spectrum disorder, typically characterized by a restricted 
repertoire of behaviors and interests, as well as social and 
communicative impairments such as difficulty in joint atten-
tion, difficulty recognizing and expressing emotion, and 
lacking of a social smile (for review see Charman & Baird, 
2002). Apparently, children suffering from this disorder 
have both a difficulty in building up a large set of complex 
behaviors and a difficulty understanding emotional expres-
sions and giving the correct social responses to these. This 
disorder provides a clear example of the interplay between 
learning behaviors and being able to process emotional cues. 

To summarize, emotion and mood influence thought and 
behavior in a variety of ways, e.g., a persons mood influ-
ences processing style and attention, emotions influences 
how one thinks about objects, situations and persons, and 
emotion is related to learning behaviors.  

In this study we focus on the role of affect in guiding 
learning in a social human-robot setting.  We use affect to 
denote the positiveness versus negativeness of a situation. 
We ignore the arousal a certain situation might bring. As 
such, positive affect characterizes a situation as good, while 
negative affect characterizes that situation as bad (e.g., Rus-
sell, 2003). Further, we use affect to refer to the short term 
timescale: i.e., to emotion. We hypothesize that affect com-
municated by a human observer can enhance robot learning. 
In our study we assume that the recognition of affect trans-
lates into a reinforcement signal. As such, the robot uses a 
social reinforcement in addition to the reinforcement it re-
ceives from its environment while it is building a model of 
the environment using reinforcement learning mechanisms. 
In the following sections we first explain our framework 
after which we detail our method and discuss results and 
further work. 

3 EARL: A Computational Framework to 

Study the Relation between Emotion, Ad-

aptation and Reinforcement Learning. 

To study the relation between emotion, adaptation and rein-
forcement learning, we have developed an end-to-end 
framework. The framework consists of four parts: 

• An emotion recognition module, recognizing emotional 

facial expression in real time. 

• A reinforcement learning agent to which the recog-

nized emotion can be fed as input. 

• An artificial emotion module slot, this slot can be used 

to plug in different models of emotion into the learn-

ing agent that produce the artificial emotion of the 

agent as output. The modules can use all of the infor-

mation that is available to the agent (such as action 

repertoire, reward history, etc.). This emotion can be 

used by the agent as intrinsic reward, as metalearning 

parameter, or as input for the expression module. 

• An expression module, consisting of a robot head with 

the following degrees of freedom: eyes moving up 

and down, ears moving up and down on the outside, 

lips moving up and down, eyelids moving up and 

down on the outside, and RGB eye colors 

Emotion recognition is based on quite a crude mechanism 
based upon the face tracking abilities of OpenCV 
(http://www.intel.com/technology/computing/opencv/index.
htm). It uses 9 points on the face each defined by a blue 
sticker: 1 on the tip of the nose, 2 above each eyebrow, 1 at 
each mouth corner and 1 on the upper and lower lip. The 
recognition module is configured to store multiple prototype 
point constellations. The user is prompted to express a cer-
tain emotion and press space while doing so. For every emo-
tional expression (in the case of our experiment neutral, 
happy and afraid), the module records the positions of the 9 
points relative to the nose. This is a prototype point vector. 
After configuration, to determine the current emotional ex-
pression in real time the module calculates a weighted dis-
tance from the current point vector (read in real-time from a 
web-cam mounted on the computer screen) to the prototype 
vectors. Different points get different weights. This results 
in an error measure for every prototype expression. This 
error measure is the basis for a normalized vector of recog-
nized emotion intensities. The recognition module sends this 
vector to the agent (i.e., neutral 0.3, happy 0.6, fear 0.1). 
Our choice of weights and features has been inspired by 
work of others (for review see Pantic & Rothkrantz, 2000). 
Of course the state of the art in emotion recognition is more 
advanced than our current approach. However, as our focus 
is affective learning and not the recognition process per se, 
we contented ourselves with a low fidelity solution (work-
ing almost perfectly for neutral, happy and afraid, when the 
user keeps the head in about the same position). 

Note that we do not aim at generically recognizing emo-
tional expressions. Instead, we tune the recognition module 



to the individual observer to accommodate his/her personal 
and natural facial expressions. 
 The reinforcement learning agent receives this recognized 
emotion and can use this in multiple ways: as reward, as 
information (additional state input), as metaparameter (e.g., 
to control learning rate), and as social input directly into its 
emotion model. In this paper we focus on social reinforce-
ment, and as such focus on the recognized emotion being 
used as additional reward or punishment. The agent, its 
learning mechanism and how it uses the recognized emotion 
as reinforcement are detailed in Sections 4 and 5. 
 The artificial emotion model slot enables us to plug in 
different emotion models based on different theories to 
study their behavior in the context of reinforcement learn-
ing. For example, we have developed a model based on the 
theory by Rolls (1999), who argues that many emotions can 
be related to reward and punishment and the lack thereof. 
This model enables us to see if the agent’s situation results 
in a plausible (e.g., scored by a set of human observers) 
emotion emerging from the model. By scoring the plausibil-
ity of the resulting emotion, we can learn about the com-
patibility of, e.g., Rolls’ emotion theory with reinforcement 
learning. However, in the current study we have not used 
this module, as we focus on affective input as social reward. 
 The emotion expression part is a physical robot head. The 
head can express an arbitrary emotion by mapping it to its 
facial features, again according to a certain theory. Cur-
rently our head expresses emotions according to the Pleas-
ure Arousal Dominance (PAD) model by Mehrabian (1980). 
We have a continuous mapping from the 3-dimensional 
PAD space to the features of the robot face. As such we do 
not need to explicitly work with emotional categories or 
intensities of the categories. The mapping appears to work 
quite well, but is in need of validation study (again using 
human observers). We have not used the robot head for the 
studies reported upon in this paper. 
 We now describe in detail how we coupled the recog-
nized human emotion to the social reinforcement signal for 
the robot. Then we explain in detail our adapted reinforce-
ment learning mechanism (such that it enabled learning in 
continuous environments), and our method of study as well 
as our results.  

4 Emotional Expressions as Reinforcement 

Signal. 

As mentioned earlier, emotional expressions and facial ex-
pressions in particular can be used as social cues for the 
desirability of a certain action. In other words, an emotional 
expression can express reward and punishment if directed at 
an individual. We focus on communicated affect, i.e., the 
positiveness versus negativeness of the expression. If the 
human expresses a smile (happy face) this is interpreted as 
positive affect. If the human expresses fear, this is inter-
preted as negative affect. We interpret a neutral face as af-
fectless. 

We have studied the mechanism of communicated affec-
tive feedback in a human-robot interaction setup. The hu-

man’s face is analyzed (as explained above) and a vector of 
emotional expression intensities is fed to the learning agent. 
The agent takes the expression with the highest intensity as 
dominant, and equates this with a social reward of, e.g., 2 
(happy), −2 (fear) and 0 (neutral). This is obviously a sim-
plified setup, as the human face communicates much more 
subtle affective messages and at the very least is able to 
communicate the degree of reward and punishment. How-
ever, to investigate our hypothesis (affective human feed-
back increases robot learning performance), the just de-
scribed mechanism is sufficient. 

The social reward is simply added to the “normal” reward 
the agent receives from the environment. So, if the agent 
walks on a path somewhere in the gridworld, it receives a 
reward (say 0), but when the user smiles, the resulting actual 
reward becomes 2, while if the user looks afraid, the result-
ing reward becomes −2. Additionally, the agent learns (in a 
way describe in the next Section) to associate its perception 
with that social reward. So, in RL terms, it builds up a “so-
cial reward function”. The user expresses emotions during a 
short time period, after which the learned social reward 
function takes over. By doing so we were able to study the 
impact on robot learning of two phenomena: direct social 
reinforcement and learned social reinforcement.  

5 Method 

To study the impact of social reinforcement on robot learn-
ing, we have used our framework in the following experi-
mental setup. 

A simulated robot (agent) “lives” in a continuous grid-
world environment consisting of wall, food and path patches 
(Figure 1). These are the features of the world observable by 
the agent. The agent cannot walk on walls, but can walk on 
path and food. Walls and path are neutral (have a reinforce-
ment of 0.0), while food has a reinforcement of 10. One cell 
in the grid is assumed to be a 20 by 20 object. Even though 
wall, path and food are placed on a grid, the world is con-
tinuous in the following sense: the agent moves by turning 
or walking in a certain direction using an arbitrary speed (in 
our experiments set at 3), and perceives its direct surround-
ings (within a radius of 20) according to its looking direc-
tion (one out of 16 possible directions). The agent uses a 
“relative eight neighbor metric” meaning that it perceives 
features of the world at 8 points around it, with each point at 
a distance of 20 from the center point of the agent and each 
point at an interval of 1/4 PI radians, with the first point 
always being exactly in front of it (Figure 1). The state per-
ceived by the agent (its percept) is a real-valued vector of 
inputs between 0 and 1; each input is defined by the relative 
contribution of a certain feature in the agent-relative direc-
tion corresponding to the input. For example, if the agent 
sees a wall just in front of it (i.e., the center point of a wall 
object is exactly at a distance of 20 as measured from the 
current agent location in its looking direction) the first value 
in its perceived state would be equal to 1. This value can be 
anywhere between 0 and 1 depending on the distance of that 
point to the feature. For the three types of features, the agent 
thus has 3x8=24 real-valued inputs between 0 and 1 as its 



perceived world state s (Figure 1). As such the agent can 
approach objects (e.g., a wall) from a large number of pos-
sible angles and positions, with every intermediate position 
being possible. For all practical purposes, the learning envi-
ronment can be considered continuous. States are not discre-
tize to facilitate learning. Instead we chose to use the per-
ceived state as is, to maximize compatibility of our experi-
mental results with real-world robots. However, reinforce-
ment learning in continuous environments introduces sev-
eral important problems for standard RL techniques, such as 
Q learning, mainly because a large number of potentially 
similar states exist as well as a very long path length be-
tween start and goal states making value propagation diffi-
cult. We now briefly explain our adapted RL mechanism. 
As RL in continuous environments is not specifically the 
topic of the paper we have left out some of the rational for 
our choices. 

Figure 1. The experimental gridworld. The agent is the “circle with 

nose” in the top right of the maze, where the nose denotes its direc-

tion. The 8 white dots denote the points perceived by the agent. 

These points are connected to the elements of state s (neural input 

to the MLPs used by the agent) as depicted. This is repeated for all 

possible features, in our case: path (gray), wall (black), and food 

(light gray), in that order. The “e” denotes the cell in which social 

reward can be administered through smiling or expression of fear, 

the “1” and “2” denote key locations at which the agent has to 

learn to differentiate its behavior, i.e., either turn left (“1”) or right 

(“2”). The agent starts at “s”. The task enforces a non-reactive best 

solution (by which we mean that there is no direct mapping from 

reward to action that enables the agent to find the shortest path to 

the food). If the agent would learn that turning right is good, it 

would keep walking in circles. If the agent learns that turning left 

is good, it would not get to the food.  

 
The agent learns to find the path to the food, and opti-

mizes this path. At every step the agent takes, the agent up-
dates its model of the expected benefit of a certain action as 
follows. It learns to predict the value of actions in a certain 
perceived state s, using an adapted form of Q learning. The 
value function, Qa(s), is approximated using a multilayer 
perceptron (MLP), with 3x8=24 input, 24 hidden, and one 
output neuron(s), with s being the real-valued input to the 
MLP, a the action to which the network belongs, and the 
output neuron converging to Qa(s). As such, every action of 
the agent (5 in total: forward, left, right, left and forward, 
right and forward) has its own network. The output of the 

action networks are used as action values in a standard 
Boltzmann action-selection function (Sutton & Barto, 
1998). An action network is trained on the Q value—i.e., 
Qa(s)← Qa(s)+ α(r+γQ(s’) −Qa(s)) —where r is the reward 
resulting from action a in state s, s’ is the resulting next 
state, Q(s’) the value of state s’, α is the learning rate and γ 
the discount factor (Sutton & Barto, 1998). The learning rate 
equals 1 in our experiments (because the learning rate of the 
MLP is used to control speed of learning, not α), and the 
discount factor equals 0.99. To cope with a continuous 
gridworld, we adapted standard Q learning in the following 
way: 

First, the value Qa(s) used to train the MLP network for 
action a is topped such that min(r, Qa(s’))<=Qa(s)<=max(r, 
Q(s’)). As a result, individual Qa(s) values can never be lar-
ger or smaller than any of the rewards encountered in the 
world. This enables a discount factor close to or equal to 1, 
needed to efficiently propagate back the food’s reward 
through a long sequence of steps. In continuous, cyclic, 
worlds, training the MLP on normal Q values using a dis-
count factor close to 1 can result in several problems not 
further discussed here. 

Second, per step of the agent, we train the action-state 
networks not only on Qa(s)← Qa(s) +α(r+γQ(s’) −Qa(s)) but 
also on Qa(s’) ← Qa(s’). The latter seems unnecessary but is 
quite important. RL assumes that values are propagated 
back, but MLPs generalize while trained. As a result, train-
ing an MLP on Qa(s) also influences its value prediction for 
s’ in the same direction, just because the inputs are very 
close. In effect, part of the value is actually propagated for-
ward; credit is partly assigned to what comes next. This 
violates the RL assumption just mentioned. Note that the 
value Q(s’) is predicted using another MLP, called the value 
network, that is trained in the same way as the action net-
works using the topped-off value and forward propagation 
compensation. 

Third, for the agent to better discriminate between situa-
tions that are perceptually similar, such as position “1” and 
“2” in Figure 1, for each action-network the agent also uses 
a second network trained on the value of not taking the ac-
tion. This network is trained when other actions are taken 
but not when the action to which the “negation” network 
belongs is taken. In effect, the agent has two MLPs per ac-
tion. This enables the agent to better learn that, e.g., “right” 
is good in situation “2” but not in situation “1”. Without this 
“negation” network, the agent learns much less efficient 
(results not shown). To summarize, our agent has 5 actions, 
it has 11 MLPs in total: one to train Q(s), 5 to train Qa(s) 
and 5 to train −Qa(s). All networks use forward propagation 
compensation and a topped-off value to train upon. The 
MLP predictions for Qa(s) and −Qa(s) are simply added, and 
the result is used for action-selection. 

To study the effect of communicated affect as social re-
ward, we created the following setup. First an agent is 
trained without social reward. The agent repeatedly tries to 
find the food for 200 trials, i.e., one run. The agent continu-
ously learns and acts during these trials. To facilitate learn-
ing, we use a common method to vary the MLP learning 

path      wall      food 
1/e 

2 

s 



rate and the Boltzmann action selection β derived from 
simulated annealing. The Boltzmann β equals to 
3+(trial/200)*(6−3), effectively varying from 3 in the first 
trial to 6 in the last. The MLP learning rate equals to 
0.1−(trial/200)*(0.1−0.001) effectively varying from 0.1 in 
the first trial to 0.001 in the last. We repeated the experi-
ment 200 times, resulting in 200 runs. Average learning 
curves are plotted for these 200 runs using a linear smooth-
ing factor equal to 6 (Figure 2). 

Second, a new agent is trained with social reward, i.e., a 
human observer looking at the agent with his/her face ana-
lyzed by the agent, translating a smile to a positive social 
reward and a fearful expression to a negative social reward. 
Again, average learning curves are plotted using a linear 
smoothing factor equal to 6, but now based on the average 
per trial over 15 runs (Figure 2). We experimented with 
three different social settings: (a) social input from trial 20 
to 30, where the social reward is either −0.5 or 0.5 (happy 
vs. fearful, respectively); (b) social input from trial 20 to 25 
where social reward is either −2 or 2, i.e., more extreme 
social rewards but for a shorter period; (c) social input from 
trial 29 to 45 where social reward is either −2 or 2 while the 
agent trains an additional MLP to predict the social reward 
based on the current state s, so the MLP is trained to predict 
Rsocial(s). After trial 45, the direct social reward from the 
observer is replaced by the learned social reward Rsocial(s). 
As a result, the agent learns to predict what its human tutor 
thinks about certain situations. 

The process of giving affective feedback to a reinforce-
ment learning agent appeared to be quite a long, intensive 
and attention absorbing experience. As a result, it was 
physically impossible to observe the agent during all runs 
and all trials in the entire gridworld (after 2 hours of smiling 
to a computer screen one is completely fed-up with it and 
has burning eyes and painful facial muscles). To be able to 
test our hypothesis, we restricted social input to (a) a critical 
learning period defined in terms of a start and end trail (see 
above), and (b) the cell indicated by “e” (Figure 1). Only 
when the agent moves around in this cell and is in a social 
input trial, the simulation speed of the experiment is set to 
one action per second enabling affective feedback.  

6 Results 

The results clearly show that learning is facilitated by social 
reward. In all three social settings (Figure 2a, b and c) the 
agent needs fewer steps to find the food during the trials in 
which the observer provides assistance to the agent by ex-
pression positive or negative affect. Interestingly, at the 
moment the observer stops giving social rewards, the agent 
gradually looses the learning benefit it had accumulated. 
This is independent of the size of the social reward (both 
social learning curves in Figure 2a and b show dips that 
eventually return to the non-social learning curve). This can 
be easily explained. The social reward was not given long 
enough for the agent to internalize the path to the food (i.e., 
propagate back the food’s reward to the beginning of the 
path). As soon as the observer stops giving social rewards, 
the agent starts to forget these rewards, i.e., the MLPs are 

again trained to predict values as they are without social 
input. So, either the observer should continue to give social 
rewards until the agent has internalized the solution, or the 
agent needs to be able to build a representation of the social 
reward function and uses it when actual social reward is not 
available. We have experimented with the second (social 
setting c): we enabled the agent to learn the social reward 

function. Now the 
agent uses actual 
social reward at the 
emotional input spot 
(“e”, Figure 1) 
during the critical 
period, and uses its 
social reward 
prediction when 
social input stops. 
This is the third 
social setup. Results 

clearly show that the 
agent is now able to 
keep the benefit it 
had accumulated 
from using social 
rewards (Figure 2c). 
These results show 
that a combination 
of using social 
reward and learning 
a social reward 
function facilitates 

robot learning, by 
enabling the robot to 
quicker learn the 
optimal solution to 
the food due to the 
direct social reward 
as well as keep that 
solution by using its 
learned social 
reward function 
when social reward 
stops. 
   

Figure 2. Results of the learning experiments. From top to 
bottom showing the difference between the non-social set-
ting and social setting a, b, and c respectively. 
 

7 Conclusion, Discussion and Further Work 

Our results show that affective interaction in human-in-the-
loop learning can provide significant benefit to the effi-
ciency of a reinforcement learning robot in a continuous 
grid world. We believe our results are particularly important 
to human-robot interaction for the following reasons. First, 
advanced robots such as robot companions, robot workers, 
etc., will need to be able to adapt their behavior according to 



human feedback. For humans it is important to be able to 
give such feedback in a natural way, e.g., using emotional 
expression. Second, humans will not want to give feedback 
all the time, it is therefore important to be able to define 
critical learning periods as well as have an efficient social 
reward system. We have shown the feasibility of both. So-
cial input during the critical learning periods was enough to 
show a learning benefit, and the relatively easy step of add-
ing an MLP to learn the social reward function enabled the 
robot to use the social reward when the observer is away.  
 We have specifically used an experimental setup that is 
compatible with a real-world robot due: we have used con-
tinuous inputs and MLP-based training of which it is known 
that it can cope with noise and generalize over training ex-
amples. As such we believe our results can be generalized to 
real-world robotics. However, this most certainly needs to 
be experimented with. 

Many interesting computational approaches exist that 
study emotion in the context of robots and agents, of which 
we mention one explicitly here as it is particularly related to 
our work: the adaptive, social chatter bot Cobot (Isbell et al., 
2001). Cobot learns the information preferences of its chat 
partners, by analyzing the chat messages for explicit and 
implicit reward signals. These signals are then used to adapt 
its model of providing information to that chat partner. So, 
Cobot effectively uses social feedback as reward, as does 
our simulated robot. However, there are several important 
differences. Cobot does not address the issue of a human 
observer parenting the robot using affective communication. 
Instead, it learns based on reinforcement extracted from 
words used by the user during the chat sessions in which 
Cobot is participating. Also, Cobot is not a real-time behav-
ing robot, but a chat robot. As a consequence, time con-
straints related to the exact moment of administering reward 
or punishment are less important. Finally Cobot is restricted 
regarding its action-taking initiative, while our robot is con-
tinuously acting, with the observer reacting in real-time. 

Future work includes a broader evaluation of the EARL 
framework including its ability to express emotions gener-
ated by an emotional model plugged into the RL agent. Fur-
ther, we envision to experiment with controlling 
metaparameters (such as exploration/exploitation and learn-
ing rate) based on the agent’s internal emotional state or 
social rewards (Belavkin, 2004; Broekens, Kosters, Ver-
beek, 2007; Doya, 2002). Currently we use simulated an-
nealing-like mechanisms to control these parameters. Fur-
ther, the agent could try to learn what an emotional expres-
sion predicts. In this case, the agent would use the emotional 
expression of the human in a more pure form (e.g., as a real-
valued vector of facial feature intensities as part of its per-
ceived state s. This might enable the agent to learn what the 
emotional expression means for itself instead of simply us-
ing it as reward. Finally, a somewhat futuristic possibility is 
actually quite close: affective Robot-Robot interaction. Us-
ing our setting, it is quite easy to train one robot in a certain 
environment (parent), make it observe an untrained robot in 
that same environment (child), and enable it to express its 
emotion as generated by its emotion model using its robot 

head, an expression recognized and translated into social 
rewards by the child robot. Apart from the fact that it is 
somewhat dubious if such a setup is actually useful (why 
not send the social reward as a value through a wireless 
connection to the child), it would enable robots to use the 
same communication protocol as humans. 

Regarding the “usefulness” argument just put forward, it 
seems to apply to our experiment as well. Why didn’t we 
just simulate affective feedback by pushing a button for 
positive reward and pushing another for negative reward (or 
even worse, by simulating a button press)? From the point 
of view of the robot this is entirely true, however, from the 
point of view of the human—and therefore the point of view 
of the human-robot interaction—not at all. Humans natu-
rally communicate social signals using there face, not by 
pushing buttons. The process of expressing an emotion is 
quite different from the process of pushing a button, even if 
it was only for the fact that it takes more time and cognitive 
effort to initiate the expression. These are just two of many 
examples showing that expressing an emotion is quite dif-
ferent from pushing a button, and in a real-world scenario 
with a mobile robot in front of you it would be quite awk-
ward to have to push buttons instead of just smile when you 
are happy about its behavior. Further it would be quite use-
ful if the robot could recognize you being happy or sad and 
gradually learn to adapt its behavior even when you did not 
intentionally give it a reward or punishment. Abstracting 
away from the actual affective interaction patterns between 
the human and the robot in our experiment would have ren-
dered the experiment almost completely trivial. Nobody 
would be surprised to see that the robot learns better if an 
intermediate reward is given halfway its route towards food. 
Our aim was to investigate if affective communication can 
enhance learning in a reinforcement learning setting. Taking 
out the affective part would have been quite strange indeed. 
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