
1

PCM1024Z format: What's Known?
W.Pasman 11/11/3

Introduction
This report documents how the Futaba PCM1024Z data format probably looks like. I
combined the autopilot [autopilot03], the smartpropo code [smartpropo02] and the
comments I got from several people on RunRyder [RunRyder03], into what is supposed
to be the Futaba PCM 1024Z format. I haven't measured anything, this is purely based on
'paper work'. Several details are still missing, this document gives a starting point from
where further investigation can start.We go through the protocol bottom-up, starting at bit
level and ending at multi-frame level.

Bits
At the lowest radio level, we have bits. Every bit takes 150µs (micro seconds). A low bit
means the f-b frequency is active, and a high bit to be the f+b frequency to be active. f is
the base band (35MHz, 40MHz, 72MHz whatever you have), and b=3khz.
The smartpropo software measures the length between flanks in the data where input
changes from 0 to 1, and calculates from that how much bits passed. It relies on 44.1kHz
audio samples, so every bit is oversampled 6.623 times.
The autopilot project uses an timed interrupt, to measure the incoming bits at pre-set
times. The interrupt measures the bit, shifts it into a register until enough bits are
gathered, and then sets a semaphore. The rest of the software busy-waits until the
semaphore sets, and then processes the register1.

Inverting the Frame Bits
All the bits in the radio stream are frequently inverted, probably to avoid problems with
frequency skewing of phased locked loops in the transmitter [Patent 5,799,045]. The sync
pulse is also inverted: a normal sync pulse is high, the inverted pulse is low. This
inversion toggles every two frames, so two normal frames are transmitted, followed by
two inverted frames. I guess that this inversion is done in the radio module as suggested
in mentioned patent, following a sync pulse.

pcm byte
Those bits are grouped in 10-bit words. pcm_byte they are called in the autopilot project.
Those pcm_bytes are 10-bit codes representing 6 data bits. So for every 10 bits received
in the radio we have 6 databits left for further processing. This is called block coding, or
6B10Bat some places. autopilot and smartpropo have different conversion routines doing
the same. Every pcm_byte takes 10*150=1500µs=1.5ms to transmit.

1 I'm extremely amazed by this, their CPU is occupied full-time with decoding the format
and no other program can simultaneously run on their CPU. I thought busy-waiting is a
prehistoric solution.

2

Table 1. 6B10B block code. Every 10 radio bits (left column) are
representing 6 data bits.

10-bit radio word 6-bit data
(decimal)

6-bit data
(hexadecimal)

1111111000 0 00
1111110011 1 01
1111100011 2 02
1111100111 3 03
1111000111 4 04
1111001111 5 05
1110001111 6 06
1110011111 7 07
0011111111 8 08
0001111111 9 09
0000111111 10 0A
1100111111 11 0B
1100011111 12 0C
1100001111 13 0D
1110000111 14 0E
1111000011 15 0F
0011111100 16 10
0011110011 17 11
0011100111 18 12
0011001111 19 13
1111001100 20 14
1110011100 21 15
1100111100 22 16
1100110011 23 17
1111110000 24 18
1111100000 25 19
1110000011 26 1A
1100000111 27 1B
1100011100 28 1C
1110011000 29 1D
1110001100 30 1E
1100111000 31 1F
0011000111 32 20
0001110011 33 21
0001100111 34 22
0011100011 35 23
0011111000 36 24
0001111100 37 25
0000011111 38 26
0000001111 39 27
0011001100 40 28
0011000011 41 29
0001100011 42 2A
0000110011 43 2B
1100110000 44 2C
1100011000 45 2D
1100001100 46 2E
1100000011 47 2F
0000111100 48 30
0001111000 49 31
0011110000 50 32
0011100000 51 33
0011000000 52 34
1111000000 53 35
1110000000 54 36
1100000000 55 37
0001100000 56 38
0001110000 57 39
0000110000 58 3A
0000111000 59 3B
0000011000 60 3C
0000011100 61 3D
0000001100 62 3E
0000000111 63 3F

3

PCM Packet
Four of these pcm bytes are grouped into a 4*6=24 bit word, with the first incoming
pcm_byte at the most significant position. Then the bits in this word are re-grouped to
form a 2-bit pcm_aux, 4-bit pcm_delta, 10 bit pcm_position and 8 bit pcm_ecc field.
Together these four fields are called pcm_packet in the autopilot project. Figure 1 shows
the steps so far. A pcm packet takes 40*150µs=6ms to transmit.

4x10 radio bits

24bit word with
4x6bit pcm_bytes

au
x pos

d
el

ta ecc pcm_packet

Figure 1. conversion from 40 radio bits to a 24bit pcm packet.

pcm position
The position information for a channel straightly represents a servo pulse signal. A 0
represents a servo pulse of 920µsec and a 1023 corresponds to a servo pulse of 2120µsec
(e.g., [Patent 5,799,045]). That gives 1.2msec for 1024 positions, or 1.1718µs per step.

pcm_ecc
Sekiriki (the developer of smartpropo) mentions on his board the details of the ecc.The
ecc holds the XOR of 8-bit numbers associated with the first 16 bits. The numbers
associated with the bits are shown in Figure 2. To calculate the ECC, we start with ecc=0,
and run through the first 16 bits in the pcm_bytes (so, up to the 6th bit in byte 3, as each
pcm_byte holds 6 bits). For each '1' bit, the ecc xor-ed with the associated number from
Figure 2. Appendix A explains how this code can be used by the receiver.

6B, D6, C7, E5, A1, 29, 52, A4, 23, 46, 8C, 73, E6, A7, 25, 4A
Figure 2. 16 8-bit numbers (hexadecimal) associated with the first
bits in the pcm packet.

pcm delta
The 4 bit delta field tells how to calculate the new position for a channel given the old
position. According to the autopilot project we have

new position=old position + pcm_delta - 8

However this doesn't match what is suggested in patent 4,916,446, and it is also
confirmed by Angelos [Runryder03] that this should be

4

new position=old position + delta_table[pcm_delta]

The contents of the delta_table (16 signed integers) are not publicly available.

pcm aux
I have not seen much informtion yet on the contents of the two auxiliary bits. They may
contain failsafe information, failsafe behaviour when the battery goes low, channel 9 (and
maybe even more channels?).
One thing that almost surely resides here is the position of channel 9. Channel 9 is a
switch channel and thus needs only 1 bit. Sekiriki mentions it's in the "18th bit of every
frame". However that can't be the case because bit 18 falls within the pcm_ecc block.
Counting the other way round, starting at the lowest ecc bit, we would get midway the
pcm_pos field. My guess is that he miscounted and that channel 9 is in the second bit of
the second pcm_aux block. Channel 10 is probably another bit in the aux fields.

Frames
Pcm packets are grouped into clusters of 4, called frames. A frame holds all the
information to update all the channels. There are two types of frames: an odd and an even
frame.Every frame is preceeded by special bits called the sync, which is ment to allow the
radio level to synchronise and to recognise the start of data. After that follows the frame
odd/even code, and then come the four pcm packets. Figure 4 shows this.

sync odd/
even

pcm_packet1 pcm_packet2 pcm_packet3 pcm_packet4

3ms 6ms 6ms 6ms 6ms0.9-
1.2ms

Figure 4. Global structure of a frame. It starts with sync pulses for the radio level, then
comes an odd/even frame indicator, and then follows the data.

Sync
A sync pulse usually lasts 3ms, and during that time only 1 'high' bit is transmitted.
Smartpropo looks for a sync pulse of 2700µs (18 bits), which looks a bit too rigid and
might cause loss of frames (maybe intended?). The autopilot code wait till a sync pulse of
at least 2500µs comes by.

Odd/Even Code
Directly after the sync follows the odd/even frame indication.
According to the smartpropo code, this is coded with six bits (not a pcm_byte, but
straight 150ms pulses at radio level). For an odd frame the bits are 000011** and for an
even frame 0000002. The ** indicate 2 bits that are ignored in the smartpropo system.
In the autopilot project, these odd/even code bits are skipped by setting a timer, and the
extra 2 bits for the odd frames are just accounted for by adding 300µs to the timer. On top
of that they have to correct for normal and inverted frame bits. Most likely these extra

2 This may be the other way round, because smartpropo and autopilot don't agree on the
actual contents of the frame.

5

corrections are caused by their rigid fixed-time sampling using an interrupt where
smartpropo can accept a bit of variation on the timings.
Note: Angelos [Runryder03] talks about "failsafe frames", so there might be a third
header indicating this.

Odd and Even Frame

We can number the frames in the order they are transmitted. This gives us odd-numbered
and even-numbered frames. In every frame we have four pcm_packets
<pcm_pos,pcm_delta,...>, each targeting two channels {target for pcm_pos, target for
pcm_delta}. The target varies, depending on whether a frame is odd or even.
In an odd frame, the target channels are {1,2} {3,4} {5,6} and {7,8} for the subsequent
packets. In even frames, the target channels are {2,1} {4,3} {6,5} and {8,7}. Stated
otherwise, the pcm_pos and pcm_delta is alternatingly used by one or the other channel.
Figure 5 shows this.

pos=1
∆=2

pos=3
∆=4

pos=5
∆=6

pos=7
∆=8

pos=2
∆=1

pos=4
∆=3

pos=6
∆=5

pos=8
∆=7

pos=1
∆=2

pos=3
∆=4

pos=5
∆=6

time ~30ms ~60ms

frame 1=odd frame 2=even frame 3=odd

Figure 5. In odd frames, even channels use the pcm_pos and odd channels the
pcm_delta field of the pcm_packets. In even frames this is the other way round.

Above configuration is according to autopilot code; according to the smartpropo code the
order is3 {3,2}{4,1}{5,4} for the odd frame and {2,3} {1,4} {4,5} for the even frame. He
doesn't mention channel 6 and 7.
Angelos [Runryder03] suggests yet another order: {5,6} {1,2} {3,4} {7,8}. He doesn't
talk about odd and even frames.
In short, there is big confusion about the order of the frames. Maybe there is some
software setting in the radio that can change the order? This may make sense for some
applications. But then, this information has to be available somewhere in the packets as
well. Alternatively, it could be that odd and even frames have a different order.

Total frame length, extra bits?

Apart from the sync and odd/even information, a frame thus lasts 28ms, including the
odd/even frame info this would be 28.9 or 29.2ms, and including the sync we get a grand
total of 31.6ms and 31.9ms depending on the frame type. Note that this is much longer
than PPM frames that last only 22.5ms.
Angelos [Runryder03] mentions 28.2 or 28.8ms frame time, depending on the 'sync type
which defined the data it carries'. From the notes he gives on latency I deduce that we
agree on the 'start of the frame', namely after the 6- or 8-bit frame type pulse. That means
that he suggests that there two to five extra bits after the end of the last pcm frame that
have not been reported in literature.

3 I'm making an educated guess where Sekiriki thinks the delta code is

6

References
[autopilot03] Hudson, T. (2003). Autopilot: Do it yourself UAV.

http://sourceforge.net/projects/autopilot and
http://autopilot.sourceforge.net.

[smartpropo02] Sekiriki (2002). SmartPropo: The RC to PC Audio Interface.
http://www.sekiriki.jp/smartpropo/index.html

[Runryder03] Decoding Futaba PCM 1024Z.
http://www.runryder.com/helicopter/t71094p1

[Pat. 5,799,045] Sakuma (1998). patent 5,799,045: PLL-mode radiofrequency module.
Available Internet: http://www.uspto.gov/.

[Pat. 4,916,446] Yamamoto (1990). Patent 4,916,446: Remote Control device.
http://www.uspto.gov/.

Appendix A: error correction
In the receiver, the ecc can be used to check whether all bits were transmitted correctly
(Figure 3). To do this, ecc2 is calculated by re-doing the calculation using the received
bits. If ecc (the one received) equals ecc2, all bits probably are okay.
If 1 bit is wrong, we can easily find out which one by xor-ing ecc and ecc2, and look up
the resulting number in Figure 2. The bit having this number is wrong and has to be
inverted. For instance if ecc XOR ecc2 = E5, the second bit of the pcm_delta field is
wrong.
The numbers are constructed such that if two bits are wrong, never a number already in
Figure 2 is generated, avoiding malicious 'correction' by flipping only 1 bit. If two bits
are corrupted, we can't do much, because we have 16*15/2=120 possible combinations of
two bits in 16 bits being wrong, while the pcm_ecc can represent only 256 different
numbers. In such a case, the chances would be too high that the ecc itself was mangled
during transmission. Furthermore, it can not unique be determined in all cases which bits
went wrong anymore if two bits are corrupted.

au
x pos

d
el

ta ecc pcm_packet

6B D6 C7 E5 A1 29 52 A4 23 46 8C 73 E6 A7 25 4A

XOR

Compa-
rator

Figure 3. In the receiver, the ecc that would follow from the first 16 bits from a pcm
packet is compared with the ecc as it was calculated in the transmitter. Results should be
the same if no bits are damaged in the transmission.

7

Appendix B: Receiver oddities
This section contains some remarks that are not part of the protocol but nevertheless are
interesting for the latency aspects of the total system. In the receiver the servo pulses may
not be generated in incoming order. Angelos [Runryder03] reports the timings for
generating the servo pulses relative to the start of their respective frames4 (Table 2).

channels pulse start relative to frame start (ms)
1 and 2 9.480
3 and 4 7.120
5 and 6 7.120
7 and 8 8.4

Table 2. Servo pulse delays with respect to

The frame transmission time of 31.6ms is long enough to generate two servo pulses per
frame, and Angelos [Runryder03] indicates that this is indeed the case. He also knows
that the second pulse is always identical to the first one, and always generated 14.16ms
after the first pulse. This might give some interesting problems to the servos, as smooth
interpolation would be hampered by such 'fake' pulses.

4 Angelos talks about 'sub frames' and 'relative to first bit of the frame'. As far as I can see
he means relative to what we call pcm_packets.

