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Abstract. A common action selection mechanism used in agent-oriented
programming is to base action selection on a set of rules. Since rules need
not be mutually exclusive, agents are often underspecified. This means
that the decision-making of such agents leaves room for multiple choices
of actions. Underspecification implies there is potential for improvement
or optimalization of the agent’s behavior. Such optimalization, however,
is not always naturally coded using BDI-like agent concepts. In this pa-
per, we propose an approach to exploit this potential for improvement
using reinforcement learning. This approach is based on learning rule pri-
orities to solve the rule-selection problem, and we show that using this
approach the behavior of an agent is significantly improved. Key here is
the use of a state representation that combines the set of rules of the
agent with a domain-independent heuristic based on the number of ac-
tive goals. Our experiments show that this provides a useful generic base
for learning while avoiding the state-explosion problem or overfitting.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents

General terms: Agent programming languages; Robotics; AI; Method-
ologies and Languages

Keywords: Agent-oriented programming, rule preferences, reinforce-
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1 Introduction

Agent platforms, whether agent programming languages or architectures, that
are rule-based and use rules to generate the actions that an agent performs intro-
duce the problem of how to select rules that generate the most effective choice
of action. Such agent programming languages and architectures are based on
concepts such as rules, beliefs, and goals to generate agent behavior. Here, rules
specify the agent’s behavior. A planning or reasoning engine tries to resolve all
rules by matching the conditions and actions with the current mental state of the
agent. Multiple instantiations of each rule can therefore be possible. An agent
can select any one of these instantiations, resulting in a particular action. So,



the rule-selection problem is analogous to but different from the action-selection
problem [13]. Rule selection is about which uninstantiated rule to chose; action
selection, in the context of rule-based agent frameworks, is about which instan-
tiated rule to chose. In this paper, when we refer to rule we mean uninstantiated
rule, i.e, rules that still contain free variables.

Rule-based agent languages or architectures typically underspecify the be-
havior of an agent, leaving room for multiple choices of actions. The reason is
that multiple rules are applicable in a particular situation and, as a result, mul-
tiple actions may be selected by the agent to perform next. In practice, it is often
hard to specify rule conditions that are mutually exclusive. Moreover, doing so
is undesirable as the BDI concepts used to develop agents often are not the most
suitable for optimizing agent behavior. An alternative approach is to optimize
agent behavior based on learning techniques.

In this paper we address the following question: how to automatically prior-
itize rules in such a way that the prioritization reflects the utility of a rule given
a certain goal. Our aim is a generic approach to learning such preferences, that
can be integrated in rule-based agent languages or architectures. The overall
goal is to optimize the agent’s behavior given a predefined set of rules by an
agent programmer, but our approach can also be used by agent programmers to
gain insight into the rule preferences and use these to further specify the agent
program. As such, we focus on a useful heuristic for rule preferences. We have
chosen reinforcement learning (RL) as heuristic as it can cope with delayed re-
wards and state dependency. These are important aspects in agent behavior as
getting to a goal state typically involves a chain of multiple actions, and rules
can have different utility depending on the state of the agent/environment.

We present experimental evidence that reinforcement learning can be used
to learn rule priorities that can subsequently be used for rule selection. This
heuristic for rule priorities works very well, and results in sometimes optimal
agent behavior. We demonstrate this with a set of experiments using the Goal
agent programming language [5]. Key in our approach is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. Our state representation is as abstract as
possible while still being a useful base for learning. We take this approach for
two main reasons: (1) we aim for a generic learning mechanism; RL should be
a useful addition to all programs, and the programmer should not be bothered
by the state representation or state-space explosions; (2) an abstract state helps
generalization of the learning result as a concrete state representation runs the
risk of over fitting on a particular problem instance.

It is important to immediately explain one aspect of our approach that is dif-
ferent from the usual setup for reinforcement learning. In reinforcement learning
it is common to learn the action that has to be selected from a set of possible
actions. In our approach, however, we will apply reinforcement learning to select
an uninstantiated rule from a set of rules in an agent program. An uninstantiated
rule (called action rule in Goal, see also Listing 1) is a generic rule defined by
the agent programmer.



if goal(tower([X|T])), not(bel(T=[])) then move(X,table)

is an example of such a rule. We refer to an instantiated rule as a completely
resolved (grounded) version of an action rule generated by the reasoning engine
responsible for matching rules to the agent’s current state. This also means that
the action in an instantiated rule may be selected for execution, as the conditions
of the rule have been verified by the engine.

if goal(tower([a,b])), not(bel([b]=[])) then move(a,table)

is an example of an instantiated rule and the action move(a,table) is the corre-
sponding action that may be selected. One instantiated rule thus is the equivalent
of one action (as it is completely filled in). Many different instantiated rules may
be derived from one and the same program rule, depending on the state. An
uninstantiated rule is more generic as it defines many possible actions. We focus
on learning preferences for uninstantiated rules.

The paper is organized as follows. Section 2 discusses some related work and
discusses how our approach differs from earlier work. In Section 3 we briefly
introduce the agent language Goal and use it to illustrate the rule selection
problem. Section 4 presents our approach to this problem based on reinforce-
ment learning and presents an extension of Goal with a reinforcement learning
mechanism. In Section 5 experimental results are presented that show the effec-
tiveness of this mechanism. Finally, Section 6 concludes the paper and discusses
future work.

2 Related Work

There is almost no work on incorporating learning mechanisms into agent pro-
gramming. More generally, BDI agents typically lack learning capabilities to
modify their behavior [1], although several related approaches do exist.

With regards to related work, several studies attempt to learn rule sets that
produce a policy for solving a problem in a particular domain. Key in these
approaches is that the rules themselves are learned, or more specific, rule in-
stantiations are generated and evaluated with respect to a utility function. The
best performing rule instantiations are kept and result in a policy for the agent.
The evaluation mechanism can be different, for example genetic programming [9]
or supervised machine learning [7]. In any case, the main difference is that our
approach tries to learn rule preferences, i.e., a priority for pre-existing rules given
that multiple rules can be active, while the previously mentioned approaches try
to learn rule instantiations that solve a problem.

Other studies attempt to learn rule preferences like we do. However, these
approaches are based on learning preferences for instantiated rules [10][4], not
preferences for the uninstantiated, generic, rules. Further, the state used for
learning is often represented in a much more detailed way [10][4]. Finally, as the
state representation strongly depends on the environment, the use of learning
mechanisms often involves effort and understanding of the programmer [10].



Reinforcement learning has recently been added to cognitive architectures
such as Soar [8] and Act-R [2]. In various respects these cognitive architectures
are related to agent programming and architectures. They use similar concepts
to generate behavior, using mental constructs such as knowledge, beliefs and
goals, are also based on an sense-plan-act cycle, and generate behavior using
these mental constructs as input for a reasoning- or planning-based interpreter.
Most importantly, cognitive architectures typically are rule-based, and therefore
also need to solve the rule (and action) selection problem. For example, Soar-
RL has been explicitly used to study action selection in the context of RL [6].
Soar-RL [10] is the approach that comes closest to ours in the sense that it uses
a similar reinforcement learning mechanism (Sarsa) to learn rule preferences.
As explained above, the key difference is that we attempt to learn uninstan-
tiated rule preferences, while Soar-RL learns preferences for instantiated rules
[10]. Another key difference is that we use an abstract rule-activity based state
representation complemented with a ‘goals left to fulfill’ counter, as explained
in section 4.2.

Finally, [1] present a learning technique based on decision trees to learn
the context conditions of plan rules. The focus of their work is to make agents
adaptive in order to avoid failures. Learning a context condition refers to learning
when to select a particular plan/action, while learning a rule preference refers to
attaching a value to a particular plan/action. Our work is thus complementary in
the sense that we do not learn context conditions, but instead propose a learning
mechanism that is able to guide the rule selection mechanism itself.

3 The Agent Language GOAL

In this Section we briefly present the agent programming language Goal and use
it to illustrate the rule selection problem in agent languages and architectures.
For a more extensive discussion of Goal we refer the reader to [5]. The approach
to the rule selection problem introduced in this paper is not specific to Goal and
may be applied to other similar BDI-based platforms. As our approach involves
a domain-independent heuristic based on counting the number of goals that need
to be achieved, the language Goal is however particularly suitable to illustrate
the approach as declarative goals are a key concept in the language.

Goal, for Goal-Oriented Agent Language, is a programming language for
programming rational agents. Goal agents derive their choice of action from
their beliefs and goals. A Goal agent program consists of five sections: (1) a
knowledge section, called the knowledge base, (2) a set of beliefs, collectively
called the belief base, (3) a set of declarative goals, called the goal base, (4) a
program section which consists of a set of action rules, and (5) an action speci-
fication section that consists of a specification of the pre- and postconditions of
actions of the agent. Listing 1 presents an example Goal agent that manipulates
blocks on a table.

The knowledge, beliefs and goals of a GOAL agent are represented using a
knowledge representation language. Together, these make up the mental state of



1 main stackBuilder {
2 knowledge{
3 block(a), block(b), block(c).
4 clear(table).
5 clear(X) :- block(X), not(on(Y,X)).
6 tower([X]) :- on(X,table).
7 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
8 }
9 beliefs{

10 on(a,table), on(b,table), on(c,a), on(d,c).
11 }
12 goals{
13 on(a,d), on(b,c), on(c,table), on(d,b).
14 }
15 program{
16 if goal(tower([X|T])),
17 bel((T=[Y|T1], tower(T)); (T=[], Y=table))
18 then move(X,Y).
19 if goal(tower([X|T])), not(bel(T=[]))
20 then move(X,table).
21 }
22 actionspec{
23 move(X,Y) {
24 pre{ clear(X), clear(Y), on(X,Z) }
25 post{ not(on(X,Z)), on(X,Y) }
26 }
27 }
28 }

Table 1. Agent for Solving a Blocks World Problem

an agent. Here, we use Prolog to represent mental states. An agent’s knowledge
represents general conceptual and domain knowledge, and does not change. An
example is the definition of the concept tower in Listing 1. In contrast, the beliefs
of an agent represent the current state of affairs in the environment of an agent.
By performing actions and possibly by events in the environment, the environ-
ment changes, and it is up to the agent to make sure its beliefs stay up to date.
Finally, the goals of an agent represent what the agent wants the environment to
be like. For example, the agent of Listing 1 wants to realise a state where block
a is on top of block b. Goals are to be interpreted as achievement goals, that is
as a goal the agent wants to achieve at some future moment in time and does
not believe to be the case yet. This requirement is implemented by imposing a
rationality constraint such that any goal in the goal base must not believed to
be the case. Upon achieving the complete goal, an agent will drop the goal. The
agent in Listing 1 will drop the goal on(a,b), on(b,c), on(c,table) if this
configuration of blocks has been achieved, and only if the complete configuration
has been achieved.

As Goal agents derive their choice of action from their knowledge, beliefs and
goals, they need a way to inspect their mental state. Goal agents do so by means
of mental state conditions. Mental state conditions are Boolean combinations
of so-called basic mental atoms of the form bel(φ) or goal(φ). For example,
bel(tower([c,a])) is a mental state condition which is true in the initial mental
state specified in the agent program of Listing 1.



A Goal agent uses so-called action rules to generate possible actions it may
select for execution. This provides for a rule-based action selection mechanism,
where rules are of the form if ψ then a(t) with ψ a mental state condition and
a(t) an action. A mental state condition part of an action rule thus determines
the states in which the action a(t) may be executed. Action rules are located in
the program section of a Goal agent. The first action rule in this section of our
example agent generates so-called constructive moves, whereas the second rule
generates actions to move a misplaced block to the table. Informally, the first
rule reads as follows: if the agent wants to construct a tower with X on top of
a tower that has Y on top and the agent believes that the tower with Y on top
already exists, or believes Y should be equal to the table, then it may consider
moving X on top of Y; in this case the move would put the block Y in position,
and it will never have to be moved again. The second rule reads as follows: if the
agent finds that a block is misplaced, i.e. believes it to be in a position that does
not match the (achievement) goal condition, then it may consider moving the
block to the table. These rules code a strategy for solving blocks world problems
that can be proven to always achieve a goal configuration. As such, they already
specify a correct strategy for solving blocks world problems. However, they do
not necessarily determine a unique choice of action. For example, the agent in
Listing 1 may either move block d on top of block b using the first action rule,
or move the same block to the table using the second action rule. In such a
case, a Goal agent will nondeterministically select either of these actions. It is
important for our purposes to note here that the choice of rule is at stake here,
and not a particular instantiation of a rule. Moreover, as in the blocks world it is
a good strategy to prefer making constructive moves rather than other types of
moves, the behavior of the agent can be improved by preferring the application
of the first rule over the second whenever both are applicable. It is exactly this
type of preference that we aim to learn automatically.

Finally, to complete our discussion of Goal agents, actions are specified in
the action specification section of such an agent using a STRIPS-like specifica-
tion. When the preconditions of the action are true, the action is executed and
the agent updates its beliefs (and subsequently its goals) based on the postcon-
dition. Details can be found in [5].

As illustrated by our simple example agent for the blocks world, rule-based
agent programs or architectures may leave room for applying multiple rules,
and, as a consequence, for selecting multiple actions for execution. Rule-based
agents thus typically are underspecified. Such underspecification is perfectly fine,
as long as the agent achieves its goals, but may also indicate there is room for
improvement of the agent’s behavior (though not necessarily so). The problem
of optimizing the behavior of a rule-based agent thus can be summarized as fol-
lows, and consists of two components: First, solving a particular task efficiently
depends on using the appropriate rule to produce actions (the rule selection
problem) and, second, to select one of these actions for execution (the action
selection problem). The latter problem is actually identical to selecting an in-
stantiated rule where all variables have been grounded, as instantiated rules



that are applicable yield unique actions that may be executed. Uninstantiated
rules only yield action templates that need to be instantiated before they can be
executed.

In this paper we explore a generic and fully automated approach to this
optimization problem based on learning, and we propose to use reinforcement
learning. Although reinforcement learning is typically applied to solve the ac-
tion selection problem, here instead we propose to use this learning technique
to (partially) solve the rule selection problem. The reason is that we want to
incorporate a generic learning technique into a rule-based agent that does not
require domain-specific knowledge to be inserted by a programmer. As we will
show below, applying learning to the rule selection problem in combination with
a domain-independent heuristic based on the number of goals still to be achieved
provides just such a mechanism.

4 Learning to Solve the Rule Selection Problem

In this Section, we first briefly review some of the basic concepts of reinforcement
learning, and then introduce our approach to the rule selection problem based
on learning and discuss how we apply reinforcement learning to this problem.
We use the agent language Goal to illustrate and motivate our choices.

4.1 Reinforcement Learning

Reinforcement Learning is a mechanism that enables machines to learn solutions
to problems based on experience. The main idea is that by specifying what to
learn, RL will figure out how to do it. An approach based on reinforcement
learning assumes there is an environment with a set of possible states, S, a
reward function R(S) that defines the reward the agent receives for each state
in the environment, and a set of actions A that enable to effect changes to the
environment (or an agent in that environment) and move the environment from
one state to another according to the state transition function T (S,A) → S.
An RL mechanism then learns a value function, V (S,A), that maps actions in
states to values of those actions in that state. It does so by propagating back
the reinforcement (reward) received in later states to earlier states and actions,
called value propagation. RL should do this in such a way that the result of always
picking the action with the highest value will lead to the best solution to the
problem (the best sequence of actions to solve the problem is the sequence with
the highest cumulative reward). Therefore, RL is especially suited for problems
in which the solution follows only after a sequence of actions and in which the
information available for learning takes the form of a reward (e.g. pass/fail or
some utility value).

In order for RL to learn a good value function, it must explore the state space
sufficiently, by more or less randomly selecting actions. Exploration is needed to
gather a representative sample of interactions so that the transition function T
(in case the model of the world is not known) and the reward function R can be



learned. Based on T and R, the value function V is calculated. After sufficient
exploration, the learning agent switches to an exploitation scheme. Now the value
function is used to select the action with highest predicted cumulative reward
(the action with the highest V (s, a)). For more information on RL see [12].

4.2 GOAL-RL

The idea is to use RL to learn values for the rules in an agent program or archi-
tecture, so that a priority of rules can be given at any point during the execution
of the agent. Here, we use Goal to illustrate and implement these ideas, and we
call this RL-enabled version Goal-RL. The basic idea of our contribution is that
the Goal interpreter determines which rules are applicable in a state, while RL
learns what the values for applying these same rules are in that state. Goal will
then again be responsible for using these values in the context of rule selection.
Various selection mechanisms may be used, e.g., selecting the best rule greedy,
or selecting a rule based on a Boltzmann distribution, etc. This setup combines
the strenghts of a qualitative, logic-based agent platform such as Goal with the
strengths of a learning mechanism such as reinforcement learning.

RL needs a state representation for learning. Unfortunately, using the agent’s
mental state or the world state, as is typically done in RL, quickly leads to
intractably large state spaces and makes the solutions (if they can be learned
at all) domain and even problem-instance specific. Still, our goal is to create
a domain-independent mechanism that takes the burden of finding a good rule
selection mechanism away from the programmer.

We propose the following approach. Instead of starting to train with a state
representation that is as close as possible to the actual agent state, and make that
representation more abstract in case of state explosion problems, as is common
in RL, we start with a representation that is very abstract, while still being
meaningful and specific enough to be useful for learning rule preferences. The
benefits of this choice are twofold. First, a trained RL model based on such an
abstract state and action representations is potentially more suitable for reuse
in different domains and problem instances (learning transfer). Second, by using
an abstract state our approach is less vulnerable to large state-spaces and the
state-space explosion problem, and, consequently, will learn faster.

The state representation we propose is composed of the following two ele-
ments. First, our state representation contains the set of rule-activation pairs
itself (i.e. the list of rules and whether a rule is applicable or not). However,
for many environments this representation does not contain enough information
for the RL algorithm to learn a good value function. Essentially, what is miss-
ing is information that guides the RL algorithm towards the end goal. A state
representation that only keeps track of the set of rules that are and are not ap-
plicable does not contain any information about the approriateness of rules in a
particular situation. We add such information by including a second element in
the state representation: a version of a well-known progress heuristic used also
in planning. The heuristic, which is easily implemented in an agent language or
architecture that keeps track of the goals of an agent explicitly, is to count the



number of subgoals that still need to be achieved. This is a particularly easy
way to compute the so-called sum cost heuristic introduced in [3]. Due to its
simplicity this heuristic causes almost no overhead in the learning algorithm.
This heuristic information is added to the state used by the reinforcement learn-
ing mechanism in order to guide the learning. Adding a heuristic like this will
keep the mechanism domain independent, but gives useful information to the
RL mechanism to differentiate between states.

Even with this heuristic many states differentiated by the agent itself are
conflated in the limited number of states used by the reinforcement learner.
Such a state space reduction will sometimes prevent the algorithm from finding
optimal solutions (as many RL mechanisms, including the one we use, assume a
Markovian state transition). It should be noted, though, that we are not aiming
for a perfect learning approach that is always able to find optimal solutions.
Instead, we aim for an approach that provides two benefits: it is generic and
therefore poses no burden on the programmer, and the approach is able to pro-
vide a significant improvement of the agent’s behavior, even though this may
still not be optimal (optimal being the smallest number of steps possible to
solve a problem). The approach to learn rule preferences thus should result in
significantly better behavior than that generated by agents that do not learn
rule preferences. In the remainder of this paper, we will study and demonstrate
how well the domain-independent approach is able to improve the behavior of
agents acting in different domains.

In more detail, the approach introduced here consists of the following ele-
ments. A state s is a combination of the number of subgoals the agent still has
to achieve and the set of rule states. A rule state is either 0, 1 or 2, where 0
means the rule is not active, 1 means there is an instantiation of the rule in which
the rule’s preconditions are true and 2 means there is an instantiation in which
also the preconditions for the action the rule proposes are true meaning the rule
fires. For example, if a program has a list of 3 rules, of which the last two in the
program fire while the agent still has 4 subgoals to achieve, the state equals to
s = 022 : 4. An action is represented by a hash based on the rule (in our case sim-
ply the index of the rule in the program list; so the action uses the same hash as
the rule in the rule-activation pairs used for the state). For example, if the agent
would execute an action coming from the first rule in the list, the action equals
to a = 0, indicating that the agent has picked the first rule for action generation.
In our setup, the reward function R is simple. It defines a reward r = 1 when all
goals are met (the goal list is empty) and r = 0 otherwise. The current and next
state-action pairs (s, a) and (s′, a′) are used together with the received reward
r′ as input for the value function V . A transition function T is learned based
on the observed state-action pairs (s, a) and (s′, a′). The transition function is
used to update the value function according to standard RL assumptions, with
one exception: the value for a state-action pair (s, a) is updated according to the
probabilistically correct estimate of the occurance of (s′, a′), not the maximum.
In order to construct the probabilities, the agent counts state occurrences, N(s),
and uses this count in a standard weighting mechanism. Values of states are



updated as follows:

RL(s, a)← RL(s, a) + α · (r −RL(s, a)) (1)

V (s, a)← RL(s, a) + γ ·
∑

i

V (sai
, ai)

N(sai
, ai)∑

j N(saj , aj)
(2)

So, a state-action pair (s, a) has a learned reward RL(s, a) and a value V (s, a)
that incorporates predicted future reward. RL(s, a) converges to the reward
function R(s, a) with a speed proportional to the learning rate α (set to 1 in our
experiments). V (s, a) is updated based on RL(s, a) and the weighted average
over the values of the next state-action pairs reachable by action a1...i (with
a discount factor of γ, set to 0.9 in our experiments). So, we use a standard
model-based RL approach [12], with an update function comparable to Sarsa
[11].

5 Experiments

In order to assess if rule preferences can be learned using RL with a state rep-
resentation as described, we have conducted a series of experiments. The goal
of these experiments was to find out the sensitivity of our mechanism with re-
spect to (a) the problem domain (we tested two different domains), (b) different
problem instantiations within a domain (e.g. random problems), (c) rules used
in the agent program (different rule sets fire differently and thus result in both
a different state representation and different agent behavior), (d) different goals
(a different goal implies a different reward function because R(s) = 1 only when
all goals are met).

In total we tested 8 different setups. Five setups are in an environment called
the blocks world, in which the agent has to construct a goal state consisting of a
predefined set of stacks of numbered blocks from a start state following standard
physics rules (block cannot be removed from underneath other blocks). The agent
can grab a block from and drop a block at a particular stack. In principle, it can
build infinitely many stacks (the table has no bounds). The agent program lists
two rules.

Three setups were in the logistics domain in which the agent has to deliver
two orders each consisting of two different packages to two clients at different
locations. In total there are three locations, with all packages at the starting
location and each client at a different location. A location can be reached directly
in one action. The agent can load and unload a package as well as goto a different
location. The agent program lists five rules.

5.1 Setup

Each experiment consisted of a classic learning experiment in which a training
phase of 250 trials (random rule selection) was followed by a exploitation phase of
30 trials (greedy rule selection based on learned values). For each experiment we



present a bar graph showing the average number of actions needed to solve the
problem during the training phase (reflecting the goal agent as it would perform
on average without learning ability) and during the exploitation phase (reflecting
the solution including the trained rule preferences). As a measure of optimality
we also show the minimum number of actions needed in one trial to get to a goal
state as observed during the first 250 trials (which equals the minimum number
of steps to reach a solution, except in Figure 3 as explained later). This number
is shown in the bar graphs as reference number for the optimality of the learned
solution.

5.2 Blocks world experiments

Five experiments were done using the blocks world. As described in section 3,
there are two rules for the GOAL agent, one rule designed to correctly stack
blocks on goal stacks (constructive rule) and the other designed to put ill-placed
blocks on the table (deconstructive move). Given these two rules, it is easy to
see (and prove) that given a choice between the constructive and deconstructive
move, the constructive move is always as good as the deconstructive one. It
involves putting blocks at their correct position. These blocks do not need to
be touched anymore. A deconstructive move involves freeing underlying blocks.
This might be necessary to solve the problem, but the removed blocks might
also need to be moved again from the table to their correct place at a goal stack.

The first experiment is a test, constructed to find out if the GOAL-RL agent
can learn the correct rule preferences for a fundamental three-blocks problem.
In this problem, three blocks need to be put on one stack starting with C,BA
ending with the goal stack ABC. The agent should learn a preference for the
constructive move, as this allows a solution of the problem in two moves (B > C
and A > BC), while the deconstructive move needs three (A > Table then
B > C and A > BC). Indeed, the agent learns this preference, as shown in
Figure 1.

The reward in the last experiment comes rather quickly, and the state tran-
sitions are provably Markovian, so the positive learning result presented here
is not surprising. In the second experiment, we tested if a reward given at a
later stage together with a more complex state-space would also give similar re-
sults. We constructed a problem of which it is clear that constructive moves are
better than deconstructive moves: the inverse-tower problem. Here, the agent is
to inverse a tower IHGFEDCBA to ABCDEFGHI. Obviously, constructive
moves are to be preferred as they build a correct tower, while deconstructive
moves only delay building the tower. The rules used by the agent are the same
as in the previous experiment. As can be seen in Figure 1, the GOAL-RL agent
is able to learn the correct rule preferences and thereby produce the optimal
solution.

As one of the reasons for choosing an abstract state representation is to find
out if this helps learning a solution to multiple problem instances with a problem
domain, not just the one trained for, we set up a third experiment based on tower
building problem in which the starting configuration is random. This means



that at each trial the agent is confronted with a different starting configuration
but always has ABCDEFGHI as goal stack. Being able to learn the correct
preferences for the rules in this case involves coping with a large amount of
environment states that are mapped to a much smaller amount of rule-based
states. We have kept the goal static to be able to interpret the result. If the
goal is to build a high tower, constructive moves should be clearly preferred over
deconstructive ones. Therefore we know that in this experiment the constructive
move is clearly favorite and the learning mechanism should be able to learn this.
As shown in Figure 2 the agent can indeed learn to generalize over the training
samples and learn rule preferences. Note that if we would have taken a state
representation more directly based on the actual world (e.g., the current blocks
configuration), this generalization is difficult as each new configuration is a new
state, and in RL unseen states cannot be used to predict values (unless a RL
mechanism is used that uses some form of state feature extraction). Therefore,
this result that shows that our approach is able to optimize rule selection in a
generic way.

Up until now, the two rules of the agent are relatively smart. Each rule helps
solving the problem, i.e., each rule moves forward towards the goal, as even the
deconstructive rule never removes a block from a goal stack. In the next experi-
ment we changed the deconstructive move to one that always enables the agent
to remove a block form any stack. This results in a dumb tower building agent
as it can deconstruct correct towers. For this agent to learn correct preferences,
it needs to cope with much longer action sequences before the goal is reached
as well as many cycles in the state transitions (e.g., when the agent undoes a
constructive move). As shown in Figure 2, left and middle, the agent can learn
the correct rule preferences and converge to the optimal solution. This is an
important result as it shows that the mechanism can cope with different rule
sets solving the same problem, as well as optimize agent behavior given a rule
set that is clearly sub-optimal (the dumb deconstructive move).

In our last experiment with the blocks world, we evaluated whether the learn-
ing mechanism is sensitive to the goal itself. It is based on the inverse tower
problem, with one variation: instead of having one high tower as goal, we now
have three short towers ABC,DEF,GHI as goal stacks as well as a random
starting configuration. This variation thus de-emphasizes the merit of construc-
tive moves for the following reason. In order to solve the problem from any
random starting configuration, the agent also has to cope with those situations
in which one or two long towers are present at the start. These towers need
to be deconstructed. As such, even though constructive moves are never worse
than deconstructive moves, deconstructive moves become relatively more valu-
able. As shown in Figure 2, right, the agent still improves the agent behavior
significantly, but is not able to always learn the optimal solution. As such our
learning approach provides a useful heuristic for rule preferences. The decrease
in learning effectiveness is due to the abstractness of the state representation. In
the previous experiments, the agent’s RL mechanisms could know where it was
building the tower, as the number of active subgoals (incorrectly placed blocks)



decreases with each well-placed block. In this experiment, however, the number
of active subgoals does not map to the environment state in the same fashion
(all three towers contribute to this number, but it is impossible to deduce the
environment state based on the number of subgoals: e.g., the number 6 does not
reflect that tower one and two are build and we are busy with tower three). This
means that there is more state-overloading in the last experiment, more risk at
non Markovian state transitions, hence the RL mechanism will perform worse.

Fig. 1. Left: three-block test. Right: inverse tower.

Fig. 2. Left: random start tower. Middle: random start tower dumb. Right random
start 3 towers.

5.3 Logistics domain experiments

In this set of three experiments we test the behavior of our mechanism in a
different domain. The domain is called the logistics domain. As explained above,
this domain involves a truck that needs to distribute from a central location two
different orders containing two different items to two clients, making it a total
of four items to be delivered. A truck can move between three locations (client
1, client 2 and the distribution center). The agent has two goals: deliver order
1, and deliver order 2. It can pick up and drop an item. When two items are
delivered, a subgoal is reached. The agent has five rules, two of which handle
pickup, one handles dropping, 1 handles moving to a client, and one handles
moving to the distribution center.



In the first experiment, we tested if the agent can learn useful preferences in
this domain. As Figure 3, left and middle, shows, it can. This suggests that our
results are not specific to a single domain.

In the second experiment, we modified the rule that controls moving to clients
such that it also allows the truck to move to clients when empty (the dumb
delivery truck). This mirrors the dumb tower builder in the blocksworld as it
significantly increases the average path to the goal state and it introduces much
more variation in the observed states (more random moves). As shown in Figure
3, left and middle, the agent can also learn rule preferences that enable it to
converge to the optimal solution. We would like to note that the average learning
result is better than the minimum result observed during exploration. This shows
that the learned rule preferences perform a strategy that is better than any
solution tried in the 250 exploration trials. In other words, learning based on rule-
based representations can generalize to a better solution than observed during
training.

In the last experiment we manipulated a last important factor: the reward
function R(s). In the previous two experiments, the agent was positively rein-
forced when the last item had been delivered. In this experiment, the agent is
reinforced when it returns to the distribution center after having delivered the
last item. As shown in Figure 3, right, this results in a suboptimal strategy,
although still far better a strategy than the standard GOAL agent. This shows
that the mechanism is influenced by the moment the reward is given, even if
from a logical point of view this should not matter. The reason for this is sim-
ple (and resembles the one proposed for the slightly worse performance in the
last blocksworld experiment). Due to our abstract state representation, the RL
mechanism of the agent cannot differentiate between a state in which it just
returned to the distribution center after delivering the last item of the last or-
der versus the first item of the last order. This means that both environment
states are mapped to the same RL state. This RL state receives a reward, and
therefore returning to the distribution center gets rewarded. As such, the agent
emphasizes returning to the distribution center and learns the suboptimal solu-
tion in which it picks up an item and brings it to the client as soon as possible
in order to get to the center ASAP because that is where the reward is. The
best strategy is of course to pick both items for a client and then move to the
client. However, as the RL mechanism cannot differentiate between two impor-
tant states, it cannot learn this solution. This clearly shows a drawback of a too
abstract state representation. However, the drawback is relative, as the agent
still performs much better than the standard GOAL agent, showing that even
in this case our mechanism is useful as a rule preference heuristic.

6 Conclusion

In this paper we have focused on the question of how to automatically prioritize
rules in an agent program. We have proposed an approach to exploit the potential
for improvement in rule-selection using reinforcement learning. This approach



Fig. 3. Left: delivery world. Middle: delivery world dumb. Right: delivery world ma-
nipulated R(s)

is based on learning state-dependent rule priorities to solve the rule-selection
problem, and we have shown that using this approach the behavior of an agent
is significantly improved. We demonstrate this with a set of experiments using
the GOAL agent programming language, extended with a reinforcement learning
mechanism. Key in our approach, called GOAL-RL, is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. This state representation, though very
abstract, still provides a useful base for learning. Moreover, this approach has
two important benefits: (1) it provides for a generic learning mechanism; RL
should be a useful addition to all programs, and the programmer should not be
bothered by the state representation or state-space explosions; (2) an abstract
state helps generalizing the learning result as a concrete state representation runs
the risk of over fitting on a particular problem instance. One of the advantages
is that it does not involve the agent programmer or the need to think about
state representations, models, rewards and learning mechanisms. In the cases
explored in our experiments the approach often finds rule preferences that result
in optimal problem solving behavior. In some case the resulting behavior is not
optimal, but is still significantly better than the non-learning agent.

Given that we have implemented a very generic, heuristic approach there
is still room for further improvement. Two topics are particularly interesting
for future research. First, we want to investigate whether adding other domain-
independent features and making the state space in this sense more specific may
improve the learning even more. Second, we want to investigate whether the use
of different learning mechanisms that are better able to cope with non Markovian
worlds and state overloading such as methods based on a partially observable
Markov assumption (POMDP) will improve the performance.
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