
Consistency: a Factor which Links the Usability of
Individual Interaction Components Together

Willem-Paul Brinkman

Brunel University
Uxbridge, Middlesex

UB8 3PH
United Kingdom

willem.brinkman@brunel.ac.uk

Reinder Haakma

Philips Research Laboratories
Eindhoven

Prof. Holstlaan 4
5656 AA Eindhoven

The Netherlands
reinder.haakma@philips.com

Don G. Bouwhuis

Technische Universiteit
Eindhoven

P.O. Box 513
5600 MB Eindhoven

The Netherlands
d.g.bouwhuis@tue.nl

ABSTRACT
An underlying assumption of component-based
software engineering for interactive systems is that the
overall usability of a new assembled device mainly
depends on the usability of its individual components.
This paper challenges this assumption by presenting
findings of a series of lab experiments in which 48
subjects operated several consumer devices. The
experiments focussed on the effect inconsistency may
have on the usability of individual components. The
results indicate that inconsistency could cause
components, in the same or in higher layers, to activate
an inappropriate mental model for other components.
Furthermore, the application domain also seems to have
an effect on the subjects’ understanding of the
functionality a component provides.
Keywords
Consistency, usability, component-based software
engineering, usability testing, usability evaluation.
INTRODUCTION
Component-Based Software Engineering (CBSE)
advocates the development of independent components,
which can be used to create a new device. To do this,
components should be autonomous units, free of the
context in which they are deployed. This idea is one of
the major success factors behind object-oriented
development; it reduces the complexity of large
software projects and improves the maintenance and
reliability of a system (Cox, 1990). This approach is
also used for the development of interactive systems.
Interaction components such as input devices, or output
devices are developed and tested in isolation to optimise
usability. HCI theories such as the Layered Protocol
Theory (LPT) (Farrell, Hollands, Taylor & Gamble,
1999) support CBSE. LPT describes how interactive
systems can be broken down into individual
components and claims that these components can be
replaced by other components without affecting the
remaining part of the system as long as components
provide the same services. The underlying assumption
is that using highly usable components will result in
highly usable systems. However, others (Hertzum,

2000) suggest that software re-use can cause conceptual
mismatches. The same concept may be used in several
components, but it may not mean the exact same thing.
We argue here that inconsistency can also cause
components to affect each other’s usability negatively,
making an overall usability prediction of a system based
on the usability of the individual components unreliable.
This means that although a component can be developed
and tested in isolation, a usability evaluation of the
entire device is still required.
CONSISTENCY AND COMPONENTS
Consistency has no meaning on its own; it is inherently
a relational concept (Kellogg, 1989) and can be
described as doing similar things in similar ways with
agreement between agents about which things are
similar (Reisner, 1993). This means that a component is
regarded as consistent when both designers and users
partition the interaction with the component in the same
way. Furthermore, designers and users have to apply the
same criteria, or dimensions, to consider the interaction
with components to be similar. Likewise, inconsistency
involves disagreement between designers and users
about which things are similar, since what designers
may find consistent may not be consistent for users at
all (Grudin, 1989).
In this paper we regard interaction components as
elementary units of interactive systems, on which
behaviour-based evaluation is possible (Brinkman,
Haakma & Bouwhuis, 2004). An interaction component
is a unit within an application that directly or indirectly
receives signals from the user. These signals enable the
user to change the physical state of the interaction
component. Furthermore, the user must be able to
perceive or to infer the state of the interaction
component. Therefore, an interaction component should
provide feedback. Without the possibility of perceiving
the state, users cannot control it, making their behaviour
aimless. The points where input and output of different
interaction components are connected demarcate the
border between layers. An interaction component
operates on a higher-level layer than another interaction
component, when the higher-level interaction

component receives its user’s messages from the other
interaction component.
Consistency in a component-based environment is
related to the feedback a component provides, and
especially the feedback that guides users in their action
selection. When this kind of feedback fits into the users’
mental model, users can derive the consequence of an
action from this mental model. The system feedback is
also responsible for the users’ activation of a mental
model. However, if something else besides the
component’s feedback were to determine what mental
model users apply, the usability of a component would
be partially outside the control of its designer, which
would undermine the component’s autonomy.
Several studies have shown that consistency can affect
the overall usability of a device (e.g. Payne & Green,
1989; Polson, 1988). However, little has been said about
whether consistency can cause components to affect
each other’s usability. This study looks at three
situations where this may occur: between components in
the same layer; between components in different layers;
and between a component and an application domain.
All situations concern users’ misinterpretation of the
feedback because of the mental model they apply. The
reason why users apply a particular mental model may
depend on factors outside the component, such as
feedback of other components or the application
domain.
Before describing the three experiments that studied
these three situations, the general experimental set-up of
the experiments is presented. After the presentation of
the experiments, the findings are discussed in general.
GENERAL EXPERIMENTAL SET-UP
All three experiments were conducted simultaneously
under the control of one PC application written in
Delphi 5. All 48 subjects, students of Eindhoven
University of Technology, participated in all three
experiments and received NLG 15 (roughly € 7) for
their effort. The experimental design was
counterbalanced for possible two-way interaction
effects between the experimental conditions of the three
experiments and the order in which they were asked to
use the devices. Throughout the task performance, the
message exchange between the interaction components
of the devices was recorded. This made it possible to
count the number of messages a component received.
This has been shown to be a powerful objective
component-specific measure, as it presents the amount
of effort a user has made to control a component
(Brinkman, Haakma, & Bouwhuis, 2001).
INCONSISTENCY WITHIN THE SAME LAYER
The experiment to study the effect of inconsistency
between interaction components within the same layer
was conducted with four simulations of a room
thermostat.
Room Thermostat
The room thermostat had two very similar interaction
components —daytime and night-time temperature—

which users presumably expected to be more or less
similar things and therefore could be operated in a
similar manner. Two similar versions of both
components were designed, which resulted in four
simulations. In one version the temperature had a
display with a moving pointer (Figure 1, left image,
upper display) and a fixed scale, in the other version the
display had a fixed marker and a moving scale (Figure 1
left image, lower display). The Left and the Right
button had an opposite effect in the two versions.

Daytime
temperature

Router

Nighttime
temperature

{Day, Night} {Left, Right}

{Left, Right,
On , Off}

Figure 1: (left) an inconsistent room thermostat, and
(right) part of the compositional structure of the device.
Results
An ANOVA was conducted on the number of messages
received by the Nighttime interaction component. The
analysis took the versions of the Daytime Temperature
interaction component (2) and the version of the
Nighttime Temperature interaction component (2) as
between-subjects variables. The results revealed a
significant main effect (F(1,44) = 9.22; p. = 0.004) for
the version of the Nighttime component. More
messages were received when the component was
implemented with the moving scale version. In addition,
the analysis found a significant two-way interaction
effect (F(1,44) = 7.06; p. = 0.011) between the Daytime
and Nightime versions. More messages were received in
the prototype that had the moving pointer version for
the daytime temperature and the moving scale for the
night-time temperature (Figure 1) than in the other three
prototypes. The explanation for this interaction effect is
that when subjects started with setting the daytime
temperature, implemented with a moving pointer, they
activated a more familiar mental model than that
associated with the moving scale version. The
Nighttime Temperature component was interpreted in
the light of this powerful mental model, which did not
fit with a moving scale implementation and made
subjects click on the wrong buttons.
INCONSISTENCY BETWEEN LAYERS
The experiment to study the effect of inconsistency
between interaction components in different layers was
conducted with four simulations of a web-enabled TV
set. A mistake that novice Lynx users probably easily
make, served as a model for a possible inconsistency
problem between two layers. Lynx is a text-based web
browser that allows users to access the web in non-
graphical environments without the use of a mouse.

Users can select the links with the Up and Down arrow
buttons on the keyboard. To activate the selected link,
users have to press the Right arrow. With the Left
arrow, users can return to the previous page. The
possibility of an error may increase when links in the
web page are placed on the same line. The supposed
error occurs because to the activation of an
inappropriate mental model —horizontal positioning
with the Left and Right arrows.

Figure 2: (left) linear-oriented remote control; (middle)
plane-oriented remote control; (right upper corner)
matrix layout; (right lower corner) list layout.
Web-Enabled TV Set
The tasks the subjects had to perform, using a web-
enabled TV set (Figure 2), was to find the web page that
gave the departure times of a bus based on the bus stop,
the bus number, the city and the province, which were
all given in the instructions. The experiment had a 2
(web pages) × 2 (browser) between-subjects design.
Variations in the web page’s layout led to two versions
of the Web Pages component. One layout, the matrix
layout, placed the web links in a web page both on the
same line and one below the other. The other layout, the
list layout, placed all links one below the other.
Variations in the remote control led to two versions of
the Browser component. For one remote control, the
linear-oriented version, the Up and Down buttons were
interpreted as, “select the previous link” or “select the
next link in succession”. The sequence went from left to
right and continued on the left of the next line. The Left
and Right button were interpreted as “jumping to the
previous web page” and “activate the selected link”. For
the other remote control, the plane-oriented version, the
Up and Down buttons were interpreted as “select the
link above” and “select the link below”. Consequently,
the Left and Right buttons were interpreted as “select
the link left” or “select the link right”. The subject could
jump to the previous page with the Back button and
activate the selected link with the Middle button.
Results
The minimal number of messages received by the web
page server required to perform the tasks were different
in the four prototypes. Therefore, instead of analysing
the absolute number, the number of messages received

that were needed in addition to the minimal numbers
were analysed by subtracting the minimal numbers from
the observed ones. The ANOVA took the versions of
the Browser (linear or plane oriented) and the Web Page
(matrix or list layout) as between-subjects variables.
The results showed a significant main effect (F(1,44) =
24.22; p. < 0.001) for the version of the Browser and a
significant main effect (F(1,44) = 15.62; p. < 0.001) for
the version of the Web Page. The web server received
more messages when a prototype was equipped with the
linear-oriented instead of the plan-oriented version of
the browser, and when a prototype was equipped with
the matrix instead of the list version of the web pages.
The analysis also revealed a significant interaction
effect (F(1,44) = 16.82; p. < 0.001) between the
Browser version and the Web Page version. The web
server received more messages in the prototype that
combined the linear-oriented Browser version and the
matrix Web Pages version than in the other prototypes.
This demonstrates that even though the Internet
architecture is developed to make web pages
independent from the browsers, users might run into
trouble when on a higher-level layer the web-page
server activates an inappropriate mental model for the
interpretation of lower-level browser’s feedback.
INCONSISTENCY AND APPLICATION DOMAINS
The last experiment studied the effect the application
domain may have by activating a general mental model,
which in turn may activate a component-specific mental
model, which users apply to interact with a component.
Note the difference with the previous experiments. In
this experiment it is not the feedback of other
components, but the users’ idea of operating a particular
device that determines what component-specific mental
model they apply.
Radio Alarm Clock and Microwave
The experiment took a radio alarm clock and a
microwave as applications in which two versions of a
clock were implemented. In the radio alarm clock, the
clock determined when the radio should be switched on,
and in the microwave, the clock determined when the
cooking should start. The fit or misfit between the
application domain and the clock was in the clock’s
feedback that was presented along with the timer time
(Figure 3). In one version, the mechanical alarm
version, the symbol of a ringing mechanical alarm clock
was shown, in the other version, the hot dish version, a
symbol of a hot dish. The clock had four different
modes: displaying the current time, displaying the timer
time, setting the current time, and setting the timer time.
The current time was presented along with a symbol of
a clock (Figure 3, right symbol). The timer time was
presented along with the ringing mechanical alarm
clock or the hot dish.

Figure 3: (left) ringing mechanical alarm clock,
(middle) a hot dish, and (right) normal clock symbol.

When the subjects performed a task with the radio
clock, the expectation was that the task of setting the
alarm of an alarm clock would activate a general mental
model on alarm clocks, which subsequently activates a
component-specific mental model of setting the alarm
of alarm clocks. In light of this activated component-
specific mental model, subjects could more easily
understand the feedback “the time the timer will go off”
presented by the mechanical alarm clock and by a hot
dish. The opposite was expected for the microwave,
where the feedback indicates “the time cooking begins”
which is probably better presented by the hot dish than
by a mechanical alarm clock.
Results
An ANOVA was conducted on the number of mode
change requests received by the clock. The analysis
took the Clock version (2) and Application domain (2)
as between-subjects variables. The analysis did not find
a significant interaction effect (F(1,44) = 0.02; p. =
0.887) between two independent variables. Besides the
straightforward interpretation that there is no general
mental model that indirectly influences the interaction
with a specific component, another interpretation is an
unanticipated effect of the experimental set-up.
Although the subjects may not have understood the
inconsistent symbol presented with the timer, it was the
only option.
The ANOVA did however reveal a significant main
effect (F(1,44) = 7.57; p. = 0.009) for the application
domain. Subjects less often changed the clock mode
when they operated the radio alarm than when they
operated the microwave. The same clock function was
apparently easier to use in one application domain than
in the other, which suggests that the usability of a
components depends on the application domain.
DISCUSSION
The results of the first two experiments show that the
control of a component can depend on other
components. Feedback is interpreted with a component-
specific mental model, which feedback of other
components may have activated. The third experiment
shows that the application domain may also have an
impact on the usability of components. These findings
may be limited to the phase where users learn to control
a component, as was the case in all three experiments.
Once users gain experience with controlling the
components it might be that the dependence between
them lessens because the correct components-specific
model will be activated. Users might be more guided by
the feedback initially, and later on more by their own
experience.
The findings demonstrate that designers should not
assume that selecting components that may be very easy
to use in other applications would automatically result
in a very easy to use new application. When designers
are creating a new component they should try to predict
what other components will be used in relation with

their component. If this is not possible, the component
should be designed according to a set of specific rules.
Later on, when the component is used to build an
application, developers should make sure that the
components they apply follow the same rules, or at least
that there are no conflicting rules. These rules can be
laid down in a style guide. However, this does not
guarantee an application without inconsistency, because
users do not have to agree with what designers consider
to be consistent. Only the involvement of users can
solve this problem.
REFERENCES
Brinkman, W.-P., Haakma, R., & Bouwhuis, D.G.

(2001). Usability evaluation of component-based
user interfaces. INTERACT’01, Amsterdam: IOS
Press, 767-768.

Brinkman, W.-P., Haakma, R., & Bouwhuis, D.G.
(2004). Usability testing of interaction
components: Taking the message exchange as a
measure of usability, In R.J.K. Jacob, Q. Limbourg
& J. Vanderdonckt (Eds.), Pre-Proceedings of
CADUI'2004 (p. 159-170). Dordrecht, The
Netherlands: Kluwer Academics.

Cox, B.J. (1990). There is a silver bullet: A software
industrial revolution based on reusable and
interchangeable parts will alter the software
universe. Byte, 15, 10, 209-218.

Farrell, P.S.E., Hollands, J.G., Taylor, M.M., and
Gamble, H.D. (1999). Perceptual control and
layered protocols in interface design: I.
Fundamental concepts. International Journal of
Human-Computer Studies, 50, 489-520.

Grudin, J. (1989). The case against user interface
consistency. Communications of the ACM, 32,
1164-1173.

Hertzum, M. (2000). Component-based design may
degrade system usability: Consequences of
software reuse. Proc. OZCHI 2000, Sydney:
Ergonomics Society of Australia, 88-94.

Kellogg, W.A. (1989). The dimensions of consistency.
In J. Nielsen (Ed.), Coordinating user interfaces
for consistency (p. 9-20). London: Academic
Press.

Payne, S.J. & Green, T.R.G. (1989). The structure of
command languages: An experiment on task-
action grammar. International Journal of Man-
Machine Studies, 30, 213-234.

Polson, P.G. (1988). The consequences of consistent
and inconsistent user interfaces. In R. Guindon
(Ed.), Cognitive science and its applications for
human-computer interaction (p. 59-108).
Hillsdale, NJ: Lawrence Erlbaum.

Reisner, P. (1993). APT: A description of user interface
inconsistency. International Journal of Man-
Machine Studies, 39, 215-236.

