
Clever Tracking User Behaviour over the Web: Enabling
Researchers to Respect the User

Evdokiya D. Ignatova1

1Brunel University
Uxbridge, Middlesex

UB8 3PH, UK
ev_ignatova@yahoo.com,

willem.brinkman@brunel.ac.uk

Willem-Paul Brinkman1,2

2Delft University of Technology
Mekelweg 4, 2628 CD Delft

The Netherlands
w.p.brinkman@tudelft.nl

ABSTRACT
 Concerns over automatically tracking users’ actions while
respecting consent, privacy and users’ rights motivated the
development of CleverTracker. CleverTracker is a remote
action-tracking software framework, which researchers can use
to collect data about users’ interactions with applications while
respecting ethical issues. Users are in control of the recording
process (through start and stop functionality), can opt out from
it and can view the collected data. The open source framework
is designed to support desktop, web application and multiple
programming languages.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces– evaluation/methodology.

General Terms
Measurement, Experimentation, and Human Factors.

Keywords
Computer-assisted usage analysis, remote tracking, action
recording, logfile analysis, and research ethics.

1. INTRODUCTION
One way to examine the usability of a system is to test it with
real users and analyse collected usage data. There are different
approaches in collecting usage data. Traditional evaluation
methods include questionnaires, interviews and observations.
This approach may have a limited scope as employing users
may be expensive, and the experimental conditions of the
setting may cause users’ interactions to be different from what
they would be in real life [1]. Today’s advances in broadband
Internet services provide ways for applications to record user
interaction unobtrusively over long periods of time. This can be
done on a larger scale and independent from user locations.
Researches may benefit greatly from tracking user actions
remotely; however, this method has a number of recurrent
issues, which do not seem to have been fully addressed.

A major problem in collecting users’ data is on respecting
users’ privacy and ensuring an ethical approach to the data

collection process. As Tang et. al. [5] point out, even though
remote tracking may be unobtrusive, it is still invasive and as
such users should be in control of the recording process. This
idea agrees with the outcome of the afternoon discussion at the
Interaction Tracking workshop [1] in 2006. Delegates
recognised that some users have reservations to give consent for
recording their data, because they might perhaps not know or
understand what they are getting themselves into. Several
suggestions were put forward to overcome this, such as
allowing users to opt-out and view their recorded data. A
number of research teams have attempted to create their own
tracking frameworks, and have adopted different approaches to
respect users’ privacy. For example, the GRUMPS framework
[3] records low-level keystroke events; hence privacy and
ethical issues have been a focus of concern as users might enter
their password or use their browser for online banking.
GRUMPS therefore initially obfuscated all key presses.
However this limited the analysis possibility of the data, and
therefore it was later changed to obfuscating only
alphanumeric, numeric and special character data. Looking at
the framework from users’ point of view it did not seem to
provide visual means to control the recording process. A
different approach can be seen in the PROSKIN project [2],
which attempts to solve some of these issues. PROSKIN makes
use of a custom-built tracking component which collects
interaction data from an internet radio application over the web.
Users can opt out and view what data has been recorded; still
the implementation of these functions is limited, as opting out
means uninstalling the entire application and viewing the
recorded data involves reading text files. Currently there also
seems to be a lack of any unified user tracking framework,
which may be extended to any platform, programming
language or database. Most tracking frameworks seem to be
either application-specific or limited to a few programming
languages or a single platform. This means that researchers and
software developers are forced to spend each time efforts to
create a log mechanism rather than focusing on the analysis of
the data.

CleverTracker is a remote tracking framework put forward in
this paper, which attempts to solve the issues discussed above.
It enables researchers to respect users’ rights. It aims to achieve
this by providing visual controls, which allow users to start,
stop and pause data recording, as well as view logged data and
opt out from an online research study. CleverTracker is also
cross-platform compatible, which provides further flexibility to
researchers to choose their preferred operating system,
programming language and relational database. To encourage
its use, reviews and the further extension of the software, the

© Evdokiya D. Ignatova and Willem-Paul Brinkman, 2007
Published by the British Computer Society

Volume 2 Proceedings of the 21st BCS HCI Group
Conference

HCI 2007, 3-7 September 2007, Lancaster University, UK
Devina Ramduny-Ellis & Dorothy Rachovides (Editors)

 179

CleverTracker software framework is distributed as an open
source project hosted on SourceForge1, under the BSD license.

2. FRAMEWORK DESIGN
The framework is based on the client-server model. The server
component stores data permanently to a relational database for
later analysis. It is written in Java and can be configured to
support any database with a JDBC driver. This allows the
server component to be set up and run on any operating system.
The client component is a library which is used in the code of
the application under evaluation. As such there are multiple
client libraries to match the various programming languages
that applications may be written in. Currently, these include
Java (for desktop applications) and JavaScript (for web
applications). The interaction data is transferred from the client
libraries to the server component in the form of HTTP
messages, making it easy to extend the framework to support
additional technologies in the future. Each message represents a
single event generated from the application under evaluation
and is sent by the client with the fields listed in Table 1. The
“messageId” field acts as the unique identifier for each
message. All unique identifiers are generated locally on the
client side, with the help of UUID generators. This makes it
possible to use the framework in partially connected
environments where internet access may not always be
available.

Table 1. Description of the parameters of the log method.

Parameter Description

messageId
The messageId serves as a unique identifier
for messages sent from any client to the
server and logged in the central repository.

sessionId
The sessionId stands for a single run of the
application providing the interaction data.

userId
The userId anonymously identifies a user of
the software application.

messageType
The messageType provides an extra
categorisation of the generated messages.

eventOrigin

The attributes eventOrigin describes the
source in the application that triggered the
message generation, eg:
brunel.Converter.buttonClicked

eventMessage
A free text field that can contain any data
which is relevant to the researcher.

timestamp
A record of when the message was passed
from the software application to
CleverTracker client.

The “userId” field is also automatically generated by the client
libraries as a sequence of characters which cannot be directly
traced back to the users’ details. This field then allows
aggregating and analysing usage data for individual users,
while respecting their anonymity. Unlike the “userId” field
which remains the same, the “sessionId” field is generated for
each run of the application. It can be used to identify for how
long people use an application, or what functionality is used
during each session. The “messageType” field can be set in
advance to provide some categorisation of messages, for
example an “INFO” message or “BUTTONCLICK” message.
This field is free text. The actual information which is recorded

1 For the source code and documentation see

http://clevertracker.sourceforge.net/

is passed as free text using the “eventMessage” field. This
allows any type of textual data to be passed in the form of a
string. The eventOrigin allows locating the source of the
message. It is a hierarchical classification which identifies the
user interface element which triggered the message. In Java
desktop applications this is automatically captured as the
package name, class and method name which generated the
event.

2.1 Message Flow
The intended message flow (Figure 1) between the clients and
the server for this framework is the following: A user interacts
with an application, through some input device, such as
keyboard or mouse. The application then responds to this input
by executing some method or procedure. Additional code
should be inserted at this point which interacts with the
CleverTracker library and captures the event. The library then
checks whether the user has allowed the tracking of data and
sends the events to the server component. If the server is not
reachable the messages are queued locally and resent later once
the server is available. When the server receives the message it
is stored in a database. The server then sends a response to the
client to confirm the storage of the message. A researcher may
then access the database directly and perform detailed analysis
of interaction data using their chosen technique. Such analysis
may be achieved, for example, using data mining tools or
custom defined SQL queries. To provide a degree of fault
tolerance, the client is designed to continue sending the same
message to the server, until it receives an acknowledgement,
thus compensating for loss of messages. The server checks the
“messageId” field of every incoming message and only stores
each message once, even if it is received multiple times.

3. USING CLEVERTRACKER
3.1 Server Component
The server component runs as a J2EE application, and is
designed to be compatible with most Servlet containers (such as
Apache Tomcat or Jetty). The database connectivity can be set
up by editing an XML configuration file on the server. This file
contains the individual SQL statements that are used to insert
and select data, and as such the server component may be
configured to work with any database engine which provides a
Java driver.

3.2 Client Libraries
An application that wants to make use of CleverTracker has to
be customized by a software developer to call the programming
interface of the appropriate client library. The following code
snippet is a sample method called “buttonClicked” from a
currency converting application (Figure 4). This application is
written in Java and hence makes use of the Java CleverTracker
client library. This code illustrates a call to the programming
interface of the library to log the amount money and the
currency type which a user wishes to convert.

private void buttonClicked() {
1. double amount = getAmount();
2. String currency = getCurrency();
3. double converted =
 exchange(amount, currency);
4. recorder.logMessage("User converted " +
 amount + currency, "INFO");
}

Clever Tracking User Behaviour over the Web: Enabling Researchers to Respect the User

180

Figure 1. Message Flow.

The client library is called in line 4 and two pieces of
information are passed separated with a comma. The first part
is the “eventMessage” field, while the second part is the
“messageType” field. Once this information is passed to the
client library and it has been confirmed that the user has
allowed data collection, the rest of the fields are automatically
generated. Then the message is sent to the server. The sending
of the messages is processed separately while the application is
running, and as such including this code does not produce any
noticeable delay. The presence of this additional code is
transparent to the user. A sample logged message in the
database record is illustrated in Figure 2.

Figure 2. Example of a recording.

4. VISUAL CONTROLS
CleverTracker provides additional user interface elements,
which allow users to be in control of the recording process.
When the application makes its first attempt to log data, the
user is prompted that the application is going to collect data and
asks for their consent. If the user is happy to allow this action,
data collection begins and visual controls are provided as a
small system tray icon with a right-click menu (Figure 3). This
menu allows the user to monitor the status of the data collection
process, which could be either “Started” or “Paused”. By
clicking on the “View Recorded Data” button, a sample of the
logged data from the current session is displayed to the user.
Another important menu option is “Why is data being
recorded?”. It allows the researcher to provide further
information on what type of data is being collected as well as
external web resources, where the user can read more about the
study. This menu button for example could also lead to a
discussion forum, where the user can post questions and
communicate with the researcher directly.

The “Start Recording” and “Pause Recording” options allow
users to pause the data collection for a single session and restart

it at a later stage. On the other hand, the “Stop and Exit” button
stops the recording functionality for an entire session. The
“Opt-out” option permanently disables the CleverTracker
functionality; hence the user can choose to leave the study.

Figure 3.User Visual Control Menu.

5. USABILITY EVALUATION
An initial usability evaluation of the framework was conducted,
which aimed to evaluate clarity and usability of the user
controls provided by the CleverTracker client libraries. In order
to evaluate the visual interface of the clients, a series of
informal semi-structured interviews were conducted. The
interview questions were centred on the ethical requirements,
which were the focus of the CleverTracker framework. Five
participants took part in the study. They were all undergraduate
students in their last year of their Computer Science degree and
they were between 20 and 26 years old.

After given a short introduction on the tasks which they need to
fulfil, the participants had to use both a web and desktop
currency converter application (Figure 4). The complexity of
the application was relatively simple, as participants had to
enter a value, select a currency, and press the convert button to
get the value in Euro. After completing their task, participants
where interview in a short debriefing session. The interview
questions covered key issues such as the alerting system, the
clarity of information provided and the usability of the visual
controls.

Data
Repository

Sends

message

XML
response

Server

Researcher

Analyses

data

Web/ Desktop

Clients

Application

 User

messageId = 05135554-a343-4de3-b017-44121e129823-1

messageType = INFO

userId = f795b2e5-95e3-4eda-adc5-0cbbaca1090e

sessionId = 05135554-a343-4de3-b017-44121e129823

eventMessage = User converted 10USD

eventOrigin = clevertracker.DriverGui.buttonClicked

timestamp = 2007-05-24 3:42:59.000000921

Clever Tracking User Behaviour over the Web: Enabling Researchers to Respect the User

 181

Figure 4. Currency converter application.

A number of interesting observations were made. All of the
participants seemed confident in using the “Start Recording”,
“Pause Recording”, “View Recorded Data” and “Opt-out”
options. Almost all participants realised immediately that data
was being collected from the two applications, which meant
that the alerting system seemed to work as expected. Some of
the participants liked the fact that the alert pop-up comes when
they actually used the functionality of the web application. In
their opinion this helped them distinguish the data collection
alert from other spam message which according to them were
frequently seen, while browsing the web. In the desktop
application, the alerting pop-up with the opt-out feature seemed
also clear, however some of the users did not seem to notice
immediately the system tray icon for the visual menu, even
though there was an information pop-up indicating that there
was a menu there. A potential way to overcome this problem in
future editions of this platform might be to convert the system
tray menu into a floating window appearing next to the
application or even it could be part of the application window
itself.

When asked whether they would feel comfortable participating
in studies that was tracking data about their use of a web or
desktop applications, most participants were rather positive
about it. Although a few mentioned that they seemed more at
ease if they were participating in a web based study instead of
their desktop machines. Overall, the evaluation study showed
encouraging results. A further step would be organising a
similar more hands-on session with developers and researchers
to gain an understanding of what features they believe need
further improvement.

6. LIMITATIONS AND DISCUSION
One limitation of the JavaScript CleverTracker client became
apparent when the client library was tested with a web browser,
which had its pop-up blocker on. In that case the CleverTracker
JavaScript alert asking users for their consent to collect data
was blocked, which resulted into having the collection process
paused for the entire user session. Another important issue,
which has not been yet addressed, is the collection of sensitive
data with the framework. This could be an important issue if the
application under evaluation stores passwords or credit card
details. Currently, CleverTracker does not apply any filtering
on what data is collected from the user. This has been left to the

discretion of the researchers. They decide what data is actually
recorded. Still, with the View Recorded Data option, users will
be in the position to see what type of data is recorded, making
the recording process transparent. This awareness might help
them to understand when to use the Start Recording and Pause
Recording functionally when participating in study which
records their actions.

7. FINAL REMARKS
We believe that this software will allow researchers to better
understand how people interact with software. Given that this is
one of the first tools that spans on both web and desktop
platform, it could also allow an interesting comparison between
the two technologies. During every stage of the development
process, it was aimed to create a reliable and extensible system,
which is easy to configure and support. Naturally, taking into
consideration the size of the project, there are a few areas that
deserve further improvement. From functionality point of view,
it would be interesting to extend further the opt-out feature.
Users could be given the choice to opt out only from specific
types of recording and to give them an opportunity to
participate in other. Another key area of improvement might be
an automatic data removal feature. This would allow the
complete removal of already collected users’ data from the
database on request. Potential future work could also involve
gathering more user feedback on how users perceive the
usability of the visual controls of the framework. We equally
hope to receive feedback from researchers and developers on
what could be further improved in this framework. Future work
could also focus on developing clients to support more
programming languages, and developing software for research
to extract and analyse the interaction data in data repository.

8. REFERENCES
[1] Brinkman, W.-P., HCI 2006 workshop report interaction

tracking. In Proceedings of the 2006 Workshop on
Computer Assisted Recording, Pre-Processing, and
Analysis of User Interaction Data. Lulu, Morrisville, NC,
2006, 93-95.

[2] Fine, N. Personalising Interaction using Profiled User
Interface Skins. In Proceedings of HCI 2005, vol. 2, 194-
196

[3] Hilbert, D. M., and Redmiles, D. F. Large-Scale Usage
Data to Inform Design. In Proceedings of INTERACT
2001 (Tokyo, Japan, July 9-13, 2001). IOS Press,
Amsterdam, The Netherlands, 2001, 569-576.

[4] Renaud, K., and Gray, P. Making sense of low-level usage
data to understand user activities. In Proceedings of
SAICSIT’04. South African Institute for Computer
Scientists and Information Technologists, Stellenbosch,
Western Cape, South Africa, 2004, 115-124.

[5] Tang, J. C., Liu, S. B., Muller, M., Lin, J., and Drews, C.
Unobtrusive but invasive: using screen recording to collect
field data on computer-mediated interaction. In
Proceedings of CSCW ’06. ACM Press, New York, NY,
2006, 479-482.

Clever Tracking User Behaviour over the Web: Enabling Researchers to Respect the User

182

