Emotion & Reinforcement: Affective Facial Expressions Facilitate Robot Learning

Joost Broekens¹, Pascal Haazebroek²

¹Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands. ²Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands broekens@liacs.nl, phaazebroek@fsw.leidenuniv.nl

Abstract

Computer models can be used to investigate the role of emotion in learning. Here we present EARL, our framework for the systematic study of the relation between emotion, adaptation and reinforcement learning (RL). EARL enables the study of. among other things, communicated affect as reinforcement to the robot; the focus of this paper. In humans, emotions are crucial to learning. For example, a parent-observing a child-uses emotional expression to encourage or discourage specific behaviors. Emotional expression can therefore be a reinforcement signal to a child. We hypothesize that affective facial expressions facilitate robot learning, and compare a social setting with a nonsocial one to test this. The non-social setting consists of a simulated robot that learns to solve a typical RL task in a continuous grid-world environment. The social setting additionally consists of a human (parent) observing the simulated robot (child). The human's emotional expressions are analyzed in real time and converted to an additional reinforcement signal used by the robot; positive expressions result in reward, negative expressions in punishment. We quantitatively show that the "social robot" indeed learns to solve its task significantly faster than its "non-social sibling". We conclude that this presents strong evidence for the potential benefit of affective communication with humans in the reinforcement learning loop.

1 Introduction

In humans, emotion influences thought and behavior in many ways (Damasio, 1994; Rolls, 1999; Custers & Aarts, 2005; Dreisbach & Goschke, 2004). For example, emotion influences how humans process information by controlling the broadness versus the narrowness of attention. Also, emotion functions as a social signal that communicates reinforcement of behavior in, e.g., parent-child relations. Computational modeling (including robot modeling) has proven to be a viable method of investigating the relation between emotion and learning (Broekens, Kosters & Verbeek, 2007) Gandanho, 2003), emotion and problem solving (Belavkin, 2004; Bothello & Coehlo, 1998), emotion and social robots (Breazeal, 2001; for review see Fong, Nourbakhsh & Dautenhahn, 2003), and emotion, motivation and behavior selection (Avila-Garcia & Cañamero, 2004; Blanchard and Cañamero, 2006; Cos-Aguilera et al., 2005; Velasquez, 1998). Although many approaches exist and much work has been done on computational modeling of emotional influences on thought and behavior, none explicitly targets the study of the relation between emotion and learning using a complete end-to-end framework in a reinforcement learning context¹. By this we mean a framework that enables systematic quantitative study of the relation between affect and RL in a large variety of ways, including (a) affect as reinforcement to the robot (both internally generated as well as socially communicated), (b) affect as perceptual feature to the robot (again internally generated and social), (c) affect resulting from reinforced robot behavior, and (d) affect as meta-parameters for the robot's learning mechanism. In this paper we present such a framework. We call our framework EARL, short for the systematic study of the relation between emotion, adaptation and reinforcement learning.

In this paper we specifically focus on the influence of socially communicated emotion on learning in a reinforcement learning context. We show, using our framework EARL, that human emotional expressions can be used as additional reinforcement signal used by a simulated robot.

The robot's task is to optimize food-finding behavior while navigating through a continuous grid world environment. The grid world is not discrete, nor is an attempt made to define discrete states based on the continuous input. The gridworld contains walls, path and food patches. The robot perceives its direct surroundings as they are. We have developed an action-based learning mechanisms that learns to predict values of actions based on the current perception of the agent (note that in this paper we use the terms agent and robot interchangeably). Every action has its own Multi-Layer Percepton network (see also, Lin, 1993) that learns to predict a modified version of the O-value (Sutton & Barto, 1998). We have used this setup such that observed robot

¹ Although the work by Gandanho (2003) is a partial exception as it explicitly addresses emotion in the context of RL. However, this work does not address social human input and social robot output.

behavior can be extrapolated to the real world; building the actual robot with appropriate sensors and actuators would, in theory, suffice to replicate the results. We explain our modeling method in more detail in Section 5.

As mentioned above, we study the effect of a human's emotional expression on the learning behavior of the robot. In humans, emotions are crucial to learning. For example, a parent-observing a child-uses emotional expression to encourage or discourage specific behaviors. In this case, the emotional expression is used to setup an affective communication channel (Picard, 1997) and is used to communicate a reinforcement signal to a child. In this paper we take affect to mean the positiveness versus the negativeness of a situation, object, etc. (see Rolls, 1999; Russell, 2003; and Broekens, Kosters & Verbeek, 2007 for a more detailed argumentation of this point of view). The human observes the simulated robot while it learns to find food, and affect in the human's facial expression is recognized by the robot in real time. As such a smile is interpreted as communicating positive affect and therefore converted to a small additional reward (additional to the reinforcement the robot receives from its simulated environment). The expression of fear is interpreted as communicating negative affect and therefore converted to a small additional punishment. We call this the social setting. The non-social setting is the same, emotional expression generating additional reinforcement apart. That is, the non-social setting is a standard experimental reinforcement learning setup.

We hypothesized that robot learning (in a RL context as described above) is facilitated by additional social reinforcement. Our experimental results support this hypothesis. We compared the learning performance of our simulated robot in the social and non-social settings, by analyzing averages of learning curves. The main contribution of this research is that it presents quantitative evidence of the fact that a human-in-the-loop can boost learning performance in real-time, in a non-trivial learning environment. We belief this is an important result. It provides a solid base for further study of human mediated robot-learning in the context of real-world applicable reinforcement learning, using the communication protocol nature has provide for that purpose, i.e., emotional expression and recognition. As such, our results suggest that robots can be trained and their behaviors optimized using natural social cues. This facilitates humanrobot interaction.

The rest of this paper is structured as follows. In Section 2 we explain in some more detail our view of affect, emotion and how affect influences learning in humans. In Section 3 we briefly introduce *EARL*, our complete framework. In Section 4 we describe how communicated affect is linked to a social reinforcement signal. In Section 5, we explain our method of study (e.g., the grid-world, the learning mechanism). Section 6 discusses the results and Section 7 discusses these in a broader context and presents concluding remarks and future work.

2 Affect Influences Learning

In this paper we specifically focus on the influence of socially communicated affect on learning. Affect and emotion are concepts that lack a single concise definition, instead there are many (Picard et al., 2004). Therefore we first explain our meaning to these concepts. In general, the term emotion refers to a set of-in social animals-naturally occurring phenomena including facial expression, motivation, emotional actions such as fight or flight behavior, a tendency to act, and-at least in humans-feelings and cognitive appraisal (see, e.g., Scherer, 2001). An emotional state is the combined activation of instances of a subset of these phenomena, e.g., angry involves a tendency to fight, a typical facial expression, a typical negative feeling, etc. Time is another important aspect in this context. A short term (intense, object directed) emotional state is often called an emotion; while a longer term (less intense, non-object directed) emotional state is referred to as mood. The direction of the emotional state, either positive or negative, is referred to as affect (e.g., Russell, 2003). Affect is often differentiated into two orthogonal (independent) variables: valence, a.k.a. pleasure, and arousal (Dreisback & Goschke, 2004; Russell, 2003). Valence refers to the positive versus negative aspect of an emotional state. Arousal refers to the activity of the organism during that state, i.e., physical readiness. For example, a car that passes you in a dangerous manner on the freeway, immediately (time) elicits a strongly negative and highly arousing (affect) emotional state that includes the expression of anger and fear, feelings of anger and fear, and intense cognitive appraisal about what could have gone wrong. On the contrary, learning that one has missed the opportunity to meet an old friend involves cognitive appraisal that can negatively influence (affect) a person's mood for a whole day (time), even though the associated emotion is not necessarily arousing (affect). Eating a piece of pie is a more positive and biochemical example. This is a bodily, emotion-eliciting event resulting in midterm moderately-positive affect. Eating pie can make a person happy by, e.g., triggering fatty-substance and sugarreceptor cells in the mouth. The resulting positive feeling typically is not of particularly strong intensity and certainly does not involve particularly high or low arousal, but might last for several hours.

Emotion influences thought and behavior in many ways. For example, at the neurological level, malfunction of certain brain areas not only destroys or diminishes the capacity to have (or express) certain emotions, but also has a similar effect on the capacity to make sound decisions (Damasio, 1994) as well as on the capacity to learn new behavior (Berridge, 2003). Behavioral evidence suggests that the ability to have sensations of pleasure and pain is strongly connected to basic mechanisms of learning and decision-making (Berridge, 2003; Cohen & Blum, 2002). These findings indicate that brain areas important for emotions are also important for "classical" cognition and instrumental learning.

At the level of cognition, a person's belief about something is updated according to the emotion: the current emotion is used as information about the perceived object (Clore & Gasper, 2000; Forgas, 2000), and emotion is used to make the belief resistant to change (Frijda & Mesquita, 2000). Ergo, emotions are "at the heart of what beliefs are about" (Frijda et al., 2000).

Emotions play a role in the regulation of the amount of information processing. For instance, Scherer (2001) argues that emotion is related to the continuous checking of the environment for important stimuli. More resources are allocated to further evaluate the implications of an event, only if the stimulus appears important enough. Furthermore, in the work of Forgas (2000) the relation between emotion and information processing strategy is made explicit: the influence of mood on thinking depends on the strategy used. In addition to this, it has been found that positive moods favor creative thoughts as well as integrative information processing, while negative moods favor systematic analysis of incoming stimuli (e.g. Ashby, Isen & Turken, 1999; Gasper & Clore, 2002).

Emotion also regulates behavior of others. Obvious in human development, expression (and subsequent recognition) of emotion is important to communicate (dis)approval of the actions of others. This is typically important in parent-child relations. Parents use emotional expression to guide behavior of infants. Emotional interaction is essential for learning. Striking examples are children with an autistic spectrum disorder, typically characterized by a restricted repertoire of behaviors and interests, as well as social and communicative impairments such as difficulty in joint attention, difficulty recognizing and expressing emotion, and lacking of a social smile (for review see Charman & Baird, 2002). Apparently, children suffering from this disorder have both a difficulty in building up a large set of complex behaviors and a difficulty understanding emotional expressions and giving the correct social responses to these. This disorder provides a clear example of the interplay between learning behaviors and being able to process emotional cues.

To summarize, emotion and mood influence thought and behavior in a variety of ways, e.g., a persons mood influences processing style and attention, emotions influences how one thinks about objects, situations and persons, and emotion is related to learning behaviors.

In this study we focus on the role of affect in guiding learning in a social human-robot setting. We use affect to denote the positiveness versus negativeness of a situation. We ignore the arousal a certain situation might bring. As such, positive affect characterizes a situation as good, while negative affect characterizes that situation as bad (e.g., Russell, 2003). Further, we use affect to refer to the short term timescale: i.e., to emotion. We hypothesize that affect communicated by a human observer can enhance robot learning. In our study we assume that the recognition of affect translates into a reinforcement signal. As such, the robot uses a social reinforcement in addition to the reinforcement it receives from its environment while it is building a model of the environment using reinforcement learning mechanisms. In the following sections we first explain our framework after which we detail our method and discuss results and further work.

3 *EARL*: A Computational Framework to Study the Relation between Emotion, Adaptation and Reinforcement Learning.

To study the relation between emotion, adaptation and reinforcement learning, we have developed an end-to-end framework. The framework consists of four parts:

- An emotion recognition module, recognizing emotional facial expression in real time.
- A reinforcement learning agent to which the recognized emotion can be fed as input.
- An artificial emotion module slot, this slot can be used to plug in different models of emotion into the learning agent that produce the artificial emotion of the agent as output. The modules can use all of the information that is available to the agent (such as action repertoire, reward history, etc.). This emotion can be used by the agent as intrinsic reward, as metalearning parameter, or as input for the expression module.
- An expression module, consisting of a robot head with the following degrees of freedom: eyes moving up and down, ears moving up and down on the outside, lips moving up and down, eyelids moving up and down on the outside, and RGB eye colors

Emotion recognition is based on quite a crude mechanism based upon the face tracking abilities of OpenCV (http://www.intel.com/technology/computing/opency/index. htm). It uses 9 points on the face each defined by a blue sticker: 1 on the tip of the nose, 2 above each eyebrow, 1 at each mouth corner and 1 on the upper and lower lip. The recognition module is configured to store multiple prototype point constellations. The user is prompted to express a certain emotion and press space while doing so. For every emotional expression (in the case of our experiment neutral, happy and afraid), the module records the positions of the 9 points relative to the nose. This is a prototype point vector. After configuration, to determine the current emotional expression in real time the module calculates a weighted distance from the current point vector (read in real-time from a web-cam mounted on the computer screen) to the prototype vectors. Different points get different weights. This results in an error measure for every prototype expression. This error measure is the basis for a normalized vector of recognized emotion intensities. The recognition module sends this vector to the agent (i.e., neutral 0.3, happy 0.6, fear 0.1). Our choice of weights and features has been inspired by work of others (for review see Pantic & Rothkrantz, 2000). Of course the state of the art in emotion recognition is more advanced than our current approach. However, as our focus is affective learning and not the recognition process per se, we contented ourselves with a low fidelity solution (working almost perfectly for neutral, happy and afraid, when the user keeps the head in about the same position).

Note that we do not aim at generically recognizing emotional expressions. Instead, we tune the recognition module to the individual observer to accommodate his/her personal and natural facial expressions.

The reinforcement learning agent receives this recognized emotion and can use this in multiple ways: as reward, as information (additional state input), as metaparameter (e.g., to control learning rate), and as social input directly into its emotion model. In this paper we focus on social reinforcement, and as such focus on the recognized emotion being used as additional reward or punishment. The agent, its learning mechanism and how it uses the recognized emotion as reinforcement are detailed in Sections 4 and 5.

The artificial emotion model slot enables us to plug in different emotion models based on different theories to study their behavior in the context of reinforcement learning. For example, we have developed a model based on the theory by Rolls (1999), who argues that many emotions can be related to reward and punishment and the lack thereof. This model enables us to see if the agent's situation results in a plausible (e.g., scored by a set of human observers) emotion emerging from the model. By scoring the plausibility of the resulting emotion, we can learn about the compatibility of, e.g., Rolls' emotion theory with reinforcement learning. However, in the current study we have not used this module, as we focus on affective input as social reward.

The emotion expression part is a physical robot head. The head can express an arbitrary emotion by mapping it to its facial features, again according to a certain theory. Currently our head expresses emotions according to the Pleasure Arousal Dominance (PAD) model by Mehrabian (1980). We have a continuous mapping from the 3-dimensional PAD space to the features of the robot face. As such we do not need to explicitly work with emotional categories or intensities of the categories. The mapping appears to work quite well, but is in need of validation study (again using human observers). We have not used the robot head for the studies reported upon in this paper.

We now describe in detail how we coupled the recognized human emotion to the social reinforcement signal for the robot. Then we explain in detail our adapted reinforcement learning mechanism (such that it enabled learning in continuous environments), and our method of study as well as our results.

4 Emotional Expressions as Reinforcement Signal.

As mentioned earlier, emotional expressions and facial expressions in particular can be used as social cues for the desirability of a certain action. In other words, an emotional expression can express reward and punishment if directed at an individual. We focus on communicated affect, i.e., the positiveness versus negativeness of the expression. If the human expresses a smile (happy face) this is interpreted as positive affect. If the human expresses fear, this is interpreted as negative affect. We interpret a neutral face as affectless.

We have studied the mechanism of communicated affective feedback in a human-robot interaction setup. The human's face is analyzed (as explained above) and a vector of emotional expression intensities is fed to the learning agent. The agent takes the expression with the highest intensity as dominant, and equates this with a *social reward* of, e.g., 2 (happy), -2 (fear) and 0 (neutral). This is obviously a simplified setup, as the human face communicates much more subtle affective messages and at the very least is able to communicate the degree of reward and punishment. However, to investigate our hypothesis (affective human feedback increases robot learning performance), the just described mechanism is sufficient.

The social reward is simply added to the "normal" reward the agent receives from the environment. So, if the agent walks on a path somewhere in the gridworld, it receives a reward (say 0), but when the user smiles, the resulting actual reward becomes 2, while if the user looks afraid, the resulting reward becomes -2. Additionally, the agent learns (in a way describe in the next Section) to associate its perception with that social reward. So, in RL terms, it builds up a "social reward function". The user expresses emotions during a short time period, after which the learned social reward function takes over. By doing so we were able to study the impact on robot learning of two phenomena: direct social reinforcement and learned social reinforcement.

5 Method

To study the impact of social reinforcement on robot learning, we have used our framework in the following experimental setup.

A simulated robot (agent) "lives" in a continuous gridworld environment consisting of wall, food and path patches (Figure 1). These are the features of the world observable by the agent. The agent cannot walk on walls, but can walk on path and food. Walls and path are neutral (have a reinforcement of 0.0), while food has a reinforcement of 10. One cell in the grid is assumed to be a 20 by 20 object. Even though wall, path and food are placed on a grid, the world is continuous in the following sense: the agent moves by turning or walking in a certain direction using an arbitrary speed (in our experiments set at 3), and perceives its direct surroundings (within a radius of 20) according to its looking direction (one out of 16 possible directions). The agent uses a "relative eight neighbor metric" meaning that it perceives features of the world at 8 points around it, with each point at a distance of 20 from the center point of the agent and each point at an interval of 1/4 PI radians, with the first point always being exactly in front of it (Figure 1). The state perceived by the agent (its percept) is a real-valued vector of inputs between 0 and 1; each input is defined by the relative contribution of a certain feature in the agent-relative direction corresponding to the input. For example, if the agent sees a wall just in front of it (i.e., the center point of a wall object is exactly at a distance of 20 as measured from the current agent location in its looking direction) the first value in its perceived state would be equal to 1. This value can be anywhere between 0 and 1 depending on the distance of that point to the feature. For the three types of features, the agent thus has 3x8=24 real-valued inputs between 0 and 1 as its perceived world state s (Figure 1). As such the agent can approach objects (e.g., a wall) from a large number of possible angles and positions, with every intermediate position being possible. For all practical purposes, the learning environment can be considered continuous. States are not discretize to facilitate learning. Instead we chose to use the perceived state as is, to maximize compatibility of our experimental results with real-world robots. However, reinforcement learning in continuous environments introduces several important problems for standard RL techniques, such as Q learning, mainly because a large number of potentially similar states exist as well as a very long path length between start and goal states making value propagation difficult. We now briefly explain our adapted RL mechanism. As RL in continuous environments is not specifically the topic of the paper we have left out some of the rational for our choices.

Figure 1. The experimental gridworld. The agent is the "circle with nose" in the top right of the maze, where the nose denotes its direction. The 8 white dots denote the points perceived by the agent. These points are connected to the elements of state s (neural input to the MLPs used by the agent) as depicted. This is repeated for all possible features, in our case: path (gray), wall (black), and food (light gray), in that order. The "e" denotes the cell in which social reward can be administered through smiling or expression of fear, the "1" and "2" denote key locations at which the agent has to learn to differentiate its behavior, i.e., either turn left ("1") or right ("2"). The agent starts at "s". The task enforces a non-reactive best solution (by which we mean that there is no direct mapping from reward to action that enables the agent to find the shortest path to the food). If the agent would learn that turning right is good, it would keep walking in circles. If the agent learns that turning left is good, it would not get to the food.

The agent learns to find the path to the food, and optimizes this path. At every step the agent takes, the agent updates its model of the expected benefit of a certain action as follows. It learns to predict the value of actions in a certain perceived state *s*, using an adapted form of *Q* learning. The value function, $Q_a(s)$, is approximated using a multilayer perceptron (MLP), with 3x8=24 input, 24 hidden, and one output neuron(s), with *s* being the real-valued input to the MLP, *a* the action to which the network belongs, and the output neuron converging to $Q_a(s)$. As such, every action of the agent (5 in total: forward, left, right, left and forward, right and forward) has its own network. The output of the action networks are used as action values in a standard Boltzmann action-selection function (Sutton & Barto, 1998). An action network is trained on the Q value—i.e., $Q_a(s) \leftarrow Q_a(s) + \alpha(r + \gamma Q(s') - Q_a(s))$ —where r is the reward resulting from action a in state s, s' is the resulting next state, Q(s') the value of state s', a is the learning rate and γ the discount factor (Sutton & Barto, 1998). The learning rate equals 1 in our experiments (because the learning rate of the MLP is used to control speed of learning, not a), and the discount factor equals 0.99. To cope with a continuous gridworld, we adapted standard Q learning in the following way:

First, the value $Q_a(s)$ used to train the MLP network for action *a* is topped such that $min(r, Q_a(s')) <= Q_a(s) <= max(r, Q(s'))$. As a result, individual $Q_a(s)$ values can never be larger or smaller than any of the rewards encountered in the world. This enables a discount factor close to or equal to 1, needed to efficiently propagate back the food's reward through a long sequence of steps. In continuous, cyclic, worlds, training the MLP on normal Q values using a discount factor close to 1 can result in several problems not further discussed here.

Second, per step of the agent, we train the action-state networks not only on $Q_a(s) \leftarrow Q_a(s) + \alpha(r + \gamma Q(s') - Q_a(s))$ but also on $Q_a(s') \leftarrow Q_a(s')$. The latter seems unnecessary but is quite important. RL assumes that values are propagated *back*, but MLPs generalize while trained. As a result, training an MLP on $Q_a(s)$ also influences its value prediction for s' in the same direction, just because the inputs are very close. In effect, part of the value is actually propagated *forward*; credit is partly assigned to what comes next. This violates the RL assumption just mentioned. Note that the value Q(s') is predicted using another MLP, called the value network, that is trained in the same way as the action networks using the topped-off value and forward propagation compensation.

Third, for the agent to better discriminate between situations that are perceptually similar, such as position "1" and "2" in Figure 1, for each action-network the agent also uses a second network trained on the value of not taking the action. This network is trained when other actions are taken but not when the action to which the "negation" network belongs is taken. In effect, the agent has two MLPs per action. This enables the agent to better learn that, e.g., "right" is good in situation "2" but not in situation "1". Without this "negation" network, the agent learns much less efficient (results not shown). To summarize, our agent has 5 actions, it has 11 MLPs in total: one to train Q(s), 5 to train $Q_a(s)$ and 5 to train $-Q_a(s)$. All networks use forward propagation compensation and a topped-off value to train upon. The MLP predictions for $Q_a(s)$ and $-Q_a(s)$ are simply added, and the result is used for action-selection.

To study the effect of communicated affect as social reward, we created the following setup. First an agent is trained without social reward. The agent repeatedly tries to find the food for 200 trials, i.e., one *run*. The agent continuously learns and acts during these trials. To facilitate learning, we use a common method to vary the MLP learning rate and the Boltzmann action selection β derived from simulated annealing. The Boltzmann β equals to 3+(trial/200)*(6-3), effectively varying from 3 in the first trial to 6 in the last. The MLP learning rate equals to 0.1-(trial/200)*(0.1-0.001) effectively varying from 0.1 in the first trial to 0.001 in the last. We repeated the experiment 200 times, resulting in 200 runs. Average learning curves are plotted for these 200 runs using a linear smoothing factor equal to 6 (Figure 2).

Second, a new agent is trained with social reward, i.e., a human observer looking at the agent with his/her face analyzed by the agent, translating a smile to a positive social reward and a fearful expression to a negative social reward. Again, average learning curves are plotted using a linear smoothing factor equal to 6, but now based on the average per trial over 15 runs (Figure 2). We experimented with three different social settings: (a) social input from trial 20 to 30, where the social reward is either -0.5 or 0.5 (happy vs. fearful, respectively); (b) social input from trial 20 to 25 where social reward is either -2 or 2, i.e., more extreme social rewards but for a shorter period; (c) social input from trial 29 to 45 where social reward is either -2 or 2 while the agent trains an additional MLP to predict the social reward based on the current state s, so the MLP is trained to predict $R_{social}(s)$. After trial 45, the direct social reward from the observer is replaced by the learned social reward $R_{social}(s)$. As a result, the agent learns to predict what its human tutor thinks about certain situations.

The process of giving affective feedback to a reinforcement learning agent appeared to be quite a long, intensive and attention absorbing experience. As a result, it was physically impossible to observe the agent during all runs and all trials in the entire gridworld (after 2 hours of smiling to a computer screen one is completely fed-up with it *and* has burning eyes and painful facial muscles). To be able to test our hypothesis, we restricted social input to (a) a critical learning period defined in terms of a start and end trail (see above), and (b) the cell indicated by "e" (Figure 1). Only when the agent moves around in this cell and is in a social input trial, the simulation speed of the experiment is set to one action per second enabling affective feedback.

6 Results

The results clearly show that learning is facilitated by social reward. In all three social settings (Figure 2a, b and c) the agent needs fewer steps to find the food during the trials in which the observer provides assistance to the agent by expression positive or negative affect. Interestingly, at the moment the observer stops giving social rewards, the agent gradually looses the learning benefit it had accumulated. This is independent of the size of the social reward (both social learning curves in Figure 2a and b show dips that eventually return to the non-social learning curve). This can be easily explained. The social reward was not given long enough for the agent to internalize the path to the food (i.e., propagate back the food's reward to the beginning of the path). As soon as the observer stops giving social rewards, the agent starts to forget these rewards, i.e., the MLPs are again trained to predict values as they are without social input. So, either the observer should continue to give social rewards until the agent has internalized the solution, or the agent needs to be able to build a representation of the social reward function and uses it when actual social reward is not available. We have experimented with the second (social setting c): we enabled the agent to learn the social reward

function. Now the agent uses actual social reward at the emotional input spot ("e", Figure 1)during the critical period, and uses its social reward prediction when social input stops. This is the third social setup. Results

clearly show that the agent is now able to keep the benefit it accumulated had from using social rewards (Figure 2c). These results show that a combination of using social reward and learning а social reward function facilitates

robot learning, by enabling the robot to quicker learn the optimal solution to the food due to the direct social reward as well as keep that solution by using its learned social reward function when social reward stops.

Figure 2. Results of the learning experiments. From top to bottom showing the difference between the non-social setting and social setting a, b, and c respectively.

7 Conclusion, Discussion and Further Work

Our results show that affective interaction in human-in-theloop learning can provide significant benefit to the efficiency of a reinforcement learning robot in a continuous grid world. We believe our results are particularly important to human-robot interaction for the following reasons. First, advanced robots such as robot companions, robot workers, etc., will need to be able to adapt their behavior according to human feedback. For humans it is important to be able to give such feedback in a natural way, e.g., using emotional expression. Second, humans will not want to give feedback all the time, it is therefore important to be able to define critical learning periods as well as have an efficient social reward system. We have shown the feasibility of both. Social input during the critical learning periods was enough to show a learning benefit, and the relatively easy step of adding an MLP to learn the social reward function enabled the robot to use the social reward when the observer is away.

We have specifically used an experimental setup that is compatible with a real-world robot due: we have used continuous inputs and MLP-based training of which it is known that it can cope with noise and generalize over training examples. As such we believe our results can be generalized to real-world robotics. However, this most certainly needs to be experimented with.

Many interesting computational approaches exist that study emotion in the context of robots and agents, of which we mention one explicitly here as it is particularly related to our work: the adaptive, social chatter bot Cobot (Isbell et al., 2001). Cobot learns the information preferences of its chat partners, by analyzing the chat messages for explicit and implicit reward signals. These signals are then used to adapt its model of providing information to that chat partner. So, Cobot effectively uses social feedback as reward, as does our simulated robot. However, there are several important differences. Cobot does not address the issue of a human observer parenting the robot using affective communication. Instead, it learns based on reinforcement extracted from words used by the user during the chat sessions in which Cobot is participating. Also, Cobot is not a real-time behaving robot, but a chat robot. As a consequence, time constraints related to the exact moment of administering reward or punishment are less important. Finally Cobot is restricted regarding its action-taking initiative, while our robot is continuously acting, with the observer reacting in real-time.

Future work includes a broader evaluation of the EARL framework including its ability to express emotions generated by an emotional model plugged into the RL agent. Further, we envision to experiment with controlling metaparameters (such as exploration/exploitation and learning rate) based on the agent's internal emotional state or social rewards (Belavkin, 2004; Broekens, Kosters, Verbeek, 2007; Doya, 2002). Currently we use simulated annealing-like mechanisms to control these parameters. Further, the agent could try to learn what an emotional expression predicts. In this case, the agent would use the emotional expression of the human in a more pure form (e.g., as a realvalued vector of facial feature intensities as part of its perceived state s. This might enable the agent to learn what the emotional expression means for itself instead of simply using it as reward. Finally, a somewhat futuristic possibility is actually quite close: affective Robot-Robot interaction. Using our setting, it is quite easy to train one robot in a certain environment (parent), make it observe an untrained robot in that same environment (child), and enable it to express its emotion as generated by its emotion model using its robot head, an expression recognized and translated into social rewards by the child robot. Apart from the fact that it is somewhat dubious if such a setup is actually useful (why not send the social reward as a value through a wireless connection to the child), it would enable robots to use the same communication protocol as humans.

Regarding the "usefulness" argument just put forward, it seems to apply to our experiment as well. Why didn't we just simulate affective feedback by pushing a button for positive reward and pushing another for negative reward (or even worse, by simulating a button press)? From the point of view of the robot this is entirely true, however, from the point of view of the human-and therefore the point of view of the human-robot interaction-not at all. Humans naturally communicate social signals using there face, not by pushing buttons. The process of expressing an emotion is quite different from the process of pushing a button, even if it was only for the fact that it takes more time and cognitive effort to initiate the expression. These are just two of many examples showing that expressing an emotion is quite different from pushing a button, and in a real-world scenario with a mobile robot in front of you it would be quite awkward to have to push buttons instead of just smile when you are happy about its behavior. Further it would be quite useful if the robot could recognize you being happy or sad and gradually learn to adapt its behavior even when you did not intentionally give it a reward or punishment. Abstracting away from the actual affective interaction patterns between the human and the robot in our experiment would have rendered the experiment almost completely trivial. Nobody would be surprised to see that the robot learns better if an intermediate reward is given halfway its route towards food. Our aim was to investigate if affective communication can enhance learning in a reinforcement learning setting. Taking out the affective part would have been quite strange indeed.

Acknowledgements

We would like to sincerely thank all the students who helped us develop the *EARL* system, thereby making this research possible. Joris Slob, Chris Detweiler, Sylvain Vriens, Koen de Geringel, Hugo Scheepens, Remco Waal, Arthur de Vries, Pieter Jordaan, Michiel Helvensteijn, Rogier Heijligers, Willem van Vliet, you were great!

This work was partly funded by the European Union (PACO-PLUS integrated grant, IST-FP6-IP-027657; www.paco-plus.org).

References

- [Ashby, F. G., Isen, A. M., & Turken, U., 1999] A Neuropsychological Theory of Positive Affect and its Influence on Cognition. *Psychological Review*, 106 (3): 529-550.
- [Avila-Garcia, O., & Cañamero, L., 2004] Using hormonal feedback to modulate action selection in a competitive scenario. From Animals to Animats 8: Proc. 8th Intl. Conf. on Simulation of Adaptive Behavior (pp. 243-252). Cambridge, MA: MIT Press.

- [Belavkin, R. V., 2004] On relation between emotion and entropy. Proc. of the AISB'04 Symposium on Emotion, Cognition and Affective Computing (pp. 1-8). AISB Press.
- [Berridge, K. C., 2003] Pleasures of the brain. *Brain and Cognition* 52, 106-128.
- [Blanchard, A. J., & Cañamero, L., 2006] Modulation of exploratory behavior for adaptation to the context. Proc. of the AISB'06 Symposium on Biologically Inspired Robotics (Biro-net) (pp 131-137). AISB Press.
- [Breazeal, C., 2001] Affective interaction between humans and robots. In: J. Keleman and P. Sosik (eds), *Proc. of the ECAL 2001, LNAI 2159* (pp. 582-591).
- [Broekens, J., Kosters, W.A., & Verbeek, F. J., 2007] On Emotion, anticipation and adaptation: investigating the potential of affect-controlled selection of anticipatory simulation in artificial adaptive agents. *in press*.
- [Charman, T., & Baird, G., 2002] Practitioner Review: Diagnosis of autism spectrum disorder in 2- and 3-year-old children. *Journal of Child Psychology and Psychiatry*, 43(3), 289-305.
- [Clore, G. L. & Gasper, K., 2000] Feeling is believing: some affective influences on belief. In: Frijda, N., Manstead A. S. R., & Bem, S. (Eds.), *Emotions and Beliefs*. Cambridge Univ. Press, Cambridge, UK.
- [Cos-Aguilera, I., Cañamero, L., Hayes, G. M., & Gillies, A., 2005] Ecological integration of affordances and drives for behaviour selection. *Proceedings of the Workshop on Modeling Natural Action Selection* (pp. 225-228).
- [Custers, R., & Aarts, H., 2005] Positive affect as implicit motivator" On the nonconscious operation of behavioral goals. *Journal of Personality and Social Psychology*, 89(2), 129-142.
- [Damasio, A. R., 1994] *Descartes' error*. New York, NY: Penguin Putnam.
- [Doya, K., 2002] Metalearning and neuromodulation. *Neural Networks*, 15 (4), 495-506.
- [Dreisbach, G., & Goschke, K., 2004] How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. *Journal of Experimental Psychology: Learning, Memory, and Cognition,* 30(2), 343-353.
- [Fong, T., Nourbakhsh, I., & Dautenhahn, K., 2003] A survey of socially interactive robots. *Robots and Autonomous Systems*, 42, 143-166.
- [Forgas, J. P., 2000] Feeling is believing? The role of processing strategies in mediating affective influences in beliefs. In: Frijda, N., Manstead A. S. R., & Bem, S. (Eds.), *Emotions and Beliefs*. Cambridge, UK: Cambridge University Press.
- [Frijda, N. H., & Mesquita, B., 2000] Beliefs through Emotions. In: Frijda, N., Manstead A. S. R., & Bem, S.

(Eds.), *Emotions and Beliefs*. Cambridge, UK: Cambridge University Press.

- [Frijda, N. H., Manstead, A. S. R. & Bem. S., 2000] The influence of emotions on beliefs. In: Frijda, N., Manstead A. S. R., & Bem, S. (Eds.), *Emotions and Beliefs*. Cambridge, UK: Cambridge University Press.
- [Gandanho, S. C., 2003] Learning behavior-selection by emotions and cognition in a multi-goal robot task. *Journal of Machine Learning Research* 4, 385-412.
- [Gasper, K., & Clore, L. G., 2002] Attending to the Big Picture: Mood and Global Versus Local Processing of Visual Information. *Psychological Science*, 13(1): 34-40.
- [Isbell, C. L. Jr., Shelton, C. R., Kearns, M., Singh, S., Stone, P., 2001] A social reinforcement learning agent. *Proc. of Agents-01*. ACM.
- [Lin, L. J., 1993] Reinforcement learning for robots using neural networks. Doctoral dissertation. Carnegie Mellon University, Pittsburgh.
- [Mehrabian, A., 1980] *Basic Dimensions for a General Psychological Theory*. OG&H Publishers. Cambridge Massachusetts.
- [Pantic, M. & Rothkranz, L.J.M., 2000] Automatic analysis of facial expressions: The state of the art. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22 (12), 1424-1445.
- [Picard, R. W., 1997] Affective Computing. MIT Press.
- [Picard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C. Cavallo, D., Machover, T., Resnick, M., Roy, D. & Strohecker, C., 2004]. Affective learning — A manifesto. *BT Technology Journal*, 22(4), 253-269.
- [Rolls, E. T., 2000] Précis of The brain and emotion. *Behavioral and Brain Sciences*, 23, 177-191.
- [Russell, J. A., 2003] Core affect and the psychological construction of emotion. *Psychological Review*, *110*(1), 145-72.
- [Scherer, K. R., 2001] Appraisal considered as a process of multilevel sequential checking. *Appraisal processes in emotion: Theory, Methods, Research.* Oxford Univ. Press, New York, NY.
- [Sutton, R., & Barto, A., 1998] *Reinforcement learning: An introduction*. Cambridge, MA: MIT Press.
- [Velasquez, J. D., 1998] A computational framework for emotion-based control. *In: SAB'98 Work-shop on Grounding Emotions in Adaptive Systems*.