
CAAF: A Cognitive Affective Agent
Programming Framework

F. Kaptein, J. Broekens, K. V. Hindriks, and M. Neerincx

Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands,
F.C.A.Kaptein@tudelft.nl

Abstract. Cognitive agent programming frameworks facilitate the de-
velopment of intelligent virtual agents. By adding a computational model
of emotion to such a framework, one can program agents capable of us-
ing and reasoning over emotions. Computational models of emotion are
generally based on cognitive appraisal theory; however, these theories
introduce a large set of appraisal processes, which are not specified in
enough detail for unambiguous implementation in cognitive agent pro-
gramming frameworks. We present CAAF (Cognitive Affective Agent
programming Framework), a framework based on the belief-desire the-
ory of emotions (BDTE), that enables the computation of emotions for
cognitive agents (i.e., making them cognitive affective agents). In this
paper we bridge the remaining gap between BDTE and cognitive agent
programming frameworks. We conclude that CAAF models consistent,
domain independent emotions for cognitive agent programming.

Keywords: models of emotionally communicative behavior · theoretical
foundations and formal models · dimensons of intelligence, cognition and
behavior

1 Introduction

Interaction with intelligent virtual agents is facilitated by providing such agents
with affective abilities. For example, affective abilities in intelligent agents have
been applied to facilitate entertainment [16, 22], to make an agent more likable
for the user [3], to get empathic reactions from the user [7], and to create the
so-called the illusion of life [2, 17], where characters are modelled to appear more
life-like.

Cognitive agents can be programmed in frameworks like, e.g., GOAL [10],
Jadex [15], or Jason [4]. A cognitive agent is an autonomous agent that perceives
its environment through sensors and acts upon that environment with actuators
[23]. It does so based on its beliefs, desires and intentions. Cognitive agents have
a mental state and a reasoning cycle (see Figure 1). The mental state consists
of beliefs and desires. Beliefs are the agent’s representation of its environment.
The agent can believe it is walking down the street, or that it is raining outside.
Desires are things the agent wants to be true. For example, the agent can want
to have an umbrella. The intention to get an umbrella reflects the agent’s com-
mitment to achieve that desire. After sensing percepts from the environment, the



2

agent updates its mental state. Based on its beliefs, desires, and intentions, the
agent reasons about its next action. The environment can change by itself, in
response to an action of the agent, or actions from other agents that are situated
in the same environment; thus, the agent may not always be certain of the exact
state of affairs in its environment.

Fig. 1. The reasoning cycle of a cognitive agent.

By adding a computational model of emotion to cognitive agent programming
frameworks, one can program intelligent agents capable of using and reasoning
over emotions. Computational models of emotion are usually based on cognitive
appraisal theories [12]. Cognitive appraisal theory proposes that emotions are
consequences of cognitive evaluations (appraisals), relating the event to an in-
dividual’s desires. For example, one is happy because one believes something to
be true, and desires this to be true.

However, cognitive appraisal theories [11, 14, 24] typically introduce a large
set of appraisal processes, which are not specified in enough detail for unambigu-
ous implementation in cognitive agent programming frameworks. Psychological
theories are developed to explain emotions for humans. These theories are thus
not obligated to provide worked out computational specifications for the ap-
praisals.

Here we address this problem by integrating a computational model of the
belief-desire theory of emotions (BDTE) [18, 19] with a BDI (belief-desire-
intention) -based, cognitive agent programming framework. We present CAAF,
a Cognitive Affective Agent programming Framework. Emotions are computed
based on BDTE for two reasons: 1) because it is conceptually close to the BDI
agent framework; and 2) it does not introduce a large set of appraisals that are
difficult to describe in a computational manner.

The two main contributions of this work are: 1) We define semantics for the
programming constructs of cognitive agents, formalizing how an agent updates
its mental state, and how emotions are computed. 2) We show when the agent



3

should minimally (re)appraise, by proving that, under some circumstances, the
computation of emotions stays consistent when reducing the frequency with
which the agent’s emotions are recomputed. Reducing (re)appraisal increases
the efficiency of the computation.

2 Motivation & Related Work

In this article we focus on computational models of emotion based on cogni-
tive appraisal theory. A computational model of emotion describes the eliciting
conditions for emotions, often including corresponding intensity. A popular ap-
praisal theory among computer scientists, is the OCC-model [1, 14, 26]. The
appraisal theory by Lazarus [11], and the sequential check theory (SCT) by
Scherer [24, 25] have also found some attention among computer scientists. For
example, the computational model EMA is mainly based on the appraisal the-
ory by Lazarus [11], where the link between appraisal and coping is emphasized.
EMA models how emotions develop and influence each other. For example, sad-
ness can turn into anger at the responsible source. In [5] a formal notation for
the declarative semantics of the structure of appraisal is proposed. Using this, a
computational model of emotion is developed based on SCT.

The OCC model is the most implemented cognitive appraisal theory. Com-
putational models based on the OCC model include AR [9], EM [17], FLAME[8],
FearNot! [7], FAtiMA [6], and GAMYGDALA [16]. In AR [9] agents judge events
based on their pleasantness, and whether they are confirmed, unconfirmed, or
disconfirmed. For example, sadness is achieved when an agent confirms an un-
pleasant event. In EM [17] the aim is to build ’believable agents’, agents that
appear emotional and engage in social interactions. The EM architecture facil-
itates artists to model emotional agents in their applications. In FLAME the
desirability of an event is modelled with fuzzy sets. For example, they define
a fuzzy set ‘undesirable event’. Individual events are then partly a member of
this set, the amount of membership is adaptively learned over time. FearNot! is
an application that helps children to cope with bullying. The agents use plan-
ning and expected utility to derive proper emotional responses. Currently the
emotional responses in FearNot are triggered with a more enhanced model FA-
tiMA. FAtiMA divides the appraisal into different modules, all responsible for a
separate part of the computation. This enables implementing such modules in-
dependently. GAMYGDALA is an emotion engine that can be added to games
by annotating events with their influence on the beliefs and desires of different
characters.

An underlying problem with many appraisal theories is that cognitive agent
programming frameworks lack the required knowledge representations to com-
pute most appraisal processes. For example, a computational model of emotion
that aims to describe the OCC-model in total [14], including emotion intensi-
ties, needs to model 12 different appraisals. For many of these appraisals it is
unclear how they should be implemented, e.g., deservingness, sense of reality, or
proximity. Other appraisals, e.g., praiseworthiness, require complex constructs



4

Fig. 2. CAAFis build upon CBDTE [19] and CAFs (Cognitive Agent programming
Frameworks). With CAAF, we close the gap between CBDTE and CAFs, and provide
a fully worked out, computational account of BDTE.

like norms and values to be represented by the agent. SCT [24, 25] additionally
introduces multiple layers in the appraisal process. An event is first analysed in
a reactive, bodily responsive, type of way, and later analysed with increasingly
nuanced cognitive processes.

Computational models of emotion can attempt to simplify the appraisals
of the underlying theories; however, this does not bridge the gap to cognitive
agent programming frameworks (CAF). For example, EMA [13] aims to simplify
appraisal and models, e.g., blameworthiness from a knowledge representation
consisting of beliefs, desires, intentions, and (decision-theoretic) plans. This is
conceptually closer to CAFs. However, though CAFs are suited for programming
decision-theoretic plans, they do not always do so. Meaning this puts constraints
on the agent programming frameworks for which we want to compute emotions.

The appraisals and knowledge representation proposed by the belief-desire
theory of emotion (BDTE) [18, 19] are more compatible with cognitive agent
programming frameworks. In BDTE, emotions are derived only from beliefs and
desires. In its minimal form BDTE requires only two appraisals. This makes
BDTE more suitable as a basis for simulated emotions for such frameworks.

In this paper we integrate a computational model of BDTE with a cogni-
tive agent programming framework (CAF), hence developing CAAF. In [19],
Reisenzein extended BDTE to a computational form (CBDTE). CBDTE has
been referred to as a computational model of emotion [12]; however, Reisenzein
acknowledges that the motivation behind developing CBDTE was not to develop
a worked-out computational model, but rather to clarify aspects of BDTE [19].
Here, we build upon CBDTE, and close the gap between CAFs and CBDTE
(see figure 2). Thus, this paper presents a full computational account of BDTE,
and formalizes how a cognitive agent should (efficiently) compute emotions.

3 A Model of Emotion for Cognitive Agent Programming
Frameworks

In this Section we present CAAF. A Cognitive Affective Agent programming
Framework. We present the formal semantics needed to integrate BDTE with



5

cognitive agent programming. Further, based on this formal system we show in
Section 4 that emotions can be computed in an efficient way using CAAF.

3.1 Semantics for a Basic Knowledge Representation & BDTE

The mental state of an agent requires a knowledge representation. The agent
needs to represent states of affairs, to store these representations, and to change
the stored representations. We define some constraints for the knowledge repre-
sentation in this section. However, the contribution of this paper is not to define
the knowledge representation itself, but to define semantics for the programming
constructs of cognitive agents, formalizing how an agent updates its mental state,
and how emotions are computed.

Representing the states of affairs is achieved with a language. This language
needs to define a syntax of well-formed formulae. We write φ ∈ L to denote
that φ is a formula of language L. Here, a formula is a single proposition that
contains information about a state of affairs, i.e., it is a sentence that expresses
whether a state of affairs is true (or not).

Storing states of affairs is done with a set. The belief, desire and emotion base
are represented in the semantics as a set of formulae, mapped to a value [0, 1].
These bases are a subset of some language L, but contain further information
as well. A belief base has the form: Σ : ⟨C : L → [0, 1]⟩, where C is mapping of
a formula φ to (exactly one) certainty value between [0, 1]. We denote b{φ →
c} ∈ Σ for ‘the agent believes φ with certainty c’. Furthermore, we add the
constraint that if C contains the mappings b{φ → c} and b{¬φ → c′}, then
c = 1− c′. A desire base has the form Γ : ⟨U : L → [0, 1]⟩, where U is mapping
that maps formula φ to a utility value between [0, 1]. We denote d{φ → c} ∈ Γ
for ‘the agent desires φ with utility (strength of desire) u’. Finally an emotion
base has the form Υ : ⟨I : L × Θ → [0, 1]⟩, where θ ∈ Θ is an emotion label
(happy, unhappy, hope, fear, surprise, relieve, or disappointment), and I maps
formula φ ∈ L and label θ ∈ Θ to an intensity value between [0, 1]. We denote
e{φ × θ → i} ∈ Υ for ‘the agent has emotion θ (concerning formula φ) with
intensity i’. Note that traditional boolean propositional logic (where formulae
are either true or false, rather than mapped to a value between [0, 1]) would
be sufficient for programming cognitive (BDI-based) agents [10]. However, for
the computation of many emotions in BDTE we need values between [0, 1]. For
example, an agent that applies for a new job cannot feel hope (according to
BDTE) when it only knows if it got the job afterwards. It should reason over
the certainty of getting this job. For example, after having a good job interview.
Also note that the emotions in Υ contain a formula, rather than just a label and
intensity. With this we model the apparent directedness of emotions, in line with
BDTE [19]. One is happy about some formula, e.g., φ = ‘I will get a new job’.

Changing the knowledge representation is denoted with a combine operator
⊕. Given some set S and some set T containing a number of formulae, S ⊕ T
denotes an update of S with T . ⊕ is a simple set join, with elements in set T
taking priority over elements in set S, to allow updating of c, u and i in S. For



6

all formulae φ ∈ S and φ ∈ T , the mapping φ → n in the resulting set is taken
from the set T . Thus, ⊕ is not symmetric, i.e., S ⊕ T ̸= T ⊕ S.

Definition 1. (Combine ⊕)
Given some sets S, and T , which contain a number of elements e = {φ → n},
where φ is a formula φ ∈ L, and n a value n ∈ [0, 1]. S⊕T is defined as follows:

e ∈ S ⊕ T iff e ∈ T, or (e ∈ S and e ̸∈ T )

A knowledge representation is a pair ⟨L,⊕⟩, where L is a language to rep-
resent states of affairs, and ⊕ defines how a set of formulae is updated with
another set of formula. Using our definition of a knowledge representation, we
can now formally define what a mental state of an agent is. We call this initial
definition a ‘Simple Mental State’ because we will expand it later in the paper.

Definition 2. (Simple Mental State)
A mental state is a pair ⟨Σ,Γ ⟩ where Σ is called a belief base, and Γ is a desire
base.

The aim of the work presented here is to add emotional reasoning to these
agent programming frameworks. The belief-desire theory of emotion (BDTE) [18,
19] provides a method for computing emotional responses based solely on ones
beliefs and desires. For BDTE we need only the beliefs and desires, before and
after an agent’s update of its mental state. We could imagine that a computation
of an agent program is a sequence of mental states m0,m1,m2, . . .. BDTE then
enables the computation of an agent’s emotions in a mental state mi by using
the belief- and desire base corresponding to mental states mi−1 and mi. Based
on BDTE we can define the inner workings of this function [19].

Definition 3 describes BDTE in a computational manner. This is based on
CBDTE [19]. In function R(Σ,Σ′, Γ, Γ ′) → Υ (R for Reisenzein’s appraisal
[19]), we denote Σ as the belief base of mental state mi−1, Γ as the desire base
of mental state mi−1, Σ

′ as the belief base in mental state mi, and Γ ′ as the
desire base of mental state mi. The function R(Σ,Σ′, Γ, Γ ′) computes all new
emotions resulting from changes in the mental state.

Definition 3. (BDTE R)
Given function R(Σ,Σ′, Γ, Γ ′) → Υ . Let S be the set containing all φ such that b{φ → c} ∈ Σ,
b{φ → c′} ∈ Σ′, d{φ → u} ∈ Γ , and d{φ → u′} ∈ Γ ′, with c ̸= c′, or u ̸= u′. S = {φ1, . . . , φn}.
If we iterate through S with i = 1..n, add the following emotions as follows: Υ = E1⊕E2⊕. . .⊕En,
such that:

e{φi × happy → u} ∈ Ei iff c′ = 1 & u > 0
e{φi × unhappy → u} ∈ Ei iff c′ = 0 & u > 0
e{φi × hope → c′ × u} ∈ Ei iff 0 < c′ < 1 & u > 0
e{φi × fear → (1 − c′) × u} ∈ Ei iff 0 < c′ < 1 & u > 0
e{φi × surprise → 1 − c} ∈ Ei iff c′ = 1
e{φi × surprise → c} ∈ Ei iff c′ = 0
e{φi × relief → 1 − c} ∈ Ei iff c′ = 1 & u > 0
e{φi × disappointment → c} ∈ Ei iff c′ = 0 & u > 0

For example, let φ1 =‘I got a new job’, b{φ1 → 1} ∈ Σ′ (i.e., the agent beliefs
to have gotten a new job), and d{φ1 → 0.9} ∈ Γ (i.e., the agent strongly desires



7

to have gotten a new job), then Definition 3 prescribes e{φ1×happy → 0.9} ∈ Υ
(i.e., the agent is very happy that it got a new job).

With these definitions we already have a framework to implement emotions,
which basically works as proposed in previous work [19]. We might imagine
that the computation of an agent program results in a sequence of mental states
m0,m1,m2, . . .. Computing emotions can then be done by computing Υ over two
consecutive mental states. However, this approach does not take into account
that emotion intensities decay over time, how to deal with multiple appraisals of
the same emotion label (θ), or the fact that you might want to store emotions
for reasoning purposes. Furthermore, computation based on BDTE gives a large
set containing multiple emotions for every formula φ the agent has in its mental
state, meaning we need a method to abstract useful information from it.

3.2 Closing the Semantic Gap between BDTE and BDI

In this Section we expand the model such that BDTE can be used for agent pro-
gramming in an efficient way, including decay, repeated appraisals, and querying
the emotions. We start with expanding the mental state of an agent with an emo-
tion base. With this we can store the current emotional state of an agent, and
query this when needed.

Definition 4. (Mental State)
A mental state is a triple ⟨Σ,Γ, Υ ⟩ where Σ is called a belief base, Γ is a desire
base, and Υ is an emotion base.

With an emotion base storing the emotional responses we can now define a
function that gradually decays the intensities of the stored emotions. Function
d(Υ,∆t) is responsible for decaying the emotional state Υ over time ∆t. For
the consistency of our model (see Section 4) we define ∆t to be zero within
one reasoning cycle of an agent. Between reasoning cycles, ∆t is a function over
the actual system time passed between the start of the previous and current
reasoning cycle. Function decay is a mapping d : Υ → Υ ′, that decreases the
intensity i ∈ [0, 1] for all elements e{φ× θ → i} ∈ Υ .

Definition 5. (Decay Function d)
Let e{φ× θ → i} ∈ Υ . d is a function d(Υ,∆t) → Υ ′ defined as:

e{φ× θ → f(θ, i,∆t)} ∈ d(Υ,∆t) iff e{φ× θ → i} ∈ Υ

Where f(θ, i,∆t) is a function that decreases the intensity i, and for all
emotions e ∈ Υ the emotion also exists in Υ ′ with a decayed intensity. The
function can be initialized differently for every emotion label θ ∈ Θ. An example
of exponential decay for happy would be: f(happy, i,∆t) = i− i×∆t.

We adopt the view in [17] that decay may need different instantiations for
different emotions, depending on the corresponding emotion label θ ∈ Θ. For



8

example, hope and fear may decay slower than surprise. In our model an agent
programmer can adjust the default decay function, for every emotion label in-
dependently.

The above defined functions come together in (i.e., are sub-functions of)
function EM. This function is a mapping: EM(Σ ×Σ × Γ × Γ × Υ ) → Υ .

Definition 6. (Emotion Base Transformer EM)
Let Σ, Γ , and Υ be a belief base, desire base, and emotion base in some mental
state m. Further, let Σ′, and dbase′ be the belief base and desire base after some
update on this mental state. Function EM(Σ×Σ′×Γ ×Γ ′×Υ ) → Υ ′ computes
the emotion base in this updated mental state as follows:

Υ ′ = d(Υ,∆t)⊕R(Σ,Σ′, Γ, Γ ′)

This function is called when the belief base or desire base of an agent change.
This happens through updates. There is a set of build-in updates that act on the
mental state bases of the agent. Updates change the belief and desire bases of
the agent. Whilst performing these updates, the agent will automatically add
emotions to its emotion base Υ .

Definition 7. (Mental State Transformer M)
Let φ ∈ L, and n ∈ [0, 1]. The mental state transformer function M(update,m) →
m′ is a mapping from built-in updates (update = [insert, adopt, drop]) and men-
tal states m = ⟨Σ,Γ, Υ ⟩ to mental states as follows:

M(insert(φ, n),m) = ⟨Σ ⊕ {φ → n}, Γ, Υ ′⟩
M(adopt(φ, n),m) = ⟨Σ,Γ ⊕ {φ → n}, Υ ′⟩
M(drop(φ),m) = ⟨Σ,Γ ⊕ {φ → 0}, Υ ′⟩

with Υ ′ = EM(Σ,Σ′, Γ, Γ ′, Υ ), where Σ′ is the belief base, and Γ ′ is the desire
base in the resulting mental state m′.

Mental state bases are defined as sets, thus, if a previous mapping {φ →
n} exists in the mental state, then the updates defined above overwrite the
previous mapping. In BDTE the claim is made that emotions are subconscious
meta-representations of ones beliefs and desires [19]. In the definition above, we
model this with function EM, which automatically updates the emotions when
updating the beliefs, and desires in the mental state.

Definition 8. (Transition rule)
Let m be a mental state, and u be an update ([insert, adopt, drop]) performed in

mental state m. The transition relation
u−→ is the smallest relation induced by

the following transition rule.

M(u,m) is defined

m
u−→ M(u,m)



9

The execution of an agent as explicated above, results in a computation. A
computation in this context is a list of mental states and corresponding updates,
performed by the agent. The new mental state is derived from the transition
rule in Definition 8. The agent chooses its next update from the set of possible
updates in the current state, this set is filled through the rules defined by the
programmer. The computation starts in the initial mental state of the agent.

Definition 9. (Mental Computation)
A mental computation is a sequence of mental states m0, u0,m1, u1,m2, u2, . . .
such that for each i we have that mi

ui−→ mi+1 can be derived using the transition
rule of Definition 8.

The emotion update function EM is triggered as part of the Mental State
Transformer (Definition 7). It is a part of the mapping from mi

ui−→ mi+1.
Emotions are thus computed after every mental state change of an agent.

Figure 1 shows the reasoning cycle of an agent. The mental computation,
defined in Definition 9, operates solely in the ‘updates of mental state’ box.
This means that in the model presented here, an agent senses its environment
and starts updating its mental state based on these observations. With these
mental state updates, we now defined how emotions are automatically changed
accordingly. After updating its mental state, the agent can choose a new action
to perform in the environment, which in turn changes the environment. The
agent then again senses the changes in the environment, and the cycle starts
anew.

3.3 Querying the Emotion Base

Querying the emotion base of an agent is useful. For example, if one wants to
know if the agent is happy then one should inspect the emotion base for formulae
about which the agent is happy. However, a computation based on BDTE gives
a large set containing multiple emotions for every formula φ the agent has in its
mental state. We therefore need a function that abstracts over these formulae.

To model this, we define an overall affective state, which summarizes the
agent’s emotions. We compute this affective state with function A. This function
computes abstractions from the emotion base that enable a programmer to, for
example, query the overall happiness of an agent. It summarizes the emotions
in some emotion base Υ . It does so by taking all formulae in the emotion base
Υ , for all emotion labels θ ∈ Θ, and computing a single intensity from these
emotions in Υ concerning the emotion label θ.

Besides the computational argumentation there is also a psychological argu-
mentation to define the affective state. In [20] Reisenzein argues that emotions
have a hedonic tone, different than that of beliefs and desires. It feels a certain
way to have an emotion, which is essentially different from how a belief or desire
feels. In his own words: “To account for the hedonic tone of emotions in BDTE,
one must assume that ‘emotional’ belief-desire configurations cause a separate
mental state that carries the hedonic tone. [20]” By means of an affective state
we model this hedonic tone of emotions.



10

Definition 10. (Affective State Ω)
Ω is a function, that computes a generalized affective state which summarizes
the emotions e{φ× θ → i} ∈ Υ for some emotion label θ ∈ Θ.

Ω(θ, Υ ) = log2(
∑

e{φ×θ→i}∈Υ 2i×10)/10

In our model we have implemented Ω(θ, Υ ) with a logarithmic function (Log2
(
∑

2i×10)/10), where we sum over all emotions e{φ× θ → i} ∈ Υ corresponding
to label θ. Other possible functions might be normal combine: i′ = I/(I + 1),
with I the summation of all intensities concerning θ), or a simple MAX function
(taking the highest intensity emotion corresponding to θ.

From these functions the logarithmic is computationally speaking the least
efficient; however, the function forces the resulting intensity to be as least as
large as the highest value, but takes other values into account. For example,
happiness about three different propositions: φ1 = ’Getting a new job’, φ2 =
’Buying a new car’, and φ3 = ’Going out for dinner’, with corresponding intensi-
ties: [0.7, 0.6, 0.3], will compute to an overall happiness of 0.76 with logarithmic
combine, to 0.62 with normal combine, and to 0.7 with the MAX function.

We do not claim that this is the only correct way to compute the overall
affective state, but rather that an agent programmer requires a summary to
efficiently query the emotion base, and that the here proposed approach will
thus help the programmer.

4 Proof of Consistency when Minimizing the
(Re)Appraisal of Emotions

In Section 3 we defined the (re)computation of an agent’s emotions to occur
after every mental state update. However, this is not a computationally optimal
approach. In this Section we show how one can optimize this by showing when
an agent should minimally (re)compute its emotions (i.e., when the agent should
(re)appraise).

There are three conditions that should trigger a reappraisal: 1, An agent
should reappraise before querying its emotion base, if it has updated its men-
tal state since the last reappraisal, since otherwise it would query an outdated
emotional state. 2, An agent should reappraise before a mental state update if
the last reappraisal was in a previous reasoning cycle, otherwise the emotions
are not correctly decayed. 3, An agent should reappraise when it performs a
mental state update on a formula that had already been updated after the last
reappraisal, otherwise the previous update will be lost. Since 1 and 2 directly
follow from the formal semantics, we need only to show that 3 is true. We do so
by proving that if we assume that updates refer to different formulae, appraisal
can be postponed to the last update. From this one can infer point 3.

Theorem 1. Consistency For Delayed Appraisal
Let u1, u2, .., un be different mental state updates, with φ1, φ2, . . . , φn the formu-
lae these updates refer to respectively. Furthermore, let u′1, u

′
2, .., u

′
n be the same



11

mental state updates; however, for these mental state updates we define the Men-
tal State Transformer (Definition 7) to delay updating the emotion base until u′n.
Furthermore let φ1 ̸= φ2 ̸= . . . ̸= φn. Consider the following two possible rea-
soning cycles:

rc1 : m0
u1−→ m1

u2−→ . . .
un−→ mn

rc2 : m0
u′1−→ m′

1

u′2−→ . . .
u′n−→ m′

n

where rc2 delays updating the emotion base until update u′n. Under the constraint
that φ1 ̸= φ2 ̸= . . . ̸= φn, we can derive that mn = m′

n.

To show the truth of this claim, let the knowledge bases corresponding to mental
statemi be denoted with,mi = ⟨Σi, Γi, Υi⟩. Since Σ and Γ are updated normally
we need only to show that Υn = Υ ′

n. To this end, we first need to define a property
of the definitions. We defined ∆t in function d (decay) to be zero within one
reasoning cycle. Furthermore, d(Υ, 0) = Υ . Due to this, we can ignore decay
when comparing reasoning cycles rc1 and rc2. If we denote Ei to be the set
of emotions resulting from function R in transition mi−1

ui−→ mi, then we can
write:

Υ1 = d(Υ0, 0)⊕ E1

= Υ0 ⊕ E1

Υ2 = d(Υ0 ⊕ E1, 0)⊕ E2

= Υ0 ⊕ E1 ⊕ E2

Υn = Υ0 ⊕ E1 ⊕ E2 ⊕ . . .⊕ En.

The emotion base resulting from reasoning cycle 2 can be found with the same
definitions. Since the update of the emotion base is delayed, the emotion base
Υ ′
n−1 = Υ0. Furthermore, the computation of new emotions (Definition 3) will

consider all updated formulae:

Υ ′
n = d(Υ0, 0)⊕ {E1 ⊕ E2 ⊕ . . .⊕ En}
= Υ0 ⊕ E1 ⊕ E2 ⊕ . . .⊕ En.

If φ1 ̸= φ2 ̸= . . . ̸= φn, then the emotions in sets E1, . . . , En do not overwrite
each other when added to the emotion bases. Therefore, we can conclude that
Υn = Υ ′

n. Together we can now also conclude mn = m′
n.

5 Discussion

In this section we discuss some drawbacks of using BDTE as psychological back-
ground. BDTE models a limited range of emotions compared to other theories
(BDTE models 7 emotions, while, for example, OCC models over 20 different
emotions). Should an agent programmer want to use the emotions in the agent’s
decision making, then a smaller set of emotions might be more conceivable; how-
ever, there can also be domains in which the set of emotions modelled by BDTE
is too limited. For example, when a programmer needs the agent to properly



12

reason over empathic emotions like gratitude and remorse, then BDTE is inad-
equate in its current form.

Future work could thus complement this framework by modelling social emo-
tions. In [21], Reisenzein discusses possible extensions of BDTE to take social
emotions into account. For example, he proposes introducing altruistic desires.
For example, pity is then explained as a form of displeasure following from the
frustration of an altruistic desire (desiring something good for someone else).
However, this does not provide explanations for all social emotions (e.g., anger).
When adding social emotions, one might need to complement the presented
framework with additional concepts such as norms.

6 Conclusion

In this paper we presented CAAF (a Cognitive Affective Agent programming
Framework), a framework where emotions are computed automatically when
agents update their mental states. We presented semantics showing the program-
ming constructs of these agents. With these constructs, a programmer can build
an agent program with cognitive agents that automatically compute emotions
during runs. We chose BDTE to compute new emotions because it is conceptu-
ally close to the BDI architecture and therefore allowed us to embed emotions
without introducing many additional concepts in the mental states of the agents.

Our semantics facilitate incremental work. For example, if it is desirable to
change the affective state (Definition 10) with a global mood, then one could
change the function that computes the affective state (function A), without being
forced to adjust the entire framework. One might also want to enable program-
mers to adjust the emotion base without changing the belief base. Definition 7
defined functions to update the agent’s mental state. We could simply comple-
ment this definition to contain function Appraise, capable of inserting emotions
in the emotion base (Υ ), similar to the update insert for the belief base (Σ).
This fits well in the modular approach suggested by Marsella et. al. [12], where
models can implement parts of a complete cycle of emotional reasoning. For ex-
ample, one could add a module capable of using emotions to guide the agent’s
decision making (e.g., what action to perform in the environment, or when to
decrease the utility of a desire as a type of coping behaviour). The framework
presented in this paper thus provides a modular, consistent implementation for
the computation of emotions for cognitive agent programming frameworks, thus
facilitating the development of intelligent virtual agents with affective abilities.

Acknowledgements

This research is done for the PAL (a Personal Assistant for a healthy Lifestyle)-
project. PAL is funded by Horizon2020 grant nr. 643783-RIA.



13

References

[1] C. Adam, A. Herzig, and D. Longin. A logical formalization of the occ theory of
emotions. Synthese, 168(2):201–248, 2009.

[2] J. Bates et al. The role of emotion in believable agents. Communications of the
ACM, 37(7):122–125, 1994.

[3] R. Beale and C. Creed. Affective interaction: How emotional agents affect users.
International Journal of Human-Computer Studies, 67(9):755–776, 2009.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent sys-
tems in AgentSpeak using Jason, volume 8. John Wiley & Sons, 2007.

[5] J. Broekens, D. Degroot, and W. A. Kosters. Formal models of appraisal: Theory,
specification, and computational model. Cognitive Systems Research, 9(3):173–
197, 2008.

[6] J. Dias, S. Mascarenhas, and A. Paiva. Fatima modular: Towards an agent archi-
tecture with a generic appraisal framework. In Emotion Modeling, pages 44–56.
Springer, 2014.

[7] J. Dias and A. Paiva. Feeling and reasoning: A computational model for emotional
characters. In Progress in artificial intelligence, pages 127–140. Springer, 2005.

[8] M. S. El-Nasr, J. Yen, and T. R. Ioerger. Flamefuzzy logic adaptive model of
emotions. Autonomous Agents and Multi-agent systems, 3(3):219–257, 2000.

[9] C. D. Elliott. The affective reasoner: A process model of emotions in a multi-agent
system. 1992.

[10] K. V. Hindriks. Programming rational agents in goal. In Multi-Agent Program-
ming:, pages 119–157. Springer, 2009.

[11] R. S. Lazarus. Emotion and adaptation. Oxford University Press, 1991.

[12] S. Marsella, J. Gratch, and P. Petta. Computational models of emotion. A
Blueprint for Affective Computing-A sourcebook and manual, pages 21–46, 2010.

[13] S. C. Marsella and J. Gratch. Ema: A process model of appraisal dynamics.
Cognitive Systems Research, 10(1):70–90, 2009.

[14] A. Ortony, G. L. Clore, and A. Collins. The cognitive structure of emotions.
Cambridge university press, 1990.

[15] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi reasoning engine. In
Multi-agent programming, pages 149–174. Springer, 2005.

[16] A. Popescu, J. Broekens, and M. van Someren. Gamygdala: an emotion engine
for games. Affective Computing, IEEE Transactions on, 5(1):32–44, 2014.

[17] W. S. Reilly. Believable social and emotional agents. Technical report, DTIC
Document, 1996.

[18] R. Reisenzein. Appraisal processes conceptualized from a schema-theoretic per-
spective: Contributions to a process analysis of emotions. 2001.

[19] R. Reisenzein. Emotions as metarepresentational states of mind: Naturalizing the
belief–desire theory of emotion. Cognitive Systems Research, 10(1):6–20, 2009.

[20] R. Reisenzein. What is an emotion in the belief-desire theory of emotion? 2012.

[21] R. Reisenzein. Social emotions from the perspective of the computational belief-
desire theory of emotion. In The Cognitive Foundations of Group Attitudes and
Social Interaction, pages 153–176. Springer, 2015.

[22] P. Rizzo. Why should agents be emotional for entertaining users? a critical anal-
ysis. In Affective interactions, pages 166–181. Springer, 2000.

[23] S. Russell, P. Norvig, and A. Intelligence. A modern approach. Artificial Intelli-
gence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.



14

[24] K. R. Scherer. Appraisal theory. Handbook of cognition and emotion, pages 637–
663, 1999.

[25] K. R. Scherer. Appraisal considered as a process of multilevel sequential checking.
Appraisal processes in emotion: Theory, methods, research, 92:120, 2001.

[26] B. R. Steunebrink, M. Dastani, and J.-J. C. Meyer. The occ model revisited. In
Proc. of the 4th Workshop on Emotion and Computing, 2009.


