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In this paper we computationally study the relation between adaptive behavior and emotion.
Using the Reinforcement Learning framework, we propose that learned state utility, V(s),
models fear (negative) and hope (positive) based on the fact that both signals are about
anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error
signal. We present agent-based simulation experiments that show that this model replicates
psychological and behavioral dynamics of emotion. This work distinguishes itself by assessing
the dynamics of emotion in an adaptive agent framework - coupling it to the literature on
habituation, development, extinction, and hope theory. Our results support the idea that
the function of emotion is to provide a complex feedback signal for an organism to adapt its
behavior. Our work is relevant for understanding the relation between emotion and adaptation
in animals, as well as for human-robot interaction, in particular how emotional signals can be
used to communicate between adaptive agents and humans.
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1. Introduction

Emotion and reinforcement learning (RL) play an important role in shaping be-
havior. Emotions drive adaptation in behavior and are therefore often coupled to
learning (Baumeister, Vohs, DeWall, & Zhang, 2007). Further, emotions inform us
about the value of alternative actions (Damasio, 1996) and directly influence action
selection, for example through action readiness (N. Frijda, Kuipers, & Ter Schure,
1989). Reinforcement Learning (RL) (Sutton & Barto, 1998) is based on explo-
ration and learning by feedback and relies on a mechanism similar to operant
conditioning. The goal for RL is to inform action selection such that it selects
actions that optimize expected return. There is neurological support for the idea
that animals use RL mechanisms to adapt their behavior (Dayan & Balleine, 2002;
O’Doherty, 2004; Suri, 2002). This results in two important similarities between
emotion and RL: both influence action selection, and both involve feedback. The
link between emotion and RL is supported neurologically by the relation between
the orbitofrontal cortex, reward representation, and (subjective) affective value (see
(Rolls & Grabenhorst, 2008)).

Emotion and feedback-based adaption are intimately connected in natural agents
via the process called action selection. A broadly agreed-upon function of emotion
in humans and other animals is to provide a complex feedback signal for a(n) (syn-
thetic) organism to adapt its behavior (N. H. Frijda, 2004; Lewis, 2005; Ortony,
Clore, & Collins, 1988; Reisenzein, 2009; Robinson & el Kaliouby, 2009; Rolls,
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2000; Broekens, Marsella, & Bosse, 2013). Important for the current discussion is
that emotion provides feedback and that this feedback ultimately influences behav-
ior, otherwise we can not talk about the adaptation of behavior. Behavior can be
conceptualized as a sequence of actions. So, the generation of behavior eventually
boils down to selecting appropriate next actions, a process called action selection
(Bryson, 2007; Prescott, Bryson, & Seth, 2007). Specific brain mechanisms have
been identified to be responsible for, or at the very least involved in, this process
(Bogacz & Gurney, 2007; Houk et al., 2007). An important signal that influences
action selection in humans is how alternative actions feel. In neuroscience and psy-
chology this signal is often referred to as somatic marker (Damasio, 1996), affective
value (Rolls & Grabenhorst, 2008) or preference (Zajonc & Markus, 1982). Another
way in which emotion influences action selection is through emotion-specific action
tendencies (N. H. Frijda, 2004), such as the tendency to flee or startle when affraid.

RL is a plausible computational model of feedback-based adaptation of behavior
in animals. In RL an (artificial) organism learns, through experience, estimated
utility of situated actions. It does so by solving the credit assignment problem, i.e.,
how to assign a value to an action in a particular state so that this value is predic-
tive of the total expected reward (and punishment) that follows this action. After
learning, the action selection process of the organism uses these learned situated ac-
tion values to select actions that optimize reward (and minimize punishment) over
time. Here we refer to situated action value as utility. In RL, reward, utility, and
utility updates are the basic elements based on which action selection is influenced.
These basic elements have been identified in the animal brain including the encod-
ing of utility (Tanaka et al., 2004), changes in utility (Haruno & Kawato, 2006),
and reward and motivational action value (Berridge, 2003; Berridge & Robinson,
2003; Berridge, Robinson, & Aldridge, 2009; Tanaka et al., 2004). In these studies
it is argued that these processes relate to instrumental conditioning, in particular
to the more elaborate computational model of instrumental conditioning called
Reinforcement Learning (Dayan & Balleine, 2002; O’Doherty, 2004).

Computational modeling of the relation between emotion and reinforcement
learning is useful from an emotion-theoretic point of view. If emotion and feedback-
based adaptation of behavior is intimately connected in natural agents, and, RL is
a computational model of feedback-based adaptation of behavior in animals, then
computationally studying the relation between emotion and reinforcement learning
seems promising. The hypothesis that emotion and RL are intimately connected in
animals is supported by the converging evidence that both RL and emotion seem
to influence action selection using a utility-like signal. Our idea that there is a
strong connection between emotion, or affective signals in general, and reinforce-
ment learning is confirmed by the large amount of neuroscientific work showing
a relation between the orbitofrontal cortex, reward representation, and (subjec-
tive) affective value (for review see (Rolls & Grabenhorst, 2008)). Computational
modeling generates information that helps to gain insight into the dynamics of
psychological and behavioral processes of affective processing (K. R. Scherer, 2009;
Broekens et al., 2013; Marsella, Gratch, & Petta, 2010). Studying the relation be-
tween RL and affect is no exception (see e.g. (Schweighofer & Doya, 2003; Cos,
Canamero, Hayes, & Gillies, 2013; Krichmar, 2008; Redish, Jensen, Johnson, &
Kurth-Nelson, 2007)).

Computational modeling of the relation between emotion and reinforcement
learning is useful from a computer science point of view for two reasons: affec-
tive signals can enhance the adaptive potential of RL agents, and, affective sig-
nals help human-agent interaction. We briefly discuss related work in this area.
While most research on computational modeling of emotion is based on cognitive
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appraisal theory (Marsella et al., 2010), computational studies show that emotion-
like signals can benefit Reinforcement Learning agents (Broekens, 2007; Hogewon-
ing, Broekens, Eggermont, & Bovenkamp, 2007; Sequeira, 2013a; Gadanho, 1999;
Schweighofer & Doya, 2003; Sequeira, Melo, & Paiva, 2011; Sequeira, 2013b; Se-
queira, Melo, & Paiva, 2014; Cos et al., 2013; Marinier & Laird, 2008; Broekens,
Kosters, & Verbeek, 2007). For example, in the area of optimization of exploration,
different groups have shown that mood-like signals emerging from the interaction
between the agent and its environment can be used to optimize search behavior
of an adaptive agent (Broekens, 2007; Broekens et al., 2007; Hogewoning et al.,
2007; Schweighofer & Doya, 2003) by manipulating the amount of randomness
in the action selection process. Other studies show that affective signals coming
from human observers (Broekens, 2007) (in essence an interactive form of reward
shaping) or affective signals generated by a cognitive assesment of the agent itself
(Gadanho, 1999) (in essence a form of intrinsic reward) can speed up convergence.
It has also been shown that adaptive agents can use intrinsic reward signals that
resemble emotional appraisal processes, and that these signals help the agent to be
more adaptive than standard RL agents in tasks that lack complete information
(Sequeira, 2013b; Sequeira et al., 2011, 2014), similar to the work presented in
(Marinier & Laird, 2008). In these two approaches emotional appraisal generates
an intrinsic reward signal that is used for learning. A key difference between these
latter two works is that the emotional appraisal in (Marinier & Laird, 2008) also
appraises based on the semantics of the state of the RL agent, such as if there
is a wall or not, while in (Sequeira et al., 2014) appraisal is solely based on RL
primitives. Furthermore, already in 1999 an exhaustive attempt has been made
to investigate different ways in which both emotion and RL can jointly influence
action selection (Gadanho, 1999).

To be able to claim that one can model emotions with reinforcement learning
it is essential to replicate psychological and behavioral findings on emotion and
affect. An example in the context of cognitive appraisal theory is the work by
(Gratch, Marsella, Wang, & Stankovic, 2009) investigating how different computa-
tional models predict emotions as rated by human subjects. Examples related to
conditioning and emotion include (Moren, 2000; Steephen, 2013; Lahnstein, 2005).
However, to ground the affective labeling of RL-related signals we believe that
replication of emotion dynamics is needed in the context of learning a task.

Solid grounding, for example of fear being negative predicted value, opens up
the way towards a domain independent model of emotion within the RL frame-
work which reduces the need to design a specific emotion model for each particular
agent. Although such domain independent computational models exist for cogni-
tive appraisal theory (Marsella & Gratch, 2009; Dias, Mascarenhas, & Paiva, 2011),
none exist for RL-based agents. Solid grounding of emotion in RL-based artificial
agents also means we know what an emotion means in terms of the functioning of
the agent (Canamero, 2005; Kiryazov, Lowe, Becker-Asano, & Ziemke, 2011). This
is important because grounding emotion in adaptive behavior helps human-agent
interaction; the expression of that emotion by a virtual agent or robot becomes
intrinsically meaningful to humans, i.e., humans can relate to why the emotional
signal arises. An adaptive robot that shows, e.g., fear grounded in its learning
mechanism will be much easier to understand for humans, simply because we hu-
mans know what it means to have fear when learning to adapt to an environment.
So, solving the grounding problem directly helps human-robot and human-agent
interaction. This means that for an emotional instrumentation to be useful, adap-
tive benefit per se is not a requirement. Even if the emotion has no direct influence
on the agent, it is still useful for human-agent interaction and for understanding
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the fundamentals of how emotion emerges from adaptive behavior.
The contribution of our work in this field is that we aim to show a direct mapping

between RL primitives and emotions, and assess the validity by replicating psy-
chological findings on emotion dynamics. This focus on replication of psychological
findings is an essential difference with (El-Nasr, Yen, & Ioerger, 2000). Our focus
on emotions is also a key difference with the approach by (Sequeira et al., 2014),
which focuses on appraisal processes. Another defining element of our approach
is that we do not focus on learning benefit for artificial agents per se, as we be-
lieve that before affectively labelling a particular RL-based signal, it is essential to
investigate if that signal behaves according to what is known in psychology and be-
havioral science. The extent to which a signal replicates emotion-related dynamics
found in humans and animals is a measure for the validity of giving it a particular
affective label.

In this paper we report on a study that shows plausible emotion dynamics for
joy, distress, hope and fear, emerging in an adaptive agent that uses Reinforcement
Learning (RL) to adapt to a task. We propose a computational model of joy,
distress, hope, and fear instrumented as a mapping between RL primitives and
emotion labels. Requirements for this mapping were taken from emotion elicitation
literature (Ortony et al., 1988), emotion development (Sroufe, 1997), hope theory
(Snyder, 2002) the theory on optimism (Carver, Scheier, & Segerstrom, 2010), and
habituation and fear extinction (Bottan & Perez Truglia, 2011; Brickman, Coates,
& Janoff-Bulman, 1978; Veenhoven, 1991; Myers & Davis, 2006). Using agent-
based simulation where an RL-based agent collects rewards in a maze, we show
that emerging dynamics of RL primitives replicate emotion-related dynamics from
psychological and behavioral literature.

2. Reinforcement Learning

Reinforcement Learning takes place in an environment that has a state s ∈ S,
where S is the set of possible states (Sutton & Barto, 1998). An agent present in
that environment selects an action a ∈ A(st) to perform based on that state, where
A(st) is the set of possible actions when in state st at time t. Based on this action,
the agent receives a reward r ∈ R once it reaches the next state, with R the set of
rewards.

The action the agent executes is based on its policy π, with πt(s, a) the probability
that (at = a) if (st = s). In Reinforcement Learning, this policy gets updated as
a result of the experience of the agent such that the total reward received by the
agent is maximized over the long run.

The total expected reward R at time t is finite in applications with a natural
notion of an end state. To deal with situations without an end state, a discount
factor γ, where 0 ≤ γ ≤ 1, discouns rewards that are further in the future to
ascertain a finite sum, such that:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=o

γkrt+k+1. (1)

Standard RL focuses on problems satisfying the Markov Property, which states
that the probability distribution of the future state depends only on the previous
state and action. We can define a transition probability P ass′ and the expected
reward Rass′ .
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P ass′ = Pr{st+1 = s′|st = s, at = a} (2)

Rass′ = E{rt+1|st = s, at = a, st+1 = s′}. (3)

With these elements it is possible to determine a value V π(s) for each state. The
values are specific per policy and are defined such that:

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
. (4)

The value of a state is typically arbitrarily initialized and updated as the state
is visited more often. Since the values are policy dependent, they can be used
to evaluate and improve the policy to form a new one. Both are combined in an
algorithm called value iteration, where the values are updated after each complete
sweep of the state space k such that:

Vk+1(s) = max
a

∑
s′

P ass′
[
Rass′ + γVk(s

′)
]
. (5)

After convergence of the values, the policy simplifies to:

π(s) = arg max
a

∑
s′

P ass′
[
Rass′ + γV (s′)

]
(6)

The use of this algorithm requires a complete knowledge of the state-space, which
is not always available. Temporal Difference learning estimates values and updates
them after each visit. Temporal Difference learning has been proposed as a plausible
model of human learning based on feedback (Schultz, 1998; Holroyd & Coles, 2002;
Doya, 2002). The simplest method, one-step Temporal Difference learning, updates
values according to:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (7)

with α now representing the learning rate. After convergence, the values can
be used to determine actions. We use softmax action selection instantiated by a
Boltzmann (Gibbs) distribution, argued to be a model of human action selection
(Critchfield, Paletz, MacAleese, & Newland, 2003; Montague, King-Casas, & Co-
hen, 2006; Simon, 1955, 1956). Actions are picked with a probability equal to:

p(a) =
eβQ(s,a)

n∑
b=1

eβQ(s,b)

(8)

where a is an action, β is a positive parameter controlling randomness and Q(s, a)
is the value of taking a specific action according to:
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Q(s, a) =
∑
s′

P ass′
[
V (s′) +Rass′

]
. (9)

3. Mapping emotions

In essence, the computational model of emotion we propose is a mapping between
RL primitives (reward, value, error signal, etc..) and emotion labels. Our mapping
focuses on well-being emotions and prospect emotions, in particular joy/distress
and hope/fear respectively, two emotion groups from the OCC model (Ortony et al.,
1988), a well-known computation-ready psychological model of cognitive emotion
elicitation. In this section we detail the rationale for our mapping, after which, in
section 4, we evaluate the mapping using carefully set-up experiments to replicate
emotion dynamics.

3.1. Emotional development, habituation, and high versus low hope

Learning not only drives adaptation in human behavior, but also affects the com-
plexity of emotions. Humans start with a small number of distinguishable emotions
that increases during development. In the first months of infancy, children exhibit a
narrow range of emotions, consisting of distress and pleasure. Distress is typically
expressed through crying and irritability, while pleasure is marked by satiation,
attention and responsiveness to the environment (Sroufe, 1997). Joy and sadness
emerge by 3 months, while infants of that age also demonstrate a primitive form
of disgust. This is followed by anger which is most often reported between 4 and
6 months. Anger is thought to be a response designed to overcome an obstacle,
meaning that the organism exhibiting anger must have some knowledge about the
actions required to reach a certain goal. In other words, the capability of feel-
ing anger reflects the child’s early knowledge of its abilities. Anger is followed by
fear, usually reported first at 7 or 8 months. Fear requires a comparison of mul-
tiple events (Schaffer, 1974) and is therefore more complex than earlier emotions.
Surprise can also be noted within the first 6 months of life.

Apart from the development of emotions, habituation and extinction are impor-
tant affective phenomena. Habituation is the decrease in intensity of the response
to a reinforced stimulus resulting from that stimulus+reinforcer being repeatedly
received, while extinction is the decrease in intensity of a response when a previ-
ously conditioned stimulus is no longer reinforced (Myers & Davis, 2006; Bottan &
Perez Truglia, 2011; Brickman et al., 1978; Veenhoven, 1991; Foa & Kozak, 1986).
A mapping of RL primitives to emotion should be consistent with habituation and
extinction, and in particular fear extinction as this is a well studied phenomenon
(Myers & Davis, 2006).

Further, hope theory defines hope as a positive motivational state resulting from
successful goal directed behavior (behavior that is executed and is along pathways
that lead to goal achievement) (Snyder, 2002; Carver et al., 2010). This is very
much in line with the theory on optimism (Carver et al., 2010). A mapping of
hope (and fear) should also be consistent with major psychological findings in this
area of work. For example, high-hope individuals perform better (and have more
hope) while solving difficult problems as compared to low-hope individuals (see
(Snyder, 2002) for refs). An underlying reason for this seems to be that high-hope
individuals explore more (and more effective) pathways towards the goal they are
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trying to achieve and feel confident (’I can do it’), while low-hope individuals get
stuck in rumination (’this can go wrong and that...’) (Snyder, 2002).

3.2. Mapping joy and distress

Joy and distress are the first emotions to be observable in infants. As such, these
emotions should be closely related to reward signals. A first possible choice to
map joy/distress would be to use the reward rt. Any state transition that yields
some reward therefore causes joy in the agent (and punishment would cause dis-
tress). However, anticipation and unexpected improvement can also result in joy
(Sprott, 2005) and this contradicts the previous mapping. We need to add an
anticipatory element of RL. So, we could represent joy by rt + V (st). However,
this contradicts our knowledge about habituation, which states that the intensity
of joy attributed to a state should decrease upon visiting that state more often.
So, we should incorporate the convergence of the learning algorithm by using the
term rt + V (st) − V (st−1), which continuously decreases as values come closer to
convergence. This mapping still lacks the concept of expectedness (Ortony et al.,
1988). We add an unexpectedness term, derived from the expected probability of
the state-transition that just took place, which is (1− P at−1

st−1st). We let:

J(st−1, at−1, st) = (rt + V (st)− V (st−1))(1− P at−1
st−1st) (10)

where J is the joy (or distress, when negative) experienced after the transition
from state st−1 to state st through action at−1. Joy should be calculated before
updating the previous value, since it reflects the immediate emotion after arriving
in the given state. This mapping coincides with the mapping in the OCC model,
which states that joy is dependent on the desirability and unexpectedness of an
event (Ortony et al., 1988).

3.3. Mapping hope and fear

According to theory about emotional development, joy and distress are followed
by anger and fear. Hope is the anticipation of a positive outcome and fear the
anticipation of a negative outcome (Ortony et al., 1988). Anticipation implies that
some representation of the probability of the event actually happening must be
present in the mapping of both of these emotions. The probability of some future
state-transition in Reinforcement Learning is P at

stst+1
. This is implicitly represented

in the value V (st) which after conversion is a sampling of all chosen actions and
resulting state transitions, so a first assumption may be to map V (st) to hope and
fear. Under this mapping, fear extinction can happen by a mechanism similar to
new learning (Myers & Davis, 2006). If action-selection gives priority to the high-
est valued transition, then a particular V (s) that was previously influenced by a
negatively reinforced next outcome will, with repeated visits, increase until conver-
gence, effectively diminishing the effect of the negative association by developing
new associations to better outcomes, i.e., new learning.

Alternatively, we can use probability and expected joy/distress explicitly in order
to determine the hope/fear value for each action. However, as any transition in a
direction that decreases reward translates to a loss in value this would also be a
source of fear. As a result, the agent would experience fear even in a situation with
only positive rewards. In some situations, loss of reward should trigger fear (losing
all your money), but it is difficult to ascertain if fear is then in fact a precursor to
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actual negativity, or a reaction to the loss of reward. As such we stick to the simpler
model where the intensity of hope and fear equals V+(s) and V−(s) respectively:

Hope(st) = max(V (st), 0), F ear(st) = max(−V (st), 0) (11)

The OCC model states that hope and fear are dependent on the expected
joy/distress and likelihood of a future event (Ortony et al., 1988), which is again
consistent with our mapping. This also fits well with hope theory, explicitly defin-
ing hope in terms of goal value, possible pathways towards goals, and commitment
to actions that go along these pathways (Snyder, 2002). The value function in RL
nicely captures these aspects in that goal values are encoded in the value of each
state, based on the potential pathways (state action sequences) of actions to be
committed to (the policy). In addition, this is consistent with the finding that ex-
pected utility models are predictive of the intensity of the prospect-based emotions
(i.e. hope and fear) (Gratch et al., 2009).

4. Validation requirements

The main research question in this paper concerns the validity of the mapping we
propose between the emotion labels joy/distress/fear/hope and the RL primitives
as detailed above. To test the validity, we state requirements based on habituation,
development, fear extinction and hope literature.

Requirement 1. Habituation of joy should be observed when the agent is presented
repeatedly to the same reinforcement (Bottan & Perez Truglia, 2011; Brickman et
al., 1978; Veenhoven, 1991; Foa & Kozak, 1986).

Requirement 2. In all simulations, joy/distress is the first emotion to be observed
followed by hope/fear. As mentioned earlier, human emotions develop in individuals
from simple to complex (Sroufe, 1997).

Requirement 3. Simulations should show fear extinction over time through the
mechanism of new learning (Myers & Davis, 2006).

Requirement 4. Lowered expectation of return decreases hope (Veenhoven, 1991;
Ortony et al., 1988; Snyder, 2002), and low-hope individuals as opposed to high-
hope individuals are particularly sensitive to obstacles. This dynamic should be
visible due to at least the following two interventions: First, if we lower an agent’s
expectation of return by lowering the return itself, i.e., the goal reward, then we
should observe a decrease in hope intensity. This does not need to be tested experi-
mentally as it is a direct consequence from the model: if the goal reward is lowered,
then the value function must reflect this. Any RL learning mechanism will show
this behavior as the value function is an estimate of cumulative future rewards.
Second, if we model low- versus high-hope agents by manipulating the expectation
of return as used in the value update function V (s), we should observe that low-
hope agents suffer more from punished non-goal states (simulated obstacles) than
high-hope agents. Suffering in this case means a lower intensity hope signal and
slower learning speed.

Requirement 5. Increasing the unexpectedness of results of actions increases the
intensity of the joy/distress emotion. Predictability relates to the expectedness
of an event to happen, and this can be manipulated by adding randomness to
action selection and action outcomes. Increasing unexpectedness should increase
the intensity of joy/distress (Ortony et al., 1988; K. Scherer, 2001).
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Figure 1. The maze used in the experiments. Each square is a state. The agent starts at S and the reward
can (initially) be found at R. For the simulations that test fear extinction and the effect of expectation of
return, the end of all non-goal arms in the maze can contain a randomly placed punishment (see text)

Table 1. Control and varied values of different parameters used in the simulations

Control setting Variation
Obstacles (punished arms) no yes
Dispositional hope MAXA Bellman
Predictability (1) P (actionfailure) = 0.1 P (actionfailure) = 0.25
Predictability (2) Return to start Relocate reward

4.1. Experimental setup

We ran our validation tests in an agent-based simulation implemented in Java. An
RL agent acts in a small maze. The maze has one final goal, represented by a single
positively rewarded state. The task for the agent is to learn the optimal policy to
achieve this goal. The agent always starts in the top-left corner and can move in
the four cardinal directions. Collision with a wall results in the agent staying in
place. Maze locations are states (17 in total). The agent learns online (no separate
learning and performing phases). The maze used in all experiments is shown in
Figure 1.

In all simulations the inverse action-selection temperature beta equals 10, the
reward in the goal state r(goal) equals 1, and the discount factor γ equals 0.9. To
test the effect of expectation of return and predictability of the world, we varied
several parameters of the task (see Table 1 for an overview). To model obstacles
in the task, we placed negative rewards at all other maze arms except the goal
and starting location equal to −1. To model high-hope versus low-hope agents
(dispositional hope) calculation of state values was either based on MAXA or
Bellman. MAXa (Equation 12) takes into account only the best possible action
in a state for the calculation of that state’s new value, while Bellman (Equation
13) takes into account all actions proportional to their probabilities of occuring.
As such, actions with negative outcomes are also weighted into the value function.
Variation in predictability was modeled as a variation in the chance that an action
does not have an effect (0.25 versus 0.1, representing an unpredictable versus a
predictable world respectively) as well as the consequence of gathering the goal
reward (agent returns to start location versus reward is relocated randomly in
the maze, the latter representing unpredictable goal locations). Unless mentioned
otherwise, a simulation consists of a population of 50 different agents with each
agent running the task once for a maximum of 10000 steps, which appeared in pre-
testing to be long enough to show policy convergence. To reduce the probability
that our results are produced by a ”lucky parameter setting”, each run has gaussian
noise over the parameter values for β, γ, and the probability that an action fails.
We pulled these values from a normal distribution such that 95% of the values are
within 5% of the given mean.

To be able to calculate the unexpectedness term in our model of joy/distress,
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we beed transition probabilities. Temporal Difference learning does not require a
model, while Value Iteration requires a complete model. Therefore, we use a form
of value iteration that uses an estimate of the transition model to update the value
of the current state, such that:

V (st)←− max
a

∑
s

P ass′
[
Rass′ + γV (s′)

]
. (12)

V (st)←−
∑
a

π(s, a)
∑
s

P ass′
[
Rass′ + γV (s′)

]
. (13)

This is a simple method that converges to the correct values under the same
circumstances as any Monte Carlo method. After a transition to some state s′,
the estimated transition model of state s is updated, allowing V (s) to be updated
at the next visit to that state. This approach is similar to Temporal Difference
learning with learning rate α = 1 as presented in Equation 7 but uses a model
instead of sampling.

5. Experimental results

5.1. Joy habituates

To test if joy habituates over time, we ran a simulation using the control settings
in Table 1. We analyse a representative signal for joy/distress for a single agent
during the first 2000 steps of the simulation (Figure 2). We see that, for a number
of steps, the agent feels nothing at all, reflecting not having found any rewards yet.
A sudden spike of joy occurs the first time the reward is collected. This is caused
by the error signal and the fact that the rewarded state is completely novel, i.e.,
high unexpectedness. Then joy/distress intensity equals 0 for some time. This can
be explained as follows. Even though there are non-zero error signals, the unex-
pectedness associated with these changes is 0. As there is only a 10% chance that
an action is unsuccessful (i.e. resulting in an unpredicted next state s′), it can take
some time before an unexpected state change co-occurs with a state value update.
Remember that joy/distress is derived from the change in value and the unex-
pectedness of the resulting state. Only once an action fails, the joy/distress signals
start appearing again, reflecting the fact that there is a small probability that the
expected (high-valued) next state does not happen. The joy/distress signal is much
smaller because it is influenced by two factors: at convergence the unexpectedness
goes to 0.1, and, the difference between the value of two consecutive states ap-
proaches 0.1 (taking the discount factor into account, see discussion). Individual
positive spikes are caused by succesful transitions toward higher valued states (and
these continue to occur as gamma < 1), while the negative spikes are transitions
toward lower valued states, both with low intensities caused by high expectedness.

To summarize, these results show that joy and distress emerge as a consequence
of moving toward and away from the goal respectively, which is in accordance with
(Ortony et al., 1988). Further, habituation of joy/distress is also confirmed: the
intensity of joy goes down each time the reward is gathered.
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Figure 2. Intensity of joy/distress for a single agent, observed in the first 2000 steps. Later intensity of
joy is strongly reduced compared to the intensity resulting from the first goal encounter (spike at t=100).

Figure 3. Intensity of joy/distress, mean over 50 agents, observed in the first 2000 steps. The noisy signal
in the first 1000 steps reflects the fact that this is a non-smoothed average of only 50 agents, with each
agent producing a spike of joy for the first goal encounter.

5.2. Joy/distress occur before hope/fear

Based on the same simulation, we test if joy/distress is the first emotion to be
observed followed by hope/fear. We plot the mean joy/distress and hope over all
50 agents for the first 2000 steps. We can see that joy (Figure 3) appears before
hope (Figure 4). Theoretically, state values can only be updated once an error
signal received, and therefore hope and fear can only emerge after joy/distress.
This order of emergence is of course confirmed by the simulation results.

5.3. Fear extincts

To test for the occurrence of fear extinction, we ran the same simulation but now
with punished non-goal arms (the agent is relocated at its starting position after
the punishment). This introduces a penalty for entering the wrong arm. Further,
we varied the value function to be either Bellman or MAXa modeling low- versus
high hope agents. Fear is caused by incorporating the punishment in the value func-
tion. We ran the simulation for 500 agents and 5000 steps with all other settings
kept the same as in the previous simulation (see Table 1). We plot the average
intenisty of fear for 500 agents for 5000 steps in and a detailed plot of the first
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Figure 4. Intensity of hope(V+(s)), mean over 50 agents, observed in the first 2000 steps. Over the course
of learning, the hope signal grows to reflect the anticipation of the goal reward, while in the first several
hundred trials virtually no hope is present.

500 steps (Figure 5). Our model succesfully replicates fear extinction. Fear con-
verges to 0 for MAXA and Bellman agents. Convergence is quicker and intensity
is lower for MAXA than for Belman agents. There is in fact almost no fear for
MAXa (high-hope) agents. This can be explained as follows. Actions that avoid
the punishment take precedence in the MAXa calculation of the state value; if any
action is available that causes no penalty whatsoever, the value is never negative,
i.e., no fear. It represents an agent that assumes complete control over its actions
and is therefore not ”afraid” once it knows how to avoid penalties, i.e, it is an opti-
mistic (high-hope) agent. The Bellman agents take punishment into account much
longer and to a greater extent, simply because they weight all possible outcomes
in their calculation of the update to a state value. This mechanism demonstrates a
known mechanism for fear extinction, called new learning (Myers & Davis, 2006).
New learning explains fear extinction by proposing that novel associations with the
previously fear-conditioned stimulus become more important after repeated pre-
sentation of that stimulus. This results in a decrease in fear response, not because
the fear association is forgotten but because alternative outcomes become more
important.

To summarize, our model thus nicely explains why high-hope agents experience
less fear, and for a shorter time than low-hope (or realistic) agents.

5.4. Expectation of return influences hope

To test the requirement (in this case more so a hypothesis) that high-hope agents
suffer less from obstacles and produce higher hope than low-hope agents, we varied
high- versus low-hope and the presence of obstacles (see Table 1). Results show
that low-hope agents perform worse in the presence of punished non-goal maze
arms while high-hope agents perform better in the presence of such punishment
(Figure 6). This is consistent with hope theory stating that ”high-hope people
actually are very effective at producing alternative (ed:problem solving) routes -
esspecially in circumstances when they are impeded” (Snyder, 2002). Further, low-
hope agents generate more fear in the presence of punishment (Figure 5), resulting
in an overall negative ”experience” at the start of learning the novel task (Figure
7). This replicates psychological findings that high-hope as opposed to low-hope
individuals are more effective problem solvers, especially in the face of obstacles
(Snyder, 2002) and that low-hope individuals are more fearful and experience more



March 5, 2015 Connection Science broekens2014

Connection Science 13

Figure 5. Left: intensity of fear, mean over 500 agents, 5000 steps, for four conditions: H/L (high-hope/low-
hope), and N/P (punished arms versus no punishment). Fear extincts over time and low-hope agents
(Bellman update) generate more fear in the presence of punishment than high-hope agents (MAXa update).
Right: zoom-in of Left figure for the first 500 steps.

Figure 6. Intensity of hope, mean over 500 agents, 5000 steps, for four conditions: H/L (high-hope/low-
hope), and N/P (punished arms versus no punishment). Low-hope agents (Bellman update) perform worse
in the presence of punished non-goal maze arms while high-hope (MAXa) agents perform better in the
presence of such punishment.

Figure 7. State value interpreted as the agent’s ”experience”, mean over 500 agents, 500 steps, for four
conditions: H/L (high-hope/low-hope), and N/P (punished arms versus no punishment).

distress in the face of obstacles. Our manipulation of the update function is suc-
cesful at varying high- versus low-hope, and this manipulation is consistent with
hope theory, stating that low-hope individuals tend to consider many of the possi-
ble negative outcomes, thereby blocking progress along fruitful pathways towards
the goal. This is exactly in line with what happens when the Bellman update is
used instead of the MAXA update: also consider actions with negative outcomes
in your current estimate of value, instead of only the best possible ones. As such,
the hypothesis is supported.
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Figure 8. Intensity of joy, mean over 50 agents. Left figure shows the difference between a probability of
0.1 (first run) versus 0.25 (second run) of failing an action. The right figure shows the difference between
returning the agent (first run) to its starting position versus relocating the reward (second run)

5.5. Unexpectedness increases joy intensity

To test our requirement that increasing the unexpectedness of results of actions
increases the intensity of joy/distress, we vary predictability of the world. In our
current setting, there are two ways to vary predictability. First, we can make the
results of an action stochastic, for example by letting the action fail completely
every once in a while. Second, we give rewards at random points rather than at the
same transition all the time. This randomizes the reinforcing part of an experiment.
Note that making action selection a random process does result in unpredictable
behavior and an inefficient policy, but does not change the predictability of the
effects of an action once it is chosen, so this does not manipulate expectedness.

First, we increased the probability for an action to fail (failure results in no state
change). The resulting mean intensity of joy for 50 MAXa agents is shown in Figure
8, left. Second, we randomly relocated the reward after each time it was collected,
instead of returning the agent to the starting position. The mean intensity of joy
for 50 MAXa agents is shown in Figure 8, right. In both simulations the intensity
of joy reactions is larger as shown by the bigger noise in the signal, indicative of
bigger joy spikes. The effect of relocating the reward is much more prominent,
since it reduces the predictability of a reward following a specific transition from
close to 100% to about 6%(1/17states). This reduction is greater than making it
2.5 times more likely that an action fails, which is reflected in the larger intensity
increase. Furthermore, the randomness of receiving rewards also counteracts the
habituation mechanism. Repeated rewards following the same action are sparse,
so habituation does not really take place. Therefore, the intensity of the joy felt
when receiving a reward does not decrease over time. These results are consistent
with the psychological finding that unpredictability of outcomes result in higher
intensity of joy (Ortony et al., 1988; K. Scherer, 2001).

6. Discussion

Overall our experiments replicate psychological and behavioral dynamics of emo-
tion quite well. Here we discuss several assumptions and findings of the simulations
in more detail.

Joy habituation is artificially fast as a result of how unexpectedness is calculated
in the model. Once state transitions have been found to lead to the rewarded goal
state, the unexpectedness associated with these transitions stays at 0 until varia-
tion in outcome has been observed. The cause is that the probability of an action to
fail is small and the world model is empty. In other words, the agent does not know
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about any alternative action outcomes and thus can only conclude that there is no
unexpectedness associated with a particular outcome, i.e., no joy/distress. Due to
this mechanism habituation cannot be observed by looking at the average inten-
sity of joy/distress over a population of agents (Figure 3). The reason is twofold.
First, the joy/distress signal does not converge to 0 due to the gamma < 1, and
in fact will become a stable but small signal for each agent. Second, intense spikes
of joy/distress happen sporadically and only in the beginning because of the un-
expectedness mechanism. Averaging over multiple agents therefore suggests that
the joy signal for individual agents becomes bigger, but this is not the case. This is
an artifact of low frequency high intensity joy/distress in the begining of learning,
comined with high frequency low intensity joy/distress in the end. This differs from
humans, who in general have a model of alternative outcomes. We can model this
in several ways: by starting with a default model of the environment; by assuming
a small default probablity for all states as potential outcome of an action in an
arbitrary state (i.e., all Psas′ are non-zero); or, by dropping the unexpectedness
term alltogether and equating joy/distress to the error signal. These alternatives
are closer to reality than our current model.

Technically speaking, joy/distress in our model is not derived from the error
signal, but based on the difference in expected value between the current state
and the previous state, i.e., rt + V (st) − V (st−1). If we assume a greedy policy,
no discount, and an update function that uses the MAXa value to update states
then this signal is equivalent to the error signal because the expected value of any
previous state V (st−1) converges to rt + V (st) (the policy ensures this). The main
difference with a model that is derived from the error signal is that joy/distress
signals react differently to the discount factor gamma and the learning rate alpha.
In our model, the amount of residual distress/joy present at convergence is propor-
tional to the discount factor, because the discount factor determines the difference
between V (st−1) and rt +V (st) at convergence. If joy/distress were really equal to
the error signal, then joy/distress would become 0 at convergence because the error
would be 0. Also, the intensity of joy/distress would be proportional to the learning
rate alpha if joy/distress is derived from the RL update signal. If alpha is high,
joy/distress reactions are close to V (st−1)−rt+V (st), if alpha is small the signal is
close to 0. In our model, this is not the case, as the actual V (st−1) and rt+V (st) are
taken, not the difference weighted by alpha. We observed the discount-dependent
habituation effect in our model as an habituation of joy/distress intensity that
does not end up at 0. In our model habituation is predicted to have diminishing
intensity but not a complete loss of the joy/distress response. This translates to
humans that still experience a little bit of joy, even after repeatedly receiving the
same situational reward. Further study should investigate the plausibility of the
two alternative models for joy/distress.

In previous work (Jacobs, Broekens, & Jonker, 2014a, 2014b) we argued that the
influence of different update functions on fear should be investigated for the fol-
lowing reason: agents that use a MAXA update function are very optimistic, and
assume complete control over their actions. Our model correctly predicted that fear
extinction rate was very quick (and can not depend on the strength of the negative
reinforcer in this specific case, as even an extreme collision penalty would show
immediate extinction as soon as a better alternative outcome is available because
the value of the state would get updated immediately to the value of the better
outcome). This is caused by two factors: first, the assumption of complete control
in the update function as explained above; second, the learning rate alpha is 1,
meaning that V (st−1) is set to rt + V (st) at once erasing the old value. In this
paper we extend our previous work (Jacobs et al., 2014a) by showing the effect of



March 5, 2015 Connection Science broekens2014

16 Taylor & Francis and I.T. Consultant

update functions on fear behavior. The habituation of fear was demonstrated in
an experiment with punished non-goal arms in the maze for two different update
functions. The more balanced the value updates, the longer it takes for fear to ex-
tinct, and the higher average fear is for the population of agents. This is consistent
with the literature on hope and optimism. Optimist and high-hope individuals ex-
perience less fear and recover quicker from obstacles when working towards a goal
(Carver et al., 2010; Snyder, 2002). Our work thus predicts that optimism/high-
hope personalities could in fact be using a value update function more close to
MAXA during learning (and perhaps also during internal simulation of behavior),
while realists (or pessimists) would use a value update function that weighs out-
comes based on probabilities that are more evenly distributed (see also (Broekens
& Baarslag, 2014) for a more elaborate study on optimism and risk taking.

Also in previous work (Jacobs et al., 2014a) we showed that hope did not decrease
when adding a wall collision penalty. This is unexpected, as the introduction of risk
should at least influence hope to some extent. We argued that this was also due
to the use of a MAXa update function, since bad actions are simply not taken
into account in V (s). In this paper we studied the effect of update function (an
operationalization of high- versus low-hope personality) and penalties on hope. We
were able to show that only low-hope agents suffered from penalties (in the form
of punished non-goal maze arms), while high-hope agents in fact benefited from
such penalties because the penalties push the agent away from the non-goal arms
while not harming the value of states along the path to the goal. As mentioned,
this replicates psychological findings nicely.

Our high-hope / low-hope experiments also show that it is very important to
vary RL parameters and methods in order to understand the relation to human
(and animal) emotions. It is probably not the case that best practice RL methods
(i.e., those that perform best from a learning point of view) also best predict human
emotion data. In our case, it is clear that one has to take into account the level
of optimism of the individual and correctly control for this using, in our case, the
way value updates are performed. Again, this shows we need to better understand
how task/learning parameters, including reward shaping, update function, discount
factor, action-selection and learning rate, influence the resulting policy and emo-
tion dynamics and how this relates to human dispositional characteristics (e.g.,
high-hope relates to MAXA updates). It is important that future research focuses
on drawing a correct parallel between parameters of Reinforcement Learning and
human behavior. An understanding of the effect of each of these parameters allows
us to construct more thorough hypotheses as well as benchmark tests to study
emotion in this context. Comparing the results from a computational simulation
to emotions expressed by human subjects in a similar setting (Gratch et al., 2009)
is essential, also to further our understanding of RL-based models of emotion.

We mentioned that this type of computational modeling of emotion can help
human robot interaction by making more explicit what particular feedback signals
mean. Our model suggests that if a human observer expresses hope and fear to
a learning robot to shape the learning process than this should directly alter the
value of a state during the learning process (perhaps temporarily, but in any case
the signal should not be interpreted as a reward signal). The expression of joy and
distress should alter the robot’s current TD error, and also not be interpreted as
a reward signal. In a similar way the model suggests that if a robot expresses its
current state during the learning process to a human observer in order to give this
observer insight into how the robot is doing, than hope and fear should be used
to express the value of the current state and joy and distress should be used to
express the TD error.
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7. Conclusion

We have proposed a computational model of emotion based on reinforcement learn-
ing primitives. We have argued that such a model is useful for the development
of adaptive agents and human interaction therewith. We model joy/distress based
on the error signal weighted by the unexpectedness of the outcome, and model
hope/fear as the learned value of the current state. We have shown experimentally
that our model replicates important properties of emotion dynamics in humans,
including habituation of joy, extinction of fear, the occurrence of hope and fear
after joy and distress, and ”low-hope” agents having more trouble learning than
”high-hope” agents in the presence of punishments around a rewarded goal. We
conclude that it is plausible to assume that the emotions of hope, fear, joy and
distress can be mapped to RL-based signals.

However, we have also pointed out the current limitations of testing the validity
of models of emotion based on RL-based signals. These limitations include: the
absence of standard scenarios (learning tasks); the effect of learning parameters
and methods on emotion dynamics; the influence of learning approaches on the
availability of particular signals; and, last but not least, psychological ramifications
of the assumption that certain emotions can be mapped to simple RL-based signals.
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